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A random variable (stochastic variable) assigns a probability (probability density)
to a possible discrete (continuous) event from a certain discrete (continuous) set of
events.

Discrete example: dice, p = 1/6 for  ∈ { , , , , , }

Continuous example: time of nucleus decay, p(t) = ke−kt

A continuous random variable in 1D ( ∈ R) is described by a distribution func-
tion, density of probability, (continuous) probability distribution,. . . p():

p()d = probability that event  ∈ [,  + d) occurs

In 2D, p(, y) is defined so that event  ∈ [ + d) and y ∈ [y + dy) happens with
probability p(, y)ddy.

Normalization:
∑



p = 1 or
∫ ∞

−∞
p()d = 1

Cumulative (integral) distribution function = probability that  ≤ :

P() =
∫ 

−∞
p(′)d′
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Warning. In physics etc., symbol  (random variable) and  (a value, e.g., in inte-
gration) are not distinguished.

Mean value, expectation value (not averaged value = arithmetic average of a
sample):

E () ≡ 〈〉 ≡ 〈〉 loosely
= 〈〉 =

∫
p()d or

∑



p

Example. It holds p() = e− (exponential distribution). Calculate 〈〉. 1

Variance, fluctuation, dispersion, mean square deviation (MSD)

Var ()
loosely
= Var = 〈( − 〈〉)2〉 = 〈Δ2〉 = 〈2〉 − 〈〉2, where Δ =  − 〈〉

Standard deviation =
p

Var (), denoted as: σ(), σ(), δ

Example. Let distribution  be uniform in interval [0,1). Calculate the expectation
and the variance.

〈〉=1/2,Var()=1/12;cf.mmpc5.mwFunctionofrandomvariable)
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Let  be a real random variable with distribution p(), and
ƒ () be a real function. A quantity (observable) ƒ () has
the distribution

pƒ (y) =
∑

:ƒ ()=y

p()

|ƒ ′()|
where the sum is over all roots.

Example. Let  be uniform in  ∈ [0,1). Calculate the dis-
tribution function of t = − ln. exp(−t):e.g.,timeofatomdecayfork=1

> restart:
> with(Statistics):
> rectf := t->piecewise(t<0,0, t<1,1, 0);
> Rect := Distribution(PDF=(rectf));
> X := RandomVariable(Rect);
> Mean(X); StandardDeviation(X);
> PDF(-log(X),x);
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Measure of income inequality. Income  with probability density p(),  ≥ 0.

G =
1

2〈〉

∫ ∞

0
p()d

∫ ∞

0
p(y)dy | − y|, G ∈ [0,1]

Example. Calculate the Gini coefficient for

a) Dirac delta-distribution (all have the same income);
b) exponential distribution of incomes.

a)0;b)1/2

> restart:
> Gini:=p->int(p(x)*int(p(y)*abs(x-y),y=0..infinity),x=0..infinity)

/2/int(p(x)*x,x=0..infinity)
> assume(a>0);
> p:=x->Dirac(x-a);
> int(p(x),x=0..infinity);
> Gini(p);
> p:=x->a*exp(-x*a);
> int(p(x),x=0..infinity);
> Gini(p);
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Mean value of quantity ƒ :

〈ƒ 〉 =
∫
ƒ ()p()d (1)

Or based on new random variable ƒƒƒ = ƒ ():

〈ƒ 〉 =
∫
ypƒ (y)dy (2)

Both mean values are the same:

〈ƒ 〉 =
∫
ƒ ()p()d

subst. y=ƒ ()
=

∫
yp()

ƒ ′()
dy =

∫
ypƒ (y)dy

where in the 2nd
∫

,  = root of equation ƒ () = y, for simplicity we assume: there is
only one root, function ƒ is increasing.

