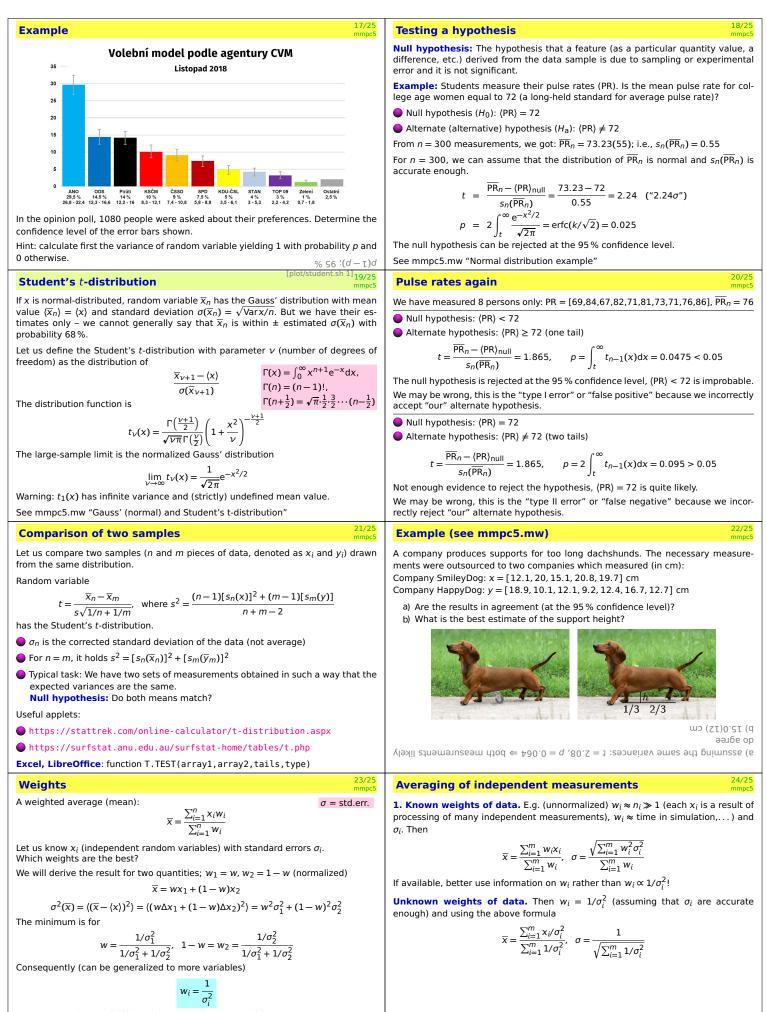
Mathematical statistics 1/25 mmpc5	Probability distribution 2/25 mmpc5
A random variable (stochastic variable) assigns a probability (probability density)	Warning. In physics etc., symbol \mathbf{x} (random variable) and x (a value, e.g., in inte-
 to a possible discrete (continuous) event from a certain discrete (continuous) set of events. Discrete example: dice, p_i = 1/6 for i ∈ {	gration) are not distinguished. Mean value, expectation value (not averaged value = arithmetic average of a
• Continuous example: time of nucleus decay, $p(t) = ke^{-kt}$	sample):
A continuous random variable in 1D ($\mathbf{x} \in \mathbb{R}$) is described by a distribution func- tion , density of probability, (continuous) probability distribution, $p(\mathbf{x})$:	$E(\mathbf{x}) \equiv \langle \mathbf{x} \rangle \equiv \langle \mathbf{x} \rangle_{\mathbf{x}} \stackrel{\text{loosely}}{=} \langle \mathbf{x} \rangle = \int x p(\mathbf{x}) d\mathbf{x} \text{ or } \sum_{i} x_{i} p_{i}$
$p(x)dx = $ probability that event $x \in [x, x + dx)$ occurs	Example. It holds $p(x) = e^{-x}$ (exponential distribution). Calculate $\langle x \rangle$.
In 2D, $p(x, y)$ is defined so that event $x \in [x + dx)$ and $y \in [y + dy)$ happens with probability $p(x, y)dxdy$.	Variance, fluctuation, dispersion, mean square deviation (MSD)
Normalization:	$\operatorname{Var}(\mathbf{x}) \stackrel{\text{loosely}}{=} \operatorname{Var} x = \langle (x - \langle x \rangle)^2 \rangle = \langle \Delta x^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2, \text{ where } \Delta x = x - \langle x \rangle$ Standard deviation = $\sqrt{\operatorname{Var}(\mathbf{x})}$, denoted as: $\sigma(\mathbf{x})$, $\sigma(x)$, δx
$\sum_{i} p_i = 1$ or $\int_{-\infty}^{\infty} p(\mathbf{x}) d\mathbf{x} = 1$	Example. Let distribution u be uniform in interval [0, 1). Calculate the expectation
Cumulative (integral) distribution function = probability that $x \le x$:	and the variance.
