Approximation of functions

We want a formula

We know:

the function in full (at any point by a slow method)
values (sometimes also derivatives) at discrete points

Quality of data:

arbitrary precision

- approximate (experiment, simulation)

Methods:

Taylor (McLaurin) / Padé (rational function), Thiele
O interpolation
splines
orthogonal systems of functions

- Chebyshev (best) approximation
least square method - fitting, correlation, regression

Taylor (MacLaurin)

MacLaurin (shifted $x=0 \rightarrow x=x_{0}=$ Taylor)
All derivatives must be known, in $\mathbb{R}, \mathbb{C}, \ldots$:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

- accurate close to $x=0$

O the larger x, the less accurate

- convergence not guaranteed, e.g.:

$$
f(x)= \begin{cases}\exp (-1 / x) & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

is smooth (all derivatives at $x=0$ are zero), but not analytic (zero radius of convergence of the Taylor series)

Example. Study the convergence (partial sums) of the Taylor series of function $\sin (x)$ at $x=0$.

Padé

The Padé approximation of function $f(x)$ at $x=0$ is the rational function:

$$
f(x) \approx \frac{P_{k}(x)}{P_{n-k}(x)}, \quad P_{l}(x)=\sum_{i=0}^{l} a_{i} x^{i}
$$

which has the same derivatives as f at 0 up to $f^{(n)}(0)$ (i.e., the same Taylor expansion) Accurate close to $x=0$, inaccurate for large x
Often (but not always) more accurate than Taylor of the same order

Calculation:

Taylor-expand both sides of the equation and compare the coefficients

- Use the Thiele theorem for the continued fraction

Application:

- Speed up the convergence, e.g., of the virial equation of state

Continued fraction

Equivalent expression for the rational function
E.g.:

$$
a_{0}+\frac{x}{a_{1}+\frac{x}{a_{2}+\frac{x}{a_{3}}}}=a_{0}+\frac{x \mid}{\mid a_{1}}+\frac{x \mid}{\mid a_{2}}+\frac{x \mid}{\mid a_{3}}
$$

Infinite continued fraction (example):

$$
\arctan x=\frac{x \mid}{\mid 1}+\frac{1^{2} x^{2} \mid}{\mid 3}+\frac{2^{2} x^{2} \mid}{\mid 5}+\frac{3^{2} x^{2} \mid}{\mid 7}+\cdots \quad \text { converges for } x \in \mathbb{R}
$$

Taylor expansion:

$$
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-+\cdots \quad \text { converges for } x \leq 1
$$

Evaluations

Evaluate a polynomial (direct):

$$
P_{n}(x)=\sum_{i=0}^{n} a_{n} x^{n}=a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots\right)\right) n \text { multiplications and } n \text { additions }
$$

NB: P_{4} can be evaluated in 3 multiplications and 5 additions, P_{5} in 4 multiplications and 5 additions

Continued fraction (recursive):

$$
f_{n}=a_{0}+\frac{b_{1} \mid}{\mid a_{1}}+\frac{b_{2} \mid}{\mid a_{2}}+\cdots+\frac{b_{n} \mid}{\mid a_{n}}
$$

algorithm for any n :

$$
\begin{aligned}
A_{-1}:=0, & B_{-1}:=1 \\
A_{0}:=1, & B_{0}:=a_{0} \\
A_{j}:=a_{j} A_{j-1}+b_{j} A_{j-2}, & B_{j}:=a_{j} B_{j-1}+b_{j} B_{j-2}, \quad j=1 . . n \\
& f_{n}=\frac{B_{n}}{A_{n}}
\end{aligned}
$$

NB: A_{j}, B_{j} may overflow, there are methods avoiding this

Thiele theorem

for continued fractions is analogous to Taylor for polynomials.

$$
f(x)=f(0)+\frac{x \mid}{\mid r_{1}(0)}+\frac{x \mid}{\mid r_{2}(0)}+\frac{x \mid}{\mid r_{3}(0)}+\cdots
$$

where recursively:

$$
\text { Example: } \ln (1+x)
$$

$$
\begin{aligned}
R_{-1} & =0 \\
R_{0} & =f(x) \\
R_{j}(x) & =R_{j-2}(x)+r_{j-1}(x) \\
r_{j}(x) & =\frac{j+1}{R_{j}^{\prime}(x)}
\end{aligned}
$$

$$
\begin{aligned}
R_{0} & =\ln (1+x) \\
r_{0} & =1 /(1 /(1+x))=1+x^{x=0}=1 \\
R_{1} & =R_{-1}+r_{0}=1+x \\
r_{1} & =2 /(1+x)^{\prime}=2 \\
R_{2} & =R_{0}+r_{1}=\ln (1+x)+2 \\
r_{2} & =\frac{3}{1 /(1+x)}=3(1+x)^{x=0} 3
\end{aligned}
$$

:

$$
r_{2 n}=2 n+1, r_{2 n+1}=2 /(n+1)
$$

$$
\ln (1+x)=\frac{x \mid}{\mid 1}+\frac{x \mid}{\mid 2 / 1}+\frac{x \mid}{\mid 3}+\frac{x \mid}{\mid 2 / 2}+\frac{x \mid}{\mid 5}+\frac{x \mid}{\mid 2 / 3}+\cdots
$$

Approximation by orthogonal functions

Let $b_{n}(x)$ be a complete system (basis) of real orthonormal functions in interval [a, b]. Then (in some sense of convergence...)

$$
f(x)=\sum_{i=0}^{\infty} a_{i} b_{i}(x), \text { where } a_{n}=\int_{a}^{b} f(x) b_{n}(x) \mathrm{d} x
$$

Let us denote the partial sum as $f_{n}(x)=\sum_{i=0}^{n} a_{i} b_{i}(x)$
Then the coefficients a_{i} minimize the following "error" of the approximation (integral of squares of the deviations):

$$
\begin{equation*}
\int_{a}^{b}\left|f_{n}(x)-f(x)\right|^{2} \mathrm{~d} x \tag{1}
\end{equation*}
$$

Notes:

To approximate certain classes of decaying functions, an unbounded interval can be considered, cf. mat-lin2.mw.