Note. Unified and more general description is based on the probability measure
μ on a space – so far we have used R, R2, and a discrete space. We write, e.g.,
〈ƒ 〉μ =

∫
ƒ ()dμ() instead of (1) or (2).
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Covariance of a 2D distribution:

Cov (, yyy) = 〈ΔΔy〉 =
∫
ΔΔyp(, y)ddy

Covariance of two quantities ƒ () a g() (similarly for a 2D or discrete variable)

Cov (ƒ , g) = 〈ΔƒΔg〉 =
∫
ΔƒΔgp()d

Independent random variables

Random variables  (with distribution p1()) and yyy (with p2(y)):

p(, y) = p1()p2(y) (3)

In the discrete case (throw a dice twice, pj = 1/36):

pj = p1,p2,j

Covariance of two independent random variables is zero

Cov (, yyy) = 〈ΔΔy〉+yyy =
∫
d

∫
dyΔp1()Δyp2(y) = 〈Δ〉〈Δy〉yyy = 0

Correlation coefficient
[plot/xmatnum2r.sh] 7/25
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r(, y) =
Cov (, y)

p
Var ()Var (y)

Example. Let 1 and 2 be two independent random variables with uniform distri-
bution in [0,1]. Calculate:
a) r(1,−1)
b) r(21, 

2
1)

c) r(1, 2 + 1) (see Maple) a)−1,b)1,c)1/p2

tab 1 100000 | tabproc "rnd(0)" "rnd(0)" | tabproc A A+B | lr

Sum of random variables
[plot/matnum2conv.sh] 8/25
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Let  and yyy be two continuous random variables with distribution p(, y). The distri-
bution of  + yyy is

p+yyy(z)dz =
∫ ∫

+y∈(z,z+dz)
p(, y)ddy

y:=z−
=

∫
p(, z − )ddz

⇒

p+yyy(z) =
∫
p(, z − )d

Now, let p(, y) = p1()p2(y). Then

p+yyy(z) =
∫
p1()p2(z − )d ≡ (p1∗ p2)(z)

p1∗ p2 is called the convolution.

Discrete example: Let’s roll two dice. What is the distribution of the sum of points?

p(2)=1/36,p(3)=2/36,...p(7)=6/36,...p(12)=1/36

Example. Calculate the distribution of 1 − 2 0for||>1,1−||otherwise

tab 1 100000 | tabproc "rnd(0)-rnd(0)" | histogr -1.5 1.5 .1 | plot -



Sum of independent random variables
[show/convol.sh] 9/25
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Mean value and variance of independent random variables are additive.
Directly using (3):

E ( + yyy) =
∫
p1()p2(y)( + y)ddy

=
∫
p1()p2(y)ddy+

∫
p1()p2(y)yddy =

∫
p1()d+

∫
p2(y)ydy = E ()+E (yyy)

Using the convolution of the distributions:

E ( + yyy) =
∫
zp+yyy(z)dz =

∫
zp1()p2(z − )ddz

y:=z−z
=

∫
( + y)p1()p2(y)ddy = 〈〉1 + 〈y〉2 = E () + E (yyy)

And the variance:

Var ( + yyy) = 〈(Δ + Δy)2〉+yyy
= 〈(Δ)2〉+yyy + 2〈ΔΔy〉+yyy + 〈(Δy)2〉+yyy = Var () + Var (yyy)

Central limit theorem
[plot/galton.sh]10/25
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The sum of n equal independent distributions with a finite mean value and variance
limits for n→∞ to the Gaussian distribution (aka normal distribution) with the mean
value n〈〉 and variance nVar.

Example. Let us consider a discrete distribution bbb: p(−1/2) = p(1/2) = 1/2. Let us
approximate the sum of n such distributions:

n = 1 p(−1/2) = 1/2, p(1/2) = 1/2, Varbbb = 1/4
n = 2 p(−1) = 1/4, p(0) = 1/2, p(1) = 1/4, Varbbb2 = 2/4
n = 3 p(±3/2) = 1/8, p(±1/2) = 3/8, Varbbb3 = 3/4

Let n be even (for simplicity). Then for k = −n/2..n/2:

p(k) =
�

n

n/2 + k

�
2−n ≈ 1

p
2πσ

exp

 
− t2

2σ2

!
, σ2 = Var (bbbn) =

n

4

where we have used the Stirling formula n! ≈ nne−np2πn
See Maple for numerical verification using convolution of rectangular distributions
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For random variable  with the Gauss’ (normal) distrubution it holds:

prob
�
| − 〈〉| ≥ tσ()

