
Numerical derivative and quadrature 1/16
mmpc4

quadrature = calculating a definite integral

one dimensional

To fit data by a suitable function → integrate/differentiate this function. Applica-
ble if the data are subject of errors (experimental data).
Example: Shomate equation

C◦pm(T) = A + BT + CT
2 + DT3 + E/T2

To replace a derivative by a difference,
– several points in the neighborhood are needed
– the accuracy decreases
To replace a quadrature by a sum over selected points in the interval
– the accuracy increases

multidimensional

partial derivative: repeat in all variables/directions

quadrature: up to about 3D–5D, several 1D quadratures nested
more dimensions: Monte Carlo, Conroy integration

Numerical derivative 2/16
mmpc4

The difference formulas can be derived from the Taylor series.

1st derivative:

ƒ (+ h) − ƒ ()

h
= ƒ ′() +

h

2
ƒ ′′() +

h2

6
ƒ ′′′() + · · ·

= ƒ ′() + O(h)

⇒ ƒ ′() =
ƒ (+ h) − ƒ ()

h
+ O(h)

ƒ (h) = O(hn) iff ∃M > 0 and
h0 > 0 : |ƒ (h)| ≤ Mhn ∀ h ≤ h0

This is the 1st order formula in h = error is O(h) = error is on the order of h

More accurate

ƒ ′() =
ƒ (+ h) − ƒ (− h)

2h
+ O(h2)

ƒ ′() =
−ƒ (+ 2h) + 8ƒ (+ h) − 8ƒ (− h) + ƒ (− 2h)

12h
+ O(h4) (1)

Right derivative – if function is known for arguments ≥

ƒ ′() =
−ƒ (+ 2h) + 4ƒ (+ h) − 3ƒ ()

2h
+ O(h2)

Numerical derivative II 3/16
mmpc4

Similarly for the 2nd derivative, the simplest formula:

ƒ ′′() =
ƒ (+ h) − 2ƒ () + ƒ (− h)

h2
+ O(h2)

Which step h?

Let ϵ = numerical precision: the smallest number > 1 is 1 + ϵ
Typical error of several operations = several ϵ

64 bit (double, REAL*8): ϵ = 2−52
.
= 2×10−16, today’s standard

(typically 1×10−15)

80 bit (extended, long double, REAL*10): ϵ = 2−63
.
= 1×10−19

(maximum float precision of the FPU on x86 architecture)

32 bit (float, REAL*4): ϵ = 2−23
.
= 1×10−7

(minimum speed gain except GPU)

Rule of the thumb: For the best h: rounding error ≈ method error.

Example. Which h is optimum in eq. (1)?

roundingerror∝ϵ/h,methoderror∝h4,⇒h≈ϵ1/5=1×10−3

Numerical quadrature 4/16
mmpc4

Numerical integration in interval [, b]. Assumption: several derivatives exist (are
finite) in the interval. If not (e.g.,

p
 in [0,1]), a substitution helps.

General formula:
∫ b

ƒ ()d =

∑

ƒ (), ∈ [, b]

Methods:

equidistant arguments (Newton–Cotes):
– closed: use ƒ (), ƒ (b)
– open: only points in (, b)

non-equidistant arguments (Gauss): usually more efficient (if we can calculate
the function at arbitrary point)

Improper intervals:

substitution → finite interval

special methods

Typically an interval is divided into shorter subinterval and a suitable method is used
repeatedly

Newton–Cotes formulas 5/16
mmpc4

Trapezoidal rule:
∫ b

ƒ ()d =

b −

2
[ƒ () + ƒ (b)] + O((b −)2)

Several dividing points:
∫ b

ƒ ()d =

�

ƒ ()

2
+ ƒ (+ h) + ƒ (+ 2h) + · · · +

ƒ (b)

2

�

h + O(h2), h =
b −

n

Rectangular rule (open): 2× more accurate than trapezoid
∫ b

ƒ ()d = (b −)

�

ƒ (
 + b

2
)
�

+ O((b −)2)

Simpson’s rule:
∫ b

ƒ ()d =

b −

6

�

ƒ () + 4ƒ (
 + b

2
) + ƒ (b)

�

+ O((b −)4)