$P(x) = \int_{-\infty}^{x} p(x') dx'$	(aldeinav mobnen of random Variable) $\Lambda = 1/2$; cf. mmpc5.mwFunction of random variable)
Function of random variable 3/25 mmpc5	Example: Gini coefficient (index) 4/25 mmpc5
Let x be a real random variable with distribution $p(\mathbf{x})$, and	Measure of income inequality. Income x with probability density $p(x)$, $x \ge 0$.
$f(\mathbf{x})$ be a real function. A quantity (observable) $f(\mathbf{x})$ has the distribution y	$G = \frac{1}{2\langle x \rangle} \int_{0}^{\infty} p(x) dx \int_{0}^{\infty} p(y) dy x - y , G \in [0, 1]$
$p_f(y) = \sum_{x \in f(x) \to y} \frac{p(x)}{ f'(x) }$	Example. Calculate the Gini coefficient for
$x:f(x)=y[f^{(x)}]$ where the sum is over all roots.	a) Dirac delta-distribution (all have the same income);
Example. Let u be uniform in $u \in [0, 1)$. Calculate the dis-	b) exponential distribution of incomes. $\ensuremath{\mathbb{Z}/\mathbb{L}}$ (q :0 (e
tripation function of $t = -\ln n$. $\Gamma = \lambda$ for $k = 0$ from decay for $k = 1$ (-t): e.g., time of atom decay for $k = 1$	<pre>% > restart:</pre>
<pre>% restart: > with(Statistics):</pre>	<pre>> Gini:=p->int(p(x)*int(p(y)*abs(x-y),y=0infinity),x=0infinity)</pre>
<pre>> rectf := t->piecewise(t<0,0, t<1,1, 0); > Rect := Distribution(PDF=(rectf));</pre>	> assume(a>0); > p:=x->Dirac(x-a);
<pre>> X := RandomVariable(Rect); > Mean(X); StandardDeviation(X);</pre>	<pre>> int(p(x),x=0infinity); > Gini(p);</pre>
> PDF(-log(X), x);	<pre>> p:=x->a*exp(-x*a); > int(p(x),x=0infinity);</pre>
5/25	> Gini(p);
	6/25
	Covariance 6/25 mmpc5
Mean value of quantity f:	Covariance mmpc5 Covariance of a 2D distribution:
	• Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$
Function of random variable: mean valuemmpcsMean value of quantity f : $\langle f \rangle = \int f(x)p(x)dx$ (1)Or based on new random variable $f = f(x)$: $f = f(x)$:	• Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ • Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable)
Function of random variable: mean valuemmpc5Mean value of quantity f: $\langle f \rangle = \int f(x)p(x)dx$ (1)Or based on new random variable $f = f(x)$: $\langle f \rangle = \int yp_f(y)dy$ (2)	Covariance $(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$
Function of random variable: mean valuemmpc5Mean value of quantity f: $\langle f \rangle = \int f(x)p(x)dx$ (1)Or based on new random variable $f = f(x)$: $\langle f \rangle = \int yp_f(y)dy$ (2)Both mean values are the same:	• Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ • Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable)
Mean value of quantity f: $\langle f \rangle = \int f(x)p(x)dx \qquad (1)$ Or based on new random variable $f = f(x)$: $\langle f \rangle = \int yp_f(y)dy \qquad (2)$ Both mean values are the same: $\langle f \rangle = \int f(x)p(x)dx \stackrel{\text{subst. } y=f(x)}{=} \int \frac{yp(x)}{f'(x)}dy = \int yp_f(y)dy$	Covariance $(x, y) = (\Delta x \Delta y) = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x) = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x) = g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables x (with distribution $p_1(x)$) and y (with $p_2(y)$):
Function of random variable: mean valuemmpc5Mean value of quantity f: $\langle f \rangle = \int f(x)p(x)dx$ (1)Or based on new random variable $f = f(x)$: $\langle f \rangle = \int yp_f(y)dy$ (2)Both mean values are the same:	Covariance $(x, y) = (\Delta x \Delta y) = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x) = g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables
Mean value of quantity f:	Covariance $(x, y) = (\Delta x \Delta y) = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of a 2D distribution: $Cov(x, y) = (\Delta x \Delta y) = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = (\Delta f \Delta g) = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables x (with distribution $p_1(x)$) and y (with $p_2(y)$): $p(x, y) = p_1(x)p_2(y)$ (3)