�
= 2

∫ ∞

t

e−2/2
p
2π

= erfc(k/
p
2)

e.g., prob
�
| − 〈〉| ≥ 2σ()

�
= 0.0455 ≈ 5%

Chebyshev’s inequality: For a general random
variable  with finite mean and variance it holds:

prob
�
| − 〈〉| ≤ tσ()

�

t normal general
1 68.27 % ≥ 100 %
2 95.45 % ≥ 75 %
3 99.73 % ≥ 88.89 %

prob
�
| − 〈〉| ≥ tσ()

�
≤ 1

t2

e.g., prob
�
| − 〈〉| ≥ 2σ()

�
= 25%

Proof. Let’s define (as in C/C++): ( ≤ 1) = 1 for  ≤ 1 and ( ≤ 1) = 0 otherwise.

prob
�
| − 〈〉| ≥ tσ()

�
=
¬
| − 〈〉| ≥ tσ()

¶

=

*�
 − 〈〉
tσ()

�2
≥ 1

+
≤
*�

 − 〈〉
tσ()

�2+
=
1

t2

equality for: X =





−1, p = 1
2t2

0, p = 1 − 1
t2

+1, p = 1
2t2
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The terminology is field-dependent...

Statistic, estimator, “statistical algorithm”, (narrower) “statistical functional”, in
metrology “measurement function”, is a formula/algorithm by which a result is cal-
culated from (a sample of) random variables (from data in metrology). A statistic is
a random variable, too.

Examples: arithmetic average, parameters of a model in fitting by the least-square
method

Standard error of a statistic = standard deviation (square root of variance) of the
distribution function of the statistic.

Uncertainty (in metrology) includes critical assessment of systematic, random,
discretization etc. errors. Similarly as above: “standard uncertainty”.

Distinguish:

statistic = estimator

statistics = field of mathematics

Arithmetic average as an example of statistic 13/25
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Let us have a sample of a random variable.
Examples:

shoe sizes of 1000 people

100× rolled dice

pressure during a simulation

Arithmetic average (sample average, sample mean):

n =
1

n

n∑

=1


It is an unbiased estimate of 〈〉 because

for simplicity, I write
〈〉 instead of 〈〉

〈n〉 = 〈〉

Let’s calculate the variance of n:
σ() ≡ pVar

Var (n) = 〈(n − 〈〉)2〉 =
* 

1

n

n∑

=1
Δ

!2+
=

Var

n
≡ σ()2

n
, Δ =  − 〈〉

We assumed that ’s are independent, 〈ΔΔj〉 = 0 for  6= j.

Standard deviation as an example of statistic 14/25
mmpc5

How to estimate σ()2? We do not know 〈〉, but only its estimate, n.

σ2() = 〈〈〈( − 〈〈〈〉〉〉)2〉〉〉 ≈ 1

n

n∑

=1

�
 − n

�2 = 1
n

n∑

=1


 −

1

n

n∑

j=1
j



2

=
1

n
n
�
(1 − 1

n
)1 −

1

n
2 + · · ·

�2
=
n− 1
n

σ()2

Hence for the corrected sample variance

1

n− 1
n∑

=1
( − n)2

(1 = number of degrees of freedom) it holds
*

1

n− 1
n∑

=1
( − n)2

+
= σ2()

so it is an unbiased estimate of σ2().
But it’s square root is a biased estimate of σ().

