We know: # • the function in full (at any point by a slow method) • values (sometimes also derivatives) at discrete points • values (sometimes also derivatives) at discrete points • • quality of data: • • arbitrary precision • • approximate (experiment, simulation) • Methods: • • Taylor (McLaurin) / Padé (rational function), Thiele • • interpolation • • splines • • orthogonal systems of functions • • Least square method – fitting, correlation, regression × • Padé 3/13 mmpc3 The Padé approximation of function $f(x)$ at $x = 0$ is the rational function: •	MacLaurin (shifted $x = 0 \rightarrow x = x_0 = \text{Taylor})$ All derivatives must be known, in \mathbb{R} , \mathbb{C} ,: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ $e \text{ accurate close to x = 0 f(x) = \begin{cases} \exp(-1/x) & \text{for } x > 0, \\ 0 & \text{for } x \le 0 \end{cases} is smooth (all derivatives at x = 0 are zero),but not analytic (zero radius of convergenceof the Taylor series)Example. Study the convergence (partialsums) of the Taylor series of function \sin(x) atx = 0$
We know: • the function in full (at any point by a slow method) • values (sometimes also derivatives) at discrete points Quality of data: • arbitrary precision • approximate (experiment, simulation) Methods: • Taylor (McLaurin) / Padé (rational function), Thiele • interpolation • splines • orthogonal systems of functions • least square method – fitting, correlation, regression Padé 3/13 mmpc3 The Padé approximation of function $f(x)$ at $x = 0$ is the rational function: $f(x) \approx \frac{P_k(x)}{P_{n-k}(x)}, P_l(x) = \sum_{i=0}^l a_i x^i $	$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ • accurate close to $x = 0$ • the larger x , the less accurate • convergence not guaranteed, e.g.: $f(x) = \begin{cases} \exp(-1/x) & \text{for } x > 0, \\ 0 & \text{for } x \le 0 \end{cases}$ is smooth (all derivatives at $x = 0$ are zero), but not analytic (zero radius of convergence of the Taylor series) Example. Study the convergence (partial sums) of the Taylor series of function $\sin(x)$ at x = 0
Accurate close to $x = 0$, inaccurate for large x Often (but not always) more accurate than Taylor of the same order	E.g.: $a_{0} + \frac{x}{a_{1} + \frac{x}{a_{2} + \frac{x}{a_{3}}}} = a_{0} + \frac{x}{ a_{1} } + \frac{x}{ a_{2} } + \frac{x}{ a_{3} }$ Infinite continued fraction (example): $\arctan x = \frac{x}{ 1 } + \frac{1^{2}x^{2} }{ 3 } + \frac{2^{2}x^{2} }{ 5 } + \frac{3^{2}x^{2} }{ 7 } + \cdots \text{ converges for } x \in \mathbb{R}$ Taylor expansion: $\arctan x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - + \cdots \text{ converges for } x \leq 1$
• Speed up the convergence, e.g., of the virial equation of state	
	Thiele theorem + ^{6/13} mmpc3
$P_n(x) = \sum_{i=0}^n a_n x^n = a_0 + x(a_1 + x(a_2 +)) n \text{ multiplications and } n \text{ additions}$ $NB: P_4 \text{ can be evaluated in 3 multiplications and 5 additions, } P_5 \text{ in 4 multiplications}$ and 5 additions $Continued \text{ fraction (recursive):}$ $f_n = a_0 + \frac{b_1 }{ a_1 } + \frac{b_2 }{ a_2 } + \dots + \frac{b_n }{ a_n }$ algorithm for any n : $A_{-1} := 0, B_{-1} := 1$ $A_0 := 1, B_0 := a_0$ $A_j := a_j A_{j-1} + b_j A_{j-2}, B_j := a_j B_{j-1} + b_j B_{j-2}, j = 1n$ $f_n = \frac{B_n}{A_n}$	for continued fractions is analogous to Taylor for polynomials. $f(x) = f(0) + \frac{x }{ r_1(0) } + \frac{x }{ r_2(0) } + \frac{x }{ r_3(0) } + \cdots$ where recursively: $R_{-1} = 0$ $R_0 = ln(1+x)$ $R_0 = f(x)$ $R_1 = R_{-1} + r_0 = 1 + x$ $r_1 = 2/(1+x)' = \boxed{2}$ $R_2 = R_0 + r_1 = \ln(1+x) + 2$ $r_2 = \frac{3}{1/(1+x)} = 3(1+x)^{x=0} \boxed{3}$ \vdots $r_{2n} = 2n + 1, r_{2n+1} = 2/(n+1)$
NB: A_j , B_j may overflow, there are methods avoiding this	$\ln(1+x) = \frac{x}{ 1 } + \frac{x}{ 2/1 } + \frac{x}{ 3 } + \frac{x}{ 2/2 } + \frac{x}{ 5 } + \frac{x}{ 2/3 } + \cdots$
Approximation by orthogonal functions 7/13 mmpc3	Example – Fourier series 8/13 mmpc3
[<i>a</i> , <i>b</i>]. Then (in some sense of convergence) $f(x) = \sum_{i=0}^{\infty} a_i b_i(x), \text{ where } a_n = \int_a^b f(x) b_n(x) dx$ Let us denote the partial sum as $f_n(x) = \sum_{i=0}^n a_i b_i(x)$ Then the coefficients a_i minimize the following "error" of the approximation (integral of squares of the deviations):	Fourier series for functions $f(x), x \in [0, 2\pi]$, such that $\int_0^{2\pi} f^2 dx$ exists: • basis = {1, sin x, cos x, sin 2x, cos 2x} • good for "smooth enough" periodic functions • limited advantage for numerical purposes (slow sin, cos) $\sum_{i=1}^k \frac{\sin(ix)}{i} = \sum_{k=4}^{q} \sum_{k=4}^{k=4} k=16$
<pre> ∫_a^D f_n(x) - f(x) ^2 dx (1) Notes: To approximate certain classes of decaying functions, an unbounded interval can be considered, cf. mat-lin2.mw. Scalar product with a weight can be used (see, e.g., Chebyshev) </pre>	$\sum_{i=1}^{n} \frac{1}{i}$

