1/16

Numerical derivative and quadrature mmpca
quadrature = calculating a definite integral
one dimensional

@ To fit data by a suitable function — integrate/differentiate this function. Applica-
ble if the data are subject of errors (experimental data).
Example: Shomate equation

Com(T) =A+BT + CT2+DT3 +E/T2
@ To replace a derivative by a difference,

- several points in the neighborhood are needed
- the accuracy decreases

A A q 2/16
Numerical derivative i
The difference formulas can be derived from the Taylor series.
1st derivative:
= M) iff 3IM > 0 and
flx+h)—f(x) h h2 f(h)y = 0" i
———— =)+ =)+ —f""(X)+ - hg>0:[f(h)|SMh"Y h<hg
h 2 6
= f/(x)+0(h)
X+ h)—f(x
= f/(X) = ‘w_'_o(h)

This is the 1st order formula in h = error is O(h) = error is on the order of h
More accurate

fx+h)—f(x=h)

2 _ 2
To replace a quadrature by a sum over selected points in the interval Fea= 2h +0h%)
- the accuracy increases , —fOx+ 2h) + 8F(x + h) — 8f (x — h) + f(x — 2h) .
idi i Ffx)= +0(h™) (1)
multidimensional 12h
@ partial derivative: repeat in all variables/directions Right derivative - if function is known for arguments > x
@ quadrature: up to about 3D-5D, several 1D quadratures nested , —f(x+ 2h) + 4f(x + h)— 3f(x) 2
more dimensions: Monte Carlo, Conroy integration fea= 2h +0(h?)
. f . 3/16 - 4/16
Numerical derivative Il P Numerical quadrature)

Similarly for the 2nd derivative, the simplest formula:
fx+h)—2f(x) + f(x—h)

= +0(h?)

0=

Which step h?
Let € = numerical precision: the smallest number > 1is 1+ ¢
Typical error of several operations = several €

@ 64 bit (double, REAL*8): £ = 2752 = 2x10~16, today’s standard
(typically 1x10~15)

@ 80 bit (extended, long double, REAL*10): £ =263 =1x 1019
(maximum float precision of the FPU on x86 architecture)

@ 32 bit (float, REAL*4): =223 = 1x 10~/
(minimum speed gain except GPU)

Rule of the thumb: For the best h: rounding error ~ method error.
Example. Which h is optimum in eq. (1)?

c—0TXT =g 3~ Y < ‘LY IO POYRW ‘Yy/3 % 10113 Bujpunol

Numerical integration in interval [a, b]. Assumption: several derivatives exist (are
finite) in the interval. If not (e.g., ¥X in [0, 1]), a substitution helps.

General formula:

b
f FOdx = Y wif(x), xi€la,b]
a
Methods:

@ equidistant arguments (Newton-Cotes):
- closed: use f(a), f(b)
— open: only points in (a, b)

@ non-equidistant arguments (Gauss): usually more efficient (if we can calculate
the function at arbitrary point)

Improper intervals:
@ substitution — finite interval
@ special methods

Typically an interval is divided into shorter subinterval and a suitable method is used
repeatedly

5/16

mmpcé4

Newton-Cotes formulas

Trapezoidal rule:
b b—a 5
J FO)dx = ?[f(a) +f(b)1+ O((b—a)?)
a
Several dividing points:

2 b—
h+0O(h?), h=

b
J f(x)dx=[@+f(a+h)+f(a+2h)+~ fe®)}
a 2 2
Rectangular rule (open): 2x more accurate than trapezoid
b a+b)
J fO)dx =(b—a) [ﬂT)] +O0((b—a)*)
a
Simpson'’s rule:
b b—a a+b 4
f f)dx = —— [f(a) + 4f(T) +f(b)} +0((b—a)™)
a

Order and error: because of linearity, it's enough to verify for 1, x, x2, ...
Example. Verify that the Simpson rule integrates exactly 1, x, x2, x3, but not x4,
therefore, it is an @(h*) method