Mean value of quantity f: $\langle f \rangle = \int f(x)p(x)dx \qquad (1)$ Or based on new random variable $f = f(x)$: $\langle f \rangle = \int yp_f(y)dy \qquad (2)$ Both mean values are the same: $\langle f \rangle = \int f(x)p(x)dx \stackrel{\text{subst. } y=f(x)}{=} \int \frac{yp(x)}{f'(x)}dy = \int yp_f(y)dy$ where in the 2nd \int , $x = \text{root of equation } f(x) = y$, for simplicity we assume: there is only one root, function f is increasing.	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ $Covariance of two quantities f(x) a g(x) (similarly for a 2D or discrete variable) Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx Independent random variablesRandom variables x (with distribution p_1(x)) and y (with p_2(y)):p(x, y) = p_1(x)p_2(y) In the discrete case (throw a dice twice, p_{ij} = 1/36):p_{ij} = p_{1,i}p_{2,j} Covariance of two independent random variables is zero$
Mean value of quantity f: $(f) = \int f(x)p(x)dx \qquad (1)$ Or based on new random variable $f = f(x)$: $(f) = \int yp_f(y)dy \qquad (2)$ Both mean values are the same: $(f) = \int f(x)p(x)dx \stackrel{\text{subst. } y=f(x)}{=} \int \frac{yp(x)}{f'(x)}dy = \int yp_f(y)dy$ where in the 2nd \int , $x =$ root of equation $f(x) = y$, for simplicity we assume: there is only one root, function f is increasing. Note. Unified and more general description is based on the probability measure μ on a space – so far we have used \mathbb{R} , \mathbb{R}^2 , and a discrete space. We write, e.g., $(f)\mu = \int f(x)d\mu(x)$ instead of (1) or (2).	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables \mathbf{x} (with distribution $p_1(x)$) and \mathbf{y} (with $p_2(y)$): $p(x, y) = p_1(x)p_2(y)$ (3) In the discrete case (throw a dice twice, $p_{ij} = 1/36$): $p_{ij} = p_{1,i}p_{2,j}$ Covariance of two independent random variables is zero $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle \mathbf{x} + \mathbf{y} = \int dx \int dy \Delta x p_1(x) \Delta y p_2(y) = \langle \Delta x \rangle \mathbf{x} \langle \Delta y \rangle \mathbf{y} = 0$
Mean value of quantity f :	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ $Covariance of two quantities f(x) a g(x) (similarly for a 2D or discrete variable) Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx Independent random variablesRandom variables x (with distribution p_1(x)) and y (with p_2(y)):p(x, y) = p_1(x)p_2(y) In the discrete case (throw a dice twice, p_{ij} = 1/36):p_{ij} = p_{1,i}p_{2,j} Covariance of two independent random variables is zero$
Mean value of quantity f:	Covariance mmpc5 Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables \mathbf{x} (with distribution $p_1(x)$) and \mathbf{y} (with $p_2(y)$): $p(x, y) = p_1(x)p_2(y)$ (3) In the discrete case (throw a dice twice, $p_{ij} = 1/36$): $p_{ij} = p_{1,i}p_{2,j}$ Covariance of two independent random variables is zero $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle_{\mathbf{x}+\mathbf{y}} = \int dx \int dy \Delta x p_1(x) \Delta y p_2(y) = \langle \Delta x \rangle_{\mathbf{x}} \langle \Delta y \rangle_{\mathbf{y}} = 0$ [plot/mathum2conv.sh] even
Function of random variable: mean valuemmpc5Mean value of quantity f: $(f) = \int f(x)p(x)dx$ (1)Or based on new random variable $f = f(x)$: $(f) = \int yp_f(y)dy$ (2)Both mean values are the same: $(f) = \int f(x)p(x)dx$ $yp(x) \int \frac{yp(x)}{f'(x)}dy = \int yp_f(y)dy$ (2)where in the 2nd \int , $x = root of equation f(x) = y, for simplicity we assume: there is only one root, function f is increasing.Note. Unified and more general description is based on the probability measure \mu on a space – so far we have used \mathbb{R}, \mathbb{R}^2, and a discrete space. We write, e.g., (f)_{\mu} = \int f(x)d\mu(x) instead of (1) or (2).Correlation coefficientr(x, y) = \frac{Cov(x, y)}{\sqrt{Var(x)Var(y)}}Example. Let u_1 and u_2 be two independent random variables with uniform distri-$	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables \mathbf{x} (with distribution $p_1(x)$) and \mathbf{y} (with $p_2(y)$): $p(x, y) = p_1(x)p_2(y)$ (3) In the discrete case (throw a dice twice, $p_{ij} = 1/36$): $p_{ij} = p_{1,i}p_{2,j}$ Covariance of two independent random variables is zero $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle \mathbf{x} + \mathbf{y} = \int dx \int dy \Delta x p_1(x) \Delta y p_2(y) = \langle \Delta x \rangle \mathbf{x} \langle \Delta y \rangle \mathbf{y} = 0$ (plot/mathum2conv.sh) $g/25$ mmpc5 Let \mathbf{x} and \mathbf{y} be two continuous random variables with distribution $p(x, y)$. The distribution of $\mathbf{x} + \mathbf{y}$ is $p(x, y) = f(x, y) dx dy \frac{y:=z-x}{z} \int p(x, z - x) dx dz$