Similarly, the corrected sample
variance of the arithmetic av-
erage is

1

n(n− 1)
n∑

=1
( − n)2

The “uncorrected” sample vari-
ances do not contain term −1.
The correction comes from
Friedrich Wilhelm Bessel.
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For processing of uncorrelated data by the arithmetic average with equal weights,
it holds:

Standard deviation of random variable  = standard error (uncertainty) of one
measurement:

σ() =
Ç
〈( − 〈〉)2〉

is approximated by

sn() =

√√√√ 1

n − 1
n∑

=1
( − n)2

standard error (standard uncertainty) of the arithmetic average n = uncertainty,
with which n approximates 〈〉:

σ(n) = σ()/
p
n

and we calculate (approximate) it by

sn(n) =

√√√√ 1

n(n − 1)
n∑

=1
( − n)2

Habits 16/25
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We write the result of statistical processing as

quantity = estimate of quantity± estimate of error†

Physics: estimate of error† = σ = estimated (standard) error†; loosely (estimated)
error†; standard deviation (assumed of the arithmetic average or other statistic).

Common notation: 123.4 ± 0.5 ≡ 123.4(5) ≡ 123.45
In case of Gaussian distribution, the data are with 68 % probability within the
bounds.

Biology, economy, engineering: Confidence level of 95 % is common (data are
with 95 % probability within the bounds); recently, it has been criticized as insuffi-
cient. In case of Gaussian distribution:

estimate of error† = 2 × (estimated standard error)

Chemistry: often ignored or nobody knows if σ or 2σ. . .

The type of the error must be specified!

†or uncertainty
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In the opinion poll, 1080 people were asked about their preferences. Determine the
confidence level of the error bars shown.

Hint: calculate first the variance of random variable yielding 1 with probability p and
0 otherwise. p(1−p);95%

Testing a hypothesis 18/25
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Null hypothesis: The hypothesis that a feature (as a particular quantity value, a
difference, etc.) derived from the data sample is due to sampling or experimental
error and it is not significant.

Example: Students measure their pulse rates (PR). Is the mean pulse rate for col-
lege age women equal to 72 (a long-held standard for average pulse rate)?

Null hypothesis (H0): 〈PR〉 = 72
Alternate (alternative) hypothesis (Ha): 〈PR〉 6= 72

From n = 300 measurements, we got: PRn = 73.23(55); i.e., sn(PRn) = 0.55

For n = 300, we can assume that the distribution of PRn is normal and sn(PRn) is
accurate enough.

t =
PRn − 〈PR〉null

sn(PRn)
=
73.23 − 72

0.55
= 2.24 (“2.24σ”)

p = 2
∫ ∞

t

e−2/2
p
2π

= erfc(k/
p
2) = 0.025

The null hypothesis can be rejected at the 95 % confidence level.

See mmpc5.mw “Normal distribution example”

Student’s t-distribution
[plot/student.sh 1]19/25
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If  is normal-distributed, random variable n has the Gauss’ distribution with mean
value 〈n〉 = 〈〉 and standard deviation σ(n) =

p
Var/n. But we have their es-

timates only – we cannot generally say that n is within ± estimated σ(n) with
probability 68 %.

Let us define the Student’s t-distribution with parameter ν (number of degrees of
freedom) as the distribution of

ν+1 − 〈〉
σ(ν+1)

The distribution function is

() =
∫∞
0 n+1e−d,

(n) = (n − 1)!,
(n+12) =

p
π·12 ·32 · · · (n−12)

tν() =

�
ν+1
2

�
p
νπ 

�ν
2

�
 
1 +

2

ν

!−ν+12

The large-sample limit is the normalized Gauss’ distribution

lim
ν→∞ tν() =

1
p
2π
e−2/2

Warning: t1() has infinite variance and (strictly) undefined mean value.

See mmpc5.mw “Gauss’ (normal) and Student’s t-distribution”

Pulse rates again 20/25
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We have measured 8 persons only: PR = [69,84,67,82,71,81,73,71,76,86], PRn = 76

Null hypothesis: 〈PR〉 < 72
Alternate hypothesis: 〈PR〉 ≥ 72 (one tail)

t =
PRn − 〈PR〉null

sn(PRn)
= 1.865, p =

∫ ∞

t
tn−1()d = 0.0475 < 0.05

The null hypothesis is rejected at the 95 % confidence level, 〈PR〉 < 72 is improbable.

We may be wrong, this is the “type I error” or “false positive” because we incorrectly
accept “our” alternate hypothesis.