6/16
mmpc4

Gauss quadrature

@ Two-point formula of the 4th order has a half error w.r.t. Simpson and needs less
ponts (by one)

d b—a a+b a—-b a+b
J oo =222 1 (S oo (50

@ The four-point formula of the 8th order with a good numerical stability:

double Gauss8(double (*f)(double),double a,double b,int n)
// int[a,b] f(x) dx using 4-point Gauss quadrature with n subintervals
{
const double
q1=0.430568155797026287612, // sqrt((15+sqrt(120))/140)
q2=0.169990521792428132401, // sqrt((15-sqrt(120))/140)
w=0.173927422568726928687; // 1/4-sqrt(5/864)
double h=(b-a)/n;
double wi=h*w, w2=h/2-wl;
double hi=hxql, h2=hxq2;
int i;

a—b
243

)} +0((b—a)*)

Higher-order methods
may be less stable,
better use 4-8th in
several subintervals

double sum=0,x;

for (i=0; i<n; i++) {

x=h*(i+0.5)+a;

sum+= (£ (x~h1)+£ (x+h1)) *ul+ (£ (x~h2) +£ (x+h2)) *w2;
}
return sum;

¥

7/16

Richardson extrapolation mimpca
The error formulas often have the error given by

S=S(h)+Ah"+Bh"2 +... nis usually even
Generally we may have

S=5(h)+Ah"+Bh"*1 4 ...

More accurate result: S2(h/2)
2NS(h/2)—S(h) {O(h"”)
= - 4
2n_1 (’)(h’“’l)

We can repeat this trick with pair Sa(h/4) a S2(h/2), etc.

Warning, this process fails if the function is not smooth enough (does not have
enough derivatives)

Example. Show that one step of the Richardson extrapolation of the trapezoidal
rule is equivalent to the Simpson formula

8/16

mmpc4

ODE - the initial value problem
Yy =f(x.y), y(xo0) =yo ODE = Ordinary
Differential Equation
@ y may be a vector (system of ODEs)
@ one higher-order eq. can be transformed to a system of ODEs of the 1st order
(but a numerical method tailored to the original ODE may be more efficient)

" =fxy.y

@ Runge-Kutta: @ history not needed
@ easy change of the step (adaptive)
@ good stability
o several evaluations of the rhs/step

), subst.z=y' = Z'=f(x,y,2),y =z

@ predictor—corrector: @ more efficient (less rhs/step),
o the history must be calculated in advance
o step change is difficult
o stability problems

@ methods for dynamical systems (7 = f(r, F, t)):
- symplectic or at least time-reversible (= energy conservation)
— predictor-corrector

Warm-up: Euler’s method 34})54 Runge-Kutta 2nd order (RK2) i()m/jci
Let’s improve Euler - trapezoidal style: if the function argu-
Yy =f(x,¥), y(x0)=yo k1 = FOGY) ment is missing, x is
1 step: ky = f(x+ h}]y(x) + hk1) assumed
x+h) = y(x)+5(k1+k;
Y(x+ h) = y(x) + hy’ + O(h?) = y(x) + hf(x, y) + O(h?) ¥ 2 — §(+)h 2kt k)
This method is ©(h2) locally = ©O(h) globally 4 Order derivation is based on: y” = df(x, y)/dx = fx + fyy’ =
(x 1/h steps needed on a finite interval) y'=y h
sl y(x+h) = y(X)+§(k1+/<z)
0(h3) h h2
® 1 y0+ S0 +y + hfxc+ hfyf) = Y00+ hy () + =y ()
y 2p] Local error O(h3) (or better), global error is (at |least) 0(h?2)
Let’s improve Euler — rectangular (half-step) style:
1 k1 = f(x, y)h 5
kz = f(x+3,y(x)+5k1)
0 ‘ y(x+h) = y(x)+ hkz
0 1 2 X = X+h
X The same order, smaller error coefficient
Runge-Kutta 4th order (RK4) ﬂ:j Predictor-corrector - intro nlqzm/;(i
Popular method of the 4th order (local error O(h>)): We know a history = values (and/or derivatives, i.e., rhs).
k1 = f(xy) @ predictor: we predict yP(x + h):
- usi h Il tabl t
f2 1= O+ 500+) s el rore svlean e accua
— h hye - 9
k3 = fix+ 7 y()+zk2) (Gear methods - polynomial extrapolation)
ks = f(x+h,y(x)+ hks)) .
Yx+h) = yoo+ g(kl + 2o + 2K3 + ka) @ [optional modificator]
X = X+h @ corrector: we calculate the corrected yC(x + h):
- rhs calculated once
- rhs calculated twice, three times,. ..
—rhs calculated iteratively until some precision limit is reached
Problem - stability: the single-step errors propagate to further steps. The method
must guarantee that the errors do not cumulate and do not explode (exponen-
tially/exponential oscillations)
If the coefficients of a method are large with alternating sigs, the method will likely
be unstable
Predictor-corrector - 3rd order example ﬂ:j 3rd order example - stability iﬂ:j