Mean value of quantity f: $(f) = \int f(x)p(x)dx \qquad (1)$ Or based on new random variable $f = f(x)$: $(f) = \int yp_f(y)dy \qquad (2)$ Both mean values are the same: $(f) = \int f(x)p(x)dx \stackrel{\text{subst. } y=f(x)}{\int \frac{yp(x)}{f'(x)}}dy = \int yp_f(y)dy$ where in the 2nd \int , $x = \text{root of equation } f(x) = y$, for simplicity we assume: there is only one root, function f is increasing. Note. Unified and more general description is based on the probability measure μ on a space – so far we have used \mathbb{R} , \mathbb{R}^2 , and a discrete space. We write, e.g., $(f)_{\mu} = \int f(x)d\mu(x)$ instead of (1) or (2). Correlation coefficient $r(x, y) = \frac{\text{Cov}(x, y)}{\sqrt{\text{Var}(x)\text{Var}(y)}}$	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables \mathbf{x} (with distribution $p_1(x)$) and \mathbf{y} (with $p_2(y)$): $p(x, y) = p_1(x)p_2(y)$ (3) In the discrete case (throw a dice twice, $p_{ij} = 1/36$): $p_{ij} = p_{1,i}p_{2,j}$ Covariance of two independent random variables is zero $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle_{\mathbf{X}+\mathbf{y}} = \int dx \int dy \Delta x p_1(x) \Delta y p_2(y) = \langle \Delta x \rangle_{\mathbf{X}} \langle \Delta y \rangle_{\mathbf{y}} = 0$ (plot/matnum2conv.sh] $g/25$ mmpc5 Let \mathbf{x} and \mathbf{y} be two continuous random variables with distribution $p(x, y)$. The distribution of $\mathbf{x} + \mathbf{y}$ is $p_{\mathbf{X}+\mathbf{y}}(z) dz = \iint_{X+y \in (z, z+dz)} p(x, y) dx dy \overset{Y:=z-x}{=} \int p(x, z - x) dx dz$
Function of random variable: mean valuemmpc5Mean value of quantity f: $\langle f \rangle = \int f(x)p(x)dx$ (1)Or based on new random variable $f = f(x)$: $\langle f \rangle = \int yp_f(y)dy$ (2)Both mean values are the same: $\langle f \rangle = \int f(x)p(x)dx$ $yp(x) \int y'p(x) dy = \int yp_f(y)dy$ where in the 2nd \int , $x = root of equation f(x) = y, for simplicity we assume: there is only one root, function f is increasing.Note. Unified and more general description is based on the probability measure \mu on a space – so far we have used \mathbb{R}, \mathbb{R}^2, and a discrete space. We write, e.g., \langle f \rangle_{\mu} = \int f(x)d\mu(x) instead of (1) or (2).Correlation coefficientCov(x, y)\sqrt{Var(x)Var(y)}Example. Let u_1 and u_2 be two independent random variables with uniform distribution in [0,1]. Calculate:a) r(u_1, -u_1)$	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables \mathbf{x} (with distribution $p_1(x)$) and \mathbf{y} (with $p_2(y)$): $p(x, y) = p_1(x)p_2(y)$ (3) In the discrete case (throw a dice twice, $p_{ij} = 1/36$): $p_{ij} = p_{1,i}p_{2,j}$ Covariance of two independent random variables is zero $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle \mathbf{x} + \mathbf{y} = \int dx \int dy \Delta x p_1(x) \Delta y p_2(y) = \langle \Delta x \rangle \mathbf{x} \langle \Delta y \rangle \mathbf{y} = 0$ (plot/matnum2conv.sh) $g/25$ mmpc5 Let \mathbf{x} and \mathbf{y} be two continuous random variables with distribution $p(x, y)$. The distribution of $\mathbf{x} + \mathbf{y}$ is $p(x, y) = f(x, y) dx dy \frac{y:=z-x}{z} \int p(x, z - x) dx dz$
Mean value of quantity f: $(f) = \int f(x)p(x)dx \qquad (1)$ Or based on new random variable $f = f(x)$: $(f) = \int yp_f(y)dy \qquad (2)$ Both mean values are the same: $(f) = \int f(x)p(x)dx \stackrel{\text{subst. } y=f(x)}{\int} \frac{yp(x)}{f'(x)}dy = \int yp_f(y)dy$ where in the 2nd \int , $x = \text{root of equation } f(x) = y$, for simplicity we assume: there is only one root, function f is increasing. Note. Unified and more general description is based on the probability measure μ on a space – so far we have used \mathbb{R} , \mathbb{R}^2 , and a discrete space. We write, e.g., $(f)_{\mu} = \int f(x)d\mu(x)$ instead of (1) or (2). Correlation coefficient $r(x, y) = \frac{\text{Cov}(x, y)}{\sqrt{\text{Var}(x)\text{Var}(y)}}$ Example. Let u_1 and u_2 be two independent random variables with uniform distribution in [0,1]. Calculate: a) $r(u_1, -u_1)$ b) $r(u_1^2, u_1^2)$	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables \mathbf{x} (with distribution $p_1(x)$) and \mathbf{y} (with $p_2(y)$): $p(x, y) = p_1(x)p_2(y)$ (3) In the discrete case (throw a dice twice, $p_{ij} = 1/36$): $p_{ij} = p_{1,i}p_{2,j}$ Covariance of two independent random variables is zero $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle \mathbf{x} + \mathbf{y} = \int dx \int dy \Delta x p_1(x) \Delta y p_2(y) = \langle \Delta x \rangle \mathbf{x} \langle \Delta y \rangle \mathbf{y} = 0$ Sum of random variables Let \mathbf{x} and \mathbf{y} be two continuous random variables with distribution $p(x, y)$. The distribution of $\mathbf{x} + \mathbf{y}$ is $p_{\mathbf{x}+\mathbf{y}}(z) dz = \iint_{x+y\in(z,z+dz)} p(x, y) dx dy \stackrel{y:=z-x}{=} \int p(x, z-x) dx dz$ $\Rightarrow p_{\mathbf{x}+\mathbf{y}}(z) = \int p(x, z-x) dx$ Now, let $p(x, y) = p_1(x)p_2(y)$. Then
