
Approximation of functions 1/13
mmpc3

We want a formula

We know:

the function in full (at any point by a slow method)

values (sometimes also derivatives) at discrete points

Quality of data:

arbitrary precision

approximate (experiment, simulation)

Methods:

Taylor (McLaurin) / Padé (rational function), Thiele

interpolation

splines

orthogonal systems of functions

Chebyshev (best) approximation

least square method – fitting, correlation, regression
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MacLaurin (shifted  = 0 →  = 0 = Taylor)
All derivatives must be known, in R, C, . . . :

ƒ () =
∞
∑

n=0

ƒ (n)(0)

n!
n

accurate close to  = 0

the larger , the less accurate

convergence not guaranteed, e.g.:

ƒ () =
§

exp(−1/) for  > 0,
0 for  ≤ 0

is smooth (all derivatives at  = 0 are zero), but not analytic
(zero radius of convergence of the Taylor series)

Example. Study the convergence (partial sums) of the Taylor
series of function sin() at  = 0. credit: Wikipedia
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The Padé approximation of function ƒ () at  = 0 is the rational function:

ƒ () ≈
Pk()

Pn−k()
, P() =


∑

=0


which has the same derivatives as ƒ at 0 up to ƒ (n)(0) (i.e., the same Taylor expansion)

Accurate close to  = 0, inaccurate for large 

Often (but not always) more accurate than Taylor of the same order

Calculation:

Taylor-expand both sides of the equation and compare the coefficients

Use the Thiele theorem for the continued fraction

Application:

Speed up the convergence, e.g., of the virial equation of state
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Equivalent expression for the rational function

E.g.:

0 +


1 +


2+

3

= 0 +
 |

|1
+

 |

|2
+

 |

|3

Infinite continued fraction (example):

arctan =
|

|1
+
122|

| 3
+
222|

| 5
+
322|

| 7
+ · · · converges for  ∈ R

Taylor expansion:

arctan =  −
3

3
+
5

5
− + · · · converges for  ≤ 1



Evaluations + 5/13
mmpc3

Evaluate a polynomial (direct):

Pn() =
n
∑

=0
nn = 0 + (1 + (2 + . . .)) n multiplications and n additions

NB: P4 can be evaluated in 3 multiplications and 5 additions, P5 in 4 multiplications and 5 additions

Continued fraction (recursive):

ƒn = 0 +
b1 |

|1
+
b2 |

|2
+ · · · +

bn |

|n
algorithm for any n:

A−1 := 0, B−1 := 1
A0 := 1, B0 := 0

Aj := jAj−1 + bjAj−2, Bj := jBj−1 + bjBj−2, j = 1..n

ƒn =
Bn

An
NB: Aj, Bj may overflow, there are methods avoiding this
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for continued fractions is analogous to Taylor for polynomials.

ƒ () = ƒ (0) +
 |

|r1(0)
+

 |

|r2(0)
+

 |

|r3(0)
+ · · ·

where recursively:

R−1 = 0

R0 = ƒ ()
Rj() = Rj−2() + rj−1()

rj() =
j + 1

R′j ()

Example: ln(1 + )

R0 = n(1 + )

r0 = 1/(1/(1 + )) = 1 + 
=0
= 1

R1 = R−1 + r0 = 1 + 
r1 = 2/(1 + )′ = 2

R2 = R0 + r1 = ln(1 + ) + 2

r2 =
3

1/(1 + )
= 3(1 + )

=0
= 3

...

r2n = 2n + 1, r2n+1 = 2/(n + 1)

ln(1 + ) =
|

|1
+

 |

|2/1
+
|

|3
+

 |

|2/2
+
|

|5
+

 |

|2/3
+ · · ·
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Let bn() be a complete system (basis) of real orthonormal functions in interval [, b]. Then (in
some sense of convergence. . . )

ƒ () =
∞
∑

=0
b(), where n =

∫ b


ƒ ()bn()d

Let us denote the partial sum as ƒn() =
n
∑

=0
b()

Then the coefficients  minimize the following “error” of the approximation (integral of squares of
the deviations):

∫ b


|ƒn() − ƒ ()|2d (1)

Notes:

To approximate certain classes of decaying functions, an unbounded interval can be considered,
cf. mat-lin2.mw.