Let’s first rewrite RK2 to the predictor-corrector form:
YR+ h) =y + hf(x, y(x)) + O(h?)
yex+h) = y()+ BLF06 y(0) + F(x + h, yP(x + h)] + O(h?)
the 2nd step is 0O(h3) because it is trapezoid, and the error in yP(x + h) is hO(h2).

Let's try to improve both steps. Predictor:
PO+ h) = y0) + 5300 — fx —)] + O(h*)

where f(x) = f(x, y(x))) and f(x— h) = f(x— h, y(x — h)) (from the previous step).
We shall look for the corrector in the form:

yEOc+ h) = y(x) + hLaf(x —) + bf(x) + cf O+ h, yPx + 1))
The test function method using equation y =y’ (see matenum4.mw) =

YOO+ h) = y(x) + L0 — F(x— h) + 8f(x) + 5£(x + h, y(x + h)] + O(h*)

= this is a 3rd order method (locally O(h*))

The method is O(h*) locally, so we can write (neglecting O(h%)):
y(x—ih) = y®@%(x — ih) + eih*
Let’s use the test equation y’ = y with y(0) = 1 (the solution is y = e€X). Using Maple:
€i+1 =€;— 13/144
@ any error of y(x—h), y(x— 2h)...does not propagate (with precision up to h%)

@ an error « h* is generated in one step

15/16

mmpcé4

Milne method

Corrector = Simpson formula.
yPx+h) = y(x—3n)+ 4Th[Zf(X)—f(X— h) + 2f(x—2h)]
yex+h) = y(x—h)+50F0x—h) + 4f(x) + fOx + h, yP(x + h)]

Local error = O(h®). Let y(ih) be subject to error €;h°. The error propagates as
follows (see matenum4.mw using y’ = y):

1
€i41:=—+E€-
i+1 90 -1

Discussion:

Qe = % + €; would be OK, a constant error cannot be removed in principle
(unless the order increases)
example of an unstable method: €;4+1 := %€[+ 1/90
example of a stable method: €41 := %eﬁ— 1/90

@ the Milne method method is at the edge of stability (a sort of very particular
problem)

@ the stride by 2 means that €even and €oqq Mmay differ (oscillations caused by
higher orders)

16/16
o /

mmpc4

Stability

A typical equation for error propagation in predictor-corrector methods is (in h",
where n is the local order)

€i+1:=0c+ Ao€;+ A1€i—1"**An€i—n
This is a linear difference equation. A general solution is:

€= bexi+ bc
X

where the sum is over all roots of the so called characteristic polynomial:
X" = cox 4 -+ + cpx©

(In case of multiple roots the basis is {x!, ix{...}, similarly as for systems of homo-
geneous linear differential equations.)

The errors should not exponentially grow, thus |x| < 1 must be satisfied.
Example of a difference equation

Fibonacci sequence: Fp=0,F1 =1, Fn=Fp—1+ Fp—2forn>1

SR