Mean value of quantity f: $(f) = \int f(x)p(x)dx \qquad (1)$ Or based on new random variable $f = f(x)$: $(f) = \int yp_f(y)dy \qquad (2)$ Both mean values are the same: $(f) = \int f(x)p(x)dx \stackrel{\text{subst. } y=f(x)}{\int} \frac{yp(x)}{f'(x)}dy = \int yp_f(y)dy$ where in the 2nd \int , $x = \text{root of equation } f(x) = y$, for simplicity we assume: there is only one root, function f is increasing. Note. Unified and more general description is based on the probability measure μ on a space – so far we have used \mathbb{R} , \mathbb{R}^2 , and a discrete space. We write, e.g., $(f)_{\mu} = \int f(x)d\mu(x)$ instead of (1) or (2). Correlation coefficient $r(x, y) = \frac{\text{Cov}(x, y)}{\sqrt{\text{Var}(x)\text{Var}(y)}}$ Example. Let u_1 and u_2 be two independent random variables with uniform distribution in [0,1]. Calculate: a) $r(u_1, -u_1)$ b) $r(u_1^2, u_1^2)$	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables \mathbf{x} (with distribution $p_1(x)$) and \mathbf{y} (with $p_2(y)$): $p(x, y) = p_1(x)p_2(y)$ (3) In the discrete case (throw a dice twice, $p_{ij} = 1/36$): $p_{ij} = p_{1,i}p_{2,j}$ Covariance of two independent random variables is zero $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle \mathbf{x} + \mathbf{y} = \int dx \int dy \Delta x p_1(x) \Delta y p_2(y) = \langle \Delta x \rangle \mathbf{x} \langle \Delta y \rangle \mathbf{y} = 0$ Sum of random variables Let \mathbf{x} and \mathbf{y} be two continuous random variables with distribution $p(x, y)$. The distribution of $\mathbf{x} + \mathbf{y}$ is $p_{\mathbf{x}+\mathbf{y}}(z) dz = \iint_{X+y\in\{z,z+dz\}} p(x, y) dx dy \overset{Y:=z-x}{=} \int p(x, z - x) dx dz$ \Rightarrow $p_{\mathbf{x}+\mathbf{y}}(z) = \int p(x, z - x) dx$
Mean value of quantity f: $(f) = \int f(x)p(x)dx \qquad (1)$ Or based on new random variable $f = f(x)$: $(f) = \int yp_f(y)dy \qquad (2)$ Both mean values are the same: $(f) = \int f(x)p(x)dx \stackrel{\text{subst. } y=f(x)}{\int} \frac{yp(x)}{f'(x)}dy = \int yp_f(y)dy$ where in the 2nd \int , $x = \text{root of equation } f(x) = y$, for simplicity we assume: there is only one root, function f is increasing. Note. Unified and more general description is based on the probability measure μ on a space – so far we have used \mathbb{R} , \mathbb{R}^2 , and a discrete space. We write, e.g., $(f)_{\mu} = \int f(x)d\mu(x)$ instead of (1) or (2). Correlation coefficient $r(x, y) = \frac{\text{Cov}(x, y)}{\sqrt{\text{Var}(x)\text{Var}(y)}}$ Example. Let u_1 and u_2 be two independent random variables with uniform distribution in [0,1]. Calculate: a) $r(u_1, -u_1)$ b) $r(u_1^2, u_1^2)$	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ • Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables \mathbf{x} (with distribution $p_1(x)$) and \mathbf{y} (with $p_2(y)$): $p(x, y) = p_1(x)p_2(y)$ (3) In the discrete case (throw a dice twice, $p_{ij} = 1/36$): $p_{ij} = p_{1,i}p_{2,j}$ Covariance of two independent random variables is zero $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle_{\mathbf{X}+\mathbf{y}} = \int dx \int dy \Delta x p_1(x) \Delta y p_2(y) = \langle \Delta x \rangle_{\mathbf{X}} \langle \Delta y \rangle_{\mathbf{y}} = 0$ Sum of random variables Let \mathbf{x} and \mathbf{y} be two continuous random variables with distribution $p(x, y)$. The distribution of $\mathbf{x} + \mathbf{y}$ is $p_{\mathbf{X}+\mathbf{y}}(z) = \int \int_{x+y\in\{z,z+dz\}} p(x, y) dx dy \overset{y:=z-x}{=} \int p(x, z-x) dx dz$ \Rightarrow $p_{\mathbf{X}+\mathbf{y}}(z) = \int p_1(x)p_2(z-x) dx \equiv (p_1 * p_2)(z)$ x $p_1 * p_2$ is called the convolution. Discrete example: Let's roll two dice. What is the distribution of the sum of points?