Scalar product with a weight can be used (see, e.g., Chebyshev)



Example – Fourier series 8/13
mmpc3

Fourier series for functions ƒ (),  ∈ [0,2π], such that
∫ 2π
0 |ƒ2|d exists:

basis = {1, sin, cos, sin2, cos2 . . .}

good for “smooth enough” periodic functions

limited advantage for numerical purposes (slow sin, cos)

k
∑

=1

sin()
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Let-us orthogonalize functions {1, , 2, . . .} at interval
[−1,1] by the Gram-Schmidt method. The resulting set of
orthogonal polynomials is called Legendre polynomials
(see matenum1.mw).

least-square-type approximation (minimizes (1))

larger deviations near the interval ends
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English: Pafnuty Lvovich Chebyshev Russian:
Czech: Pafnutij Lvovič Čebyšov (often incorrectly Čebyšev)

Orthogonal in interval [−1,1] with weight 1/
Æ

1 − 2

Tn() = cos(narccos)

∫ 1

−1

Tn()Tm()
Æ

1 − 2
d =







0 for n 6=m
π for n =m = 0
π/2 for n =m 6= 0

The expansion:
ƒ () ≈

c0
2
+

n
∑

=1
cTn()

c =
2

π

∫ 1

−1

ƒ ()Tn()
Æ

1 − 2
d

=
2

π

∫ π/2

−π/2
ƒ (sinθ)Tn(sinθ)dθ

close to the best (minimax) approximation mmpc3.mw: Chebyshev 2×
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= the approximation which minimizes the maximum deviation:

min [max|ƒ () − Pn()|]

where Pn() =
∑n
=0 

 is a polynomial with n + 1 coefficients

The best approximation always exists

The deviation ƒ () − Pn() has:
– n + 2 extremes, with alternating maxima and minima
– n + 1 zero points
– the expansion by Chebyshev polynomials is usually quite close to it

Similar statement for a rational function (of n + 1 independent parameters).

Example: ln() in interval [2,4] approximated by the Chebyshev polynomials
(—) and the best approximation (—); the deviation is shown.

credit: Wikipedia
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A function is known at discrete points, (, y),  = 1..n.
We want a polynomial coinciding with these points.
There is a unique polynomial of the order n − 1 (to n−1)
= Lagrange interpolation polynomial:

y() = y1
(1 − )(2 − )(3 − ) · · · (n − )

(1 − 1)(2 − 1)(3 − 1) · · · (n − 1)

+ y2
(1 − )(2 − )(3 − ) · · · (n − )

(1 − 2)(2 − 2)(3 − 2) · · · (n − 2)
...

+ yn
(1 − )(2 − )(3 − ) · · · (n − )

(1 − n)(2 − n)(3 − n) · · · (n − n)

Can be simplified for equidistant ’s

May be inaccurate close to endpoints for equidistant subintervals

Can be extended if also derivatives are known

mmpc3.mw: Interpolation by a polynomial and a rational function
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A function is known at discrete points, (, y),  = 0..n.
We want a set of polynomials piecewise in intervals [, +1].
The most common cubic splines: (total 4n constants):

coincide at points (, y) (2n conditions)

continuous derivatives (n − 1 conditions)

continuous 2nd derivatives (n − 1 conditions)

There are 2 conditions for the coefficients left. We may demand zero 2nd derivatives at the ending
points, or to minimize the squared deviation of maximum error

If we know the 1st derivatives, we may want to reproduce them; then, we must resign to continu-
ous 2nd derivatives (or increase the order).

Useful to approximate a complex function on a computer (e.g., interaction of Gaussian charges)

pros: simple to obtain
a few floating point operations

cons: calculation of an integer  required (may be slow)
tables need not fit into a cache