Order and error: because of linearity, it’s enough to verify for 1, , 2, . . .
Example. Verify that the Simpson rule integrates exactly 1, , 2, 3, but not 4,
therefore, it is an O(h4) method

Gauss quadrature 6/16
mmpc4

Two-point formula of the 4th order has a half error w.r.t. Simpson and needs less
ponts (by one)

∫ b

ƒ ()d =

b −

2

�

ƒ

�

 + b

2
−
 − b

2
p
3

�

+ ƒ
�

 + b

2
+
 − b

2
p
3

��

+ O((b −)4)

The four-point formula of the 8th order with a good numerical stability:
double Gauss8(double (*f)(double),double a,double b,int n)

// int[a,b] f(x) dx using 4-point Gauss quadrature with n subintervals

{

const double

q1=0.430568155797026287612, // sqrt((15+sqrt(120))/140)

q2=0.169990521792428132401, // sqrt((15-sqrt(120))/140)

w=0.173927422568726928687; // 1/4-sqrt(5/864)

double h=(b-a)/n;

double w1=h*w, w2=h/2-w1;

double h1=h*q1, h2=h*q2;

int i;

double sum=0,x;

for (i=0; i<n; i++) {

x=h*(i+0.5)+a;

sum+=(f(x-h1)+f(x+h1))*w1+(f(x-h2)+f(x+h2))*w2;

}

return sum;

}

Higher-order methods
may be less stable,
better use 4–8th in
several subintervals

Richardson extrapolation 7/16
mmpc4

The error formulas often have the error given by

S = S(h) + Ahn + Bhn+2 + · · · n is usually even

Generally we may have

S = S(h) + Ahn + Bhn+1 + · · ·

More accurate result:
↙
S2(h/2)

S =
2nS(h/2) − S(h)

2n − 1
+
�

O(hn+2)
O(hn+1)

We can repeat this trick with pair S2(h/4) a S2(h/2), etc.

Warning, this process fails if the function is not smooth enough (does not have
enough derivatives)

Example. Show that one step of the Richardson extrapolation of the trapezoidal
rule is equivalent to the Simpson formula

ODE – the initial value problem 8/16
mmpc4

y′ = ƒ (, y), y(0) = y0

y may be a vector (system of ODEs)

ODE = Ordinary
Differential Equation

one higher-order eq. can be transformed to a system of ODEs of the 1st order
(but a numerical method tailored to the original ODE may be more efficient)

y′′ = ƒ (, y, y′), subst. z = y′ ⇒ z′ = ƒ (, y, z), y′ = z

Runge-Kutta: ⊕ history not needed
⊕ easy change of the step (adaptive)
⊕ good stability
	 several evaluations of the rhs/step

predictor–corrector: ⊕ more efficient (less rhs/step),
	 the history must be calculated in advance
	 step change is difficult
	 stability problems

methods for dynamical systems (r̈ = ƒ (r, ṙ, t)):
– symplectic or at least time-reversible (⇒ energy conservation)
– predictor–corrector

Warm-up: Euler’s method 9/16
mmpc4

y′ = ƒ (, y), y(0) = y0

1 step:

y(+ h) = y() + hy′ + O(h2) = y() + hƒ (, y) + O(h2)

This method is O(h2) locally ⇒ O(h) globally

0 1 2

x

0

1

2

3

4

y

y’=y(∝ 1/h steps needed on a finite interval)

Runge–Kutta 2nd order (RK2) 10/16
mmpc4

Let’s improve Euler – trapezoidal style: if the function argu-
ment is missing, is
assumed

k1 := ƒ (, y)
k2 := ƒ (+ h, y() + hk1)

y(+ h) := y() + h
2(k1 + k2)

 := + h

Order derivation is based on: y′′ = dƒ (, y)/d = ƒ + ƒyy′ ⇒

y(+ h) = y() +
h

2
(k1 + k2)

O(h3)
≈ y() +

h

2
(y′ + y′ + hƒ + hƒyƒ) = y() + hy′() +

h2

2
y′′()