Scalar product with a weight can be used (see, e.g., Chebyshev)

Example - Fourier series

Fourier series for functions $f(x), x \in[0,2 \pi]$, such that $\int_{0}^{2 \pi}\left|f^{2}\right| \mathrm{d} x$ exists:
basis $=\{1, \sin x, \cos x, \sin 2 x, \cos 2 x \ldots\}$
good for "smooth enough" periodic functions

- limited advantage for numerical purposes (slow sin, cos)

$$
\sum_{i=1}^{k} \frac{\sin (i x)}{i}
$$

Approximation by orthogonal functions

Let-us orthogonalize functions $\left\{1, x, x^{2}, \ldots\right\}$ at interval $[-1,1]$ by the Gram-Schmidt method. The resulting set of orthogonal polynomials is called Legendre polynomials (see matenum1.mw).

- least-square-type approximation (minimizes (1))
- larger deviations near the interval ends

Chebyshev polynomials are often better

English: Pafnuty Lvovich Chebyshev
Russian: Пафну́тий Льво́вич Чебышёв
Czech: Pafnutij Lvovič Čebyšov (often incorrectly Čebyšev)
Orthogonal in interval $[-1,1]$ with weight $1 / \sqrt{1-x^{2}}$

$$
\begin{aligned}
T_{n}(x) & =\cos (n \arccos x) \\
\int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x & = \begin{cases}0 & \text { for } n \neq m \\
\pi & \text { for } n=m=0 \\
\pi / 2 & \text { for } n=m \neq 0\end{cases}
\end{aligned}
$$

The expansion:

$$
\begin{aligned}
f(x) & \approx \frac{c_{0}}{2}+\sum_{i=1}^{n} c_{i} T_{n}(x) \\
c_{i} & =\frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_{n}(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x \\
& =\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} f(\sin \theta) T_{n}(\sin \theta) \mathrm{d} \theta
\end{aligned}
$$

O close to the best (minimax) approximation

The Chebyshev best (minimax) approximation

$=$ the approximation which minimizes the maximum deviation:

$$
\min _{a_{i}}\left[\max _{x}\left|f(x)-P_{n}(x)\right|\right]
$$

where $P_{n}(x)=\sum_{i=0}^{n} a_{i} x^{i}$ is a polynomial with $n+1$ coefficients

- The best approximation always exists
- The deviation $f(x)-P_{n}(x)$ has:
$-n+2$ extremes, with alternating maxima and minima
$-n+1$ zero points
- the expansion by Chebyshev polynomials is usually quite close to it

Similar statement for a rational function (of $n+1$ independent parameters).
Example: $\ln (x)$ in interval $[2,4]$ approximated by the Chebyshev polynomials $(-)$ and the best approximation (-); the deviation is shown.

Interpolation

A function is known at discrete points, $\left(x_{i}, y_{i}\right), i=1$..n.
We want a polynomial coinciding with these points.
There is a unique polynomial of the order $n-1$ (to x^{n-1})
$=$ Lagrange interpolation polynomial:

$$
\begin{aligned}
y(x) & =y_{1} \frac{\left(x_{1}-x\right)\left(x_{2}-x\right)\left(x_{3}-x\right) \cdots\left(x_{n}-x\right)}{\left(x_{1}-x_{1}\right)\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right) \cdots\left(x_{n}-x_{1}\right)} \\
& +y_{2} \frac{\left(x_{1}-x\right)\left(x_{2}-x\right)\left(x_{3}-x\right) \cdots\left(x_{n}-x\right)}{\left(x_{1}-x_{2}\right)\left(x_{2}-x_{2}\right)\left(x_{3}-x_{2}\right) \cdots\left(x_{n}-x_{2}\right)} \\
& : y_{n} \frac{\left(x_{1}-x\right)\left(x_{2}-x\right)\left(x_{3}-x\right) \cdots\left(x_{n}-x\right)}{\left(x_{1}-x_{n}\right)\left(x_{2}-x_{n}\right)\left(x_{3}-x_{n}\right) \cdots\left(x_{n}-x_{n}\right)}
\end{aligned}
$$

- Can be simplified for equidistant x 's

May be inaccurate close to endpoints for equidistant subintervals

- Can be extended if also derivatives are known

Splines

A function is known at discrete points, $\left(x_{i}, y_{i}\right), i=0 . . n$.
We want a set of polynomials piecewise in intervals $\left[x_{i}, x_{i+1}\right]$.
The most common cubic splines: (total $4 n$ constants):
coincide at points $\left(x_{i}, y_{i}\right)$ ($2 n$ conditions)
continuous derivatives ($n-1$ conditions)
continuous 2 nd derivatives ($n-1$ conditions)
There are 2 conditions for the coefficients left. We may demand zero 2 nd derivatives at the ending points, or to minimize the squared deviation of maximum error

If we know the 1st derivatives, we may want to reproduce them; then, we must resign to continuous 2 nd derivatives (or increase the order).

Useful to approximate a complex function on a computer (e.g., interaction of Gaussian charges) pros: simple to obtain
a few floating point operations
cons: calculation of an integer i required (may be slow)
tables need not fit into a cache