Mean value of quantity f: $(f) = \int f(x)p(x)dx \qquad (1)$ Or based on new random variable $f = f(x)$: $(f) = \int yp_f(y)dy \qquad (2)$ Both mean values are the same: $(f) = \int f(x)p(x)dx \stackrel{\text{subst. } y=f(x)}{\int} \frac{yp(x)}{f'(x)}dy = \int yp_f(y)dy$ where in the 2nd $\int x = \text{root of equation } f(x) = y$, for simplicity we assume: there is only one root, function f is increasing. Note. Unified and more general description is based on the probability measure μ on a space – so far we have used \mathbb{R} , \mathbb{R}^2 , and a discrete space. We write, e.g., $(f)\mu = \int f(x)d\mu(x)$ instead of (1) or (2). Correlation coefficient $r(x, y) = \frac{\text{Cov}(x, y)}{\sqrt{\text{Var}(x)\text{Var}(y)}}$ Example. Let u_1 and u_2 be two independent random variables with uniform distribution in $[0, 1]$. Calculate: a) $r(u_1, -u_1)$ b) $r(u_1^2, u_1^2)$ c) $r(u_1, u_2 + u_1)$ (see Maple) \underline{C}^*/Γ (0 ' Γ (q ' Γ (q	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ $Covariance of two quantities f(x) a g(x) (similarly for a 2D or discrete variable) Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx Independent random variablesRandom variables x (with distribution p_1(x)) and y (with p_2(y)):p(x, y) = p_1(x)p_2(y) (3)In the discrete case (throw a dice twice, p_{ij} = 1/36):p_{ij} = p_{1,i}p_{2,j} Covariance of two independent random variables is zeroCov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle \mathbf{x} + \mathbf{y} = \int dx \int dy \Delta x p_1(x) \Delta y p_2(y) = \langle \Delta x \rangle \mathbf{x} \langle \Delta y \rangle \mathbf{y} = 0 Sum of random variablesLet x and y be two continuous random variables with distribution p(x, y). The distribution of \mathbf{x} + \mathbf{y} isp_{\mathbf{x}+\mathbf{y}(z)} = \int \int_{x+y\in(z,z+dz)} p(x, y) dx dy \overset{y:=z-x}{=} \int p(x, z-x) dx dz \Rightarrow p_{\mathbf{x}+\mathbf{y}(z)} = \int p(x, p_2(x-x)) dx = (p_1 * p_2)(z) p_1 * p_2 is called the convolution.Discrete example: Let's roll two dice. What is the distribution of the sum of points?g \in T = (zT)d \cdots g \in f = (z)d \cdots g \in T = (z)d \cdot g = (z)d \cdots g \in T = (z)d \cdot g = (z)d \cdots g \in T = (z)d \cdot g $
Mean value of quantity f: $(f) = \int f(x)p(x)dx \qquad (1)$ Or based on new random variable $f = f(x)$: $(f) = \int yp_f(y)dy \qquad (2)$ Both mean values are the same: $(f) = \int f(x)p(x)dx \stackrel{\text{subst. } y=f(x)}{\int} \frac{yp(x)}{f'(x)}dy = \int yp_f(y)dy$ where in the 2nd $\int x = \text{root of equation } f(x) = y$, for simplicity we assume: there is only one root, function f is increasing. Note. Unified and more general description is based on the probability measure μ on a space – so far we have used \mathbb{R} , \mathbb{R}^2 , and a discrete space. We write, e.g., $(f)\mu = \int f(x)d\mu(x)$ instead of (1) or (2). Correlation coefficient $r(x, y) = \frac{\text{Cov}(x, y)}{\sqrt{\text{Var}(x)\text{Var}(y)}}$ Example. Let u_1 and u_2 be two independent random variables with uniform distribution in $[0, 1]$. Calculate: a) $r(u_1, -u_1)$ b) $r(u_1^2, u_1^2)$ c) $r(u_1, u_2 + u_1)$ (see Maple) \underline{C}^*/Γ (0 ' Γ (q ' Γ (q	Covariance of a 2D distribution: $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle = \int \Delta x \Delta y p(x, y) dx dy$ • Covariance of two quantities $f(x)$ a $g(x)$ (similarly for a 2D or discrete variable) $Cov(f, g) = \langle \Delta f \Delta g \rangle = \int \Delta f \Delta g p(x) dx$ Independent random variables Random variables \mathbf{x} (with distribution $p_1(x)$) and \mathbf{y} (with $p_2(y)$): $p(x, y) = p_1(x)p_2(y)$ (3) In the discrete case (throw a dice twice, $p_{ij} = 1/36$): $p_{ij} = p_{1,i}p_{2,j}$ Covariance of two independent random variables is zero $Cov(\mathbf{x}, \mathbf{y}) = \langle \Delta x \Delta y \rangle \mathbf{x} + \mathbf{y} = \int dx \int dy \Delta x p_1(x) \Delta y p_2(y) = \langle \Delta x \rangle \mathbf{x} \langle \Delta y \rangle \mathbf{y} = 0$ Sum of random variables Let \mathbf{x} and \mathbf{y} be two continuous random variables with distribution $p(x, y)$. The distribution of $\mathbf{x} + \mathbf{y}$ is $p_{\mathbf{x}+\mathbf{y}(z)} = \int p(x, z - x) dx$ \Rightarrow $p_{\mathbf{x}+\mathbf{y}(z)} = \int p_1(x)p_2(z - x) dx \equiv (p_1 * p_2)(z)$ x $p_1 * p_2$ is called the convolution. Discrete example: Let's roll two dice. What is the distribution of the sum of points?

Sum of independent random variables [show/convol.sh] 9/25	Central limit theorem [plot/galton.sh] 10/25
Mean value and variance of independent random variables are additive.	The sum of <i>n</i> equal independent distributions with a finite mean value and variance
Directly using (3): $E(\mathbf{x} + \mathbf{y}) = \int p_1(\mathbf{x})p_2(\mathbf{y})(\mathbf{x} + \mathbf{y})d\mathbf{x}d\mathbf{y}$	limits for $n \to \infty$ to the Gaussian distribution (aka normal distribution) with the mean value $n(x)$ and variance n Var x .
J	Example. Let us consider a discrete distribution b : $p(-1/2) = p(1/2) = 1/2$. Let us approximate the sum of <i>n</i> such distributions:
$= \int p_1(x)p_2(y)xdxdy + \int p_1(x)p_2(y)ydxdy = \int p_1(x)xdx + \int p_2(y)ydy = E(\mathbf{x}) + E(\mathbf{y})$ Using the convolution of the distributions:	n = 1 $p(-1/2) = 1/2$, $p(1/2) = 1/2$, $Var b = 1/4p = 2 p(-1) = 1/4, p(0) = 1/2, p(1) = 1/4, Var b^2 = 2/4$
$E(\mathbf{x} + \mathbf{y}) = \int z p_{\mathbf{X} + \mathbf{y}}(z) dz = \int z p_1(x) p_2(z - x) dx dz$	$n = 2 \qquad p(-1) = 1/4, \ p(0) = 1/2, \ p(1) = 1/4, \ \text{var} \boldsymbol{b}^- = 2/4$ $n = 3 \qquad p(\pm 3/2) = 1/8, \ p(\pm 1/2) = 3/8, \ \text{Var} \boldsymbol{b}^3 = 3/4$
J J	Let <i>n</i> be even (for simplicity). Then for $k = -n/2n/2$:
$y := z - z = \int (x + y)p_1(x)p_2(y)dxdy = \langle x \rangle_1 + \langle y \rangle_2 = E(x) + E(y)$ And the variance:	$p(k) = \binom{n}{n/2 + k} 2^{-n} \approx \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{t^2}{2\sigma^2}\right), \sigma^2 = \operatorname{Var}(\boldsymbol{b}^n) = \frac{n}{4}$
$Var(\mathbf{x} + \mathbf{y}) = \langle (\Delta x + \Delta y)^2 \rangle_{\mathbf{x} + \mathbf{y}}$	where we have used the Stirling formula $n! \approx n^n e^{-n} \sqrt{2\pi n}$ See Maple for numerical verification using convolution of rectangular distributions
$= \langle (\Delta x)^2 \rangle_{\mathbf{X}+\mathcal{Y}} + 2 \langle \Delta x \Delta y \rangle_{\mathbf{X}+\mathbf{y}} + \langle (\Delta y)^2 \rangle_{\mathcal{X}+\mathbf{y}} = \operatorname{Var}(\mathbf{x}) + \operatorname{Var}(\mathbf{y})$	
Gauss' distribution and Chebyshev's inequality 11/25	Mathematical statistics and metrology
For random variable ${f x}$ with the Gauss' (normal) distrubution it holds:	The terminology is field-dependent
$\operatorname{prob}(\mathbf{x} - \langle \mathbf{x} \rangle \ge t\sigma(\mathbf{x})) = 2 \int_{t}^{\infty} \frac{e^{-x^{2}/2}}{\sqrt{2\pi}} = \operatorname{erfc}(k/\sqrt{2})$ e.g., $\operatorname{prob}(\mathbf{x} - \langle \mathbf{x} \rangle \ge 2\sigma(\mathbf{x})) = 0.0455 \approx 5\%$	Statistic, estimator, "statistical algorithm", (narrower) "statistical functional", in metrology "measurement function", is a formula/algorithm by which a result is cal culated from (a sample of) random variables (from data in metrology). A statistic i a random variable, too.