Null hypothesis: 〈PR〉 = 72
Alternate hypothesis: 〈PR〉 6= 72 (two tails)

t =
PRn − 〈PR〉null

sn(PRn)
= 1.865, p = 2

∫ ∞

t
tn−1()d = 0.095 > 0.05

Not enough evidence to reject the hypothesis, 〈PR〉 = 72 is quite likely.

We may be wrong, this is the “type II error” or “false negative” because we incor-
rectly reject “our” alternate hypothesis.

Comparison of two samples 21/25
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Let us compare two samples (n and m pieces of data, denoted as  and y) drawn
from the same distribution.

Random variable

t =
n − m

s
p
1/n + 1/m

, where s2 =
(n − 1)[sn()]2 + (m − 1)[sm(y)]

n +m − 2
has the Student’s t-distribution.

σn is the corrected standard deviation of the data (not average)

For n =m, it holds s2 = [sn(n)]2 + [sm(ym)]2

Typical task: We have two sets of measurements obtained in such a way that the
expected variances are the same.
Null hypothesis: Do both means match?

Useful applets:

https://stattrek.com/online-calculator/t-distribution.aspx

https://surfstat.anu.edu.au/surfstat-home/tables/t.php

Excel, LibreOffice: function T.TEST(array1,array2,tails,type)

Example (see mmpc5.mw) 22/25
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A company produces supports for too long dachshunds. The necessary measure-
ments were outsourced to two companies which measured (in cm):
Company SmileyDog:  = [12.1,20,15.1,20.8,19.7] cm
Company HappyDog: y = [18.9,10.1,12.1,9.2,12.4,16.7,12.7] cm

a) Are the results in agreement (at the 95 % confidence level)?
b) What is the best estimate of the support height?

a)assumingthesamevariances:t=2.08,p=0.064⇒bothmeasurementslikely
doagree
b)15.0(12)cm

Weights 23/25
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A weighted average (mean): σ = std.err.

 =

∑n
=1 ∑n
=1

Let us know  (independent random variables) with standard errors σ.
Which weights are the best?

We will derive the result for two quantities; 1 =,2 = 1 −  (normalized)

 =1 + (1 − )2
σ2() = 〈( − 〈〉)2〉 = 〈(Δ1 + (1 − )Δ2)2〉 =2σ21 + (1 − )2σ22

The minimum is for

 =
1/σ21

1/σ21 + 1/σ
2
2

, 1 −  =2 =
1/σ22

1/σ21 + 1/σ
2
2

Consequently (can be generalized to more variables)

 =
1

σ2
But one must be careful if σ are known with a low precision.

Averaging of independent measurements 24/25
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1. Known weights of data. E.g. (unnormalized)  ≈ n� 1 (each  is a result of
processing of many independent measurements),  ≈ time in simulation,. . . ) and
σ. Then

 =

∑m
=1∑m
=1

, σ =

r∑m
=1

2
 σ
2
∑m

=1

If available, better use information on  rather than  ∝ 1/σ
2
 !

Unknown weights of data. Then  = 1/σ2 (assuming that σ are accurate
enough) and using the above formula

 =

∑m
=1 /σ

2
∑m

=1 1/σ
2


, σ =
1

r∑m
=1 1/σ

2
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3. Few data. Data are samples n measurements, where  are averages and σ are
the respective standard error estimates. Then

 =

∑m
=1 n∑m
=1 n

, σ =

√√√√
∑m
=1 n(n − 1)σ2 +

∑m
=1 n( − )2�∑m

=1 n − 1
�∑m

=1 n

are the same as if all data are merged.

Example. Accordning to the dachshunds data:

 = [12.1,20,15.1,20.8,19.7] : 5 = 17.54 ± 1.68
y = [18.9,10.1,12.1,9.2,12.4,16.7,12.7] : y7 = 13.16 ± 1.31

Calculate the best estimate of the support height by all three methods.

1.=n:14.983±1.040
2.=1/σ2:14.812±1.036
3.14.983±1.185(thesameasformergeddata)