Local error O(h3) (or better), global error is (at least) O(h2)
Let’s improve Euler – rectangular (half-step) style:

k1 := ƒ (, y)
k2 := ƒ (+ h

2, y() +
h
2k1)

y(+ h) := y() + hk2
 := + h

The same order, smaller error coefficient

Runge–Kutta 4th order (RK4) 11/16
mmpc4

Popular method of the 4th order (local error O(h5)):

k1 := ƒ (, y)
k2 := ƒ (+ h

2, y() +
h
2k1)

k3 := ƒ (+ h
2, y() +

h
2k2)

k4 := ƒ (+ h, y() + hk3)
y(+ h) := y() + h

6(k1 + 2k2 + 2k3 + k4)
 := + h

Predictor-corrector – intro 12/16
mmpc4

We know a history = values (and/or derivatives, i.e., rhs).

predictor: we predict yP(+ h):
– using rhs (usually more stable and more accurate)
– without evaluating the rhs

(Gear methods – polynomial extrapolation)

[optional modificator]

corrector: we calculate the corrected yC(+ h):
– rhs calculated once
– rhs calculated twice, three times,. . .
– rhs calculated iteratively until some precision limit is reached

Problem – stability: the single-step errors propagate to further steps. The method
must guarantee that the errors do not cumulate and do not explode (exponen-
tially/exponential oscillations)

If the coefficients of a method are large with alternating sigs, the method will likely
be unstable

Predictor-corrector – 3rd order example 13/16
mmpc4

Let’s first rewrite RK2 to the predictor-corrector form:

yP(+ h) = y() + hƒ (, y()) + O(h2)
yC(+ h) = y() + h

2[ƒ (, y()) + ƒ (+ h, y
P(+ h))] + O(h3)

the 2nd step is O(h3) because it is trapezoid, and the error in yP(+ h) is hO(h2).

Let’s try to improve both steps. Predictor:

yP(+ h) = y() + h
2[3ƒ () − ƒ (− h)] + O(h3)

where ƒ () ≡ ƒ (, y())) and ƒ (− h) ≡ ƒ (− h, y(− h)) (from the previous step).

We shall look for the corrector in the form:

yC(+ h) = y() + h[ƒ (− h) + bƒ () + cƒ (+ h, yP(+ h))]

The test function method using equation y = y′ (see matenum4.mw) ⇒

yC(+ h) = y() + h
12[− ƒ (− h) + 8ƒ () + 5ƒ (+ h, y

P(+ h)] + O(h4)

= this is a 3rd order method (locally O(h4))

3rd order example – stability 14/16
mmpc4

The method is O(h4) locally, so we can write (neglecting O(h5)):

y(− h) = yexact(− h) + εh4

Let’s use the test equation y′ = y with y(0) = 1 (the solution is y = e). Using Maple:

ε+1 = ε − 13/144

any error of y(− h), y(− 2h). . . does not propagate (with precision up to h4)

an error ∝ h4 is generated in one step

Milne method 15/16
mmpc4

Corrector = Simpson formula.

yP(+ h) = y(− 3h) + 4h
3 [2ƒ () − ƒ (− h) + 2ƒ (− 2h)]

yC(+ h) = y(− h) + h
3[ƒ (− h) + 4ƒ () + ƒ (+ h, y

P(+ h)]

Local error = O(h5). Let y(h) be subject to error εh
5. The error propagates as

follows (see matenum4.mw using y′ = y):

ε+1 :=
1

90
+ ε−1

Discussion:

ε+1 :=
1
90 + ε would be OK, a constant error cannot be removed in principle

(unless the order increases)
example of an unstable method: ε+1 :=

4
3ε + 1/90

example of a stable method: ε+1 :=
3
4ε + 1/90

the Milne method method is at the edge of stability (a sort of very particular
problem)

the stride by 2 means that εeven and εodd may differ (oscillations caused by
higher orders)

Stability + 16/16
mmpc4

A typical equation for error propagation in predictor-corrector methods is (in hn,
where n is the local order)

ε+1 := c + 0ε + 1ε−1 · · ·nε−n
This is a linear difference equation. A general solution is:

ε =
∑

b

 + bc

where the sum is over all roots of the so called characteristic polynomial:

n+1 = c0n + · · · + cn0

(In case of multiple roots the basis is {, . . .}, similarly as for systems of homo-
geneous linear differential equations.)

The errors should not exponentially grow, thus || < 1 must be satisfied.

Example of a difference equation

Fibonacci sequence: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n > 1

Fn =
1
p
5

1 +
p
5

2

!n

−

1 −
p
5

2

!n