Chebyshev's inequality: For a general random variable x with finite mean and variance it holds: $\frac{\operatorname{prob}(\mathbf{x} - \langle \mathbf{x} \rangle \le t\sigma(\mathbf{x}))}{t \operatorname{normal} \operatorname{general}}$	Examples: arithmetic average, parameters of a model in fitting by the least-square method
$\operatorname{prob}(\mathbf{x} - \langle \mathbf{x} \rangle \ge t\sigma(\mathbf{x})) \le \frac{1}{t^2} $ $1 68.27 \% \ge 100 \ \% \\ 2 95.45 \% \ge 75 \ \% \\ 3 99.73 \% \ge 88.89 \ \% \\ \end{cases}$	Standard error of a statistic = standard deviation (square root of variance) of the distribution function of the statistic.
e.g., prob $(\mathbf{x} - \langle \mathbf{x} \rangle \ge 2\sigma(\mathbf{x})) = 25\%$	Uncertainty (in metrology) includes critical assessment of systematic, random
Proof. Let's define (as in C/C++): $(x \le 1) = 1$ for $x \le 1$ and $(x \le 1) = 0$ otherwise. prob $(\mathbf{x} - \langle \mathbf{x} \rangle \ge t\sigma(\mathbf{x})) = \langle \mathbf{x} - \langle \mathbf{x} \rangle \ge t\sigma(\mathbf{x}) \rangle$ $\begin{pmatrix} -1, & p = \frac{1}{2t^2} \\ -1, & p = \frac{1}{2t^2} \end{pmatrix}$	discretization etc. errors. Similarly as above: "standard uncertainty". Distinguish:
$\frac{p_{1}(\mathbf{x}_{1} - \mathbf{x}_{2})^{2}}{p_{2}(\mathbf{x}_{1} - \mathbf{x}_{2})^{2}} = \frac{p_{1}(\mathbf{x}_{1} - \mathbf{x}_{2})^{2}}{p_{2}(\mathbf{x}_{2} - \mathbf{x}_{2})^{2}} = \frac{p_{1}(\mathbf{x}_{2} - \mathbf{x}_{2})^{2}}{p_{2}(\mathbf{x}_{2} - \mathbf{x}_{2})^{2}} = \frac{p_{1}(\mathbf{x}_{2} - \mathbf{x}_{2})^{2}}{p_{2}(\mathbf{x}_{2} - \mathbf{x}_{2})^{2}} = \frac{p_{1}(\mathbf{x}_{2} - \mathbf{x}_{2})^{2}}{p_{1}(\mathbf{x}_{2} - \mathbf{x}_{2})^{2}}$	statistic = estimator
$\operatorname{prob}\left(\mathbf{x} - \langle \mathbf{x} \rangle \ge t\sigma(\mathbf{x})\right) = \left\langle \mathbf{x} - \langle \mathbf{x} \rangle \ge t\sigma(\mathbf{x}) \right\rangle$ $= \left\langle \left(\frac{\mathbf{x} - \langle \mathbf{x} \rangle}{t\sigma(\mathbf{x})}\right)^2 \ge 1 \right\rangle \le \left\langle \left(\frac{\mathbf{x} - \langle \mathbf{x} \rangle}{t\sigma(\mathbf{x})}\right)^2 \right\rangle = \frac{1}{t^2}$ equality for: $X = \begin{cases} -1, p = \frac{1}{2t^2} \\ 0, p = 1 - \frac{1}{t^2} \\ +1, p = \frac{1}{2t^2} \end{cases}$	statistics = field of mathematics
Arithmetic everyone as an example of statistic ^{13/25}	
Arithmetic average as an example of statistic 13/25 mmpc5	
Let us have a sample of a random variable.	
Arithmetic average as an example of statistic mmpc5	Standard deviation as an example of statistic
Arithmetic average as an example of statistic mmpcs Let us have a sample of a random variable. Examples: shoe sizes of 1000 people 100 × rolled dice pressure during a simulation Image: Statistic Image	Fundard deviation as an example of statistic mmpc How to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = \langle (x - \langle x \rangle)^2 \rangle \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n x_j \right)^2$
Arithmetic average as an example of statistic mmpcs Let us have a sample of a random variable. Examples: shoe sizes of 1000 people 100× rolled dice pressure during a simulation Arithmetic average (sample average, sample mean): a random variable. a random variable.<	How to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = ((x - \langle x \rangle)^2) \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n x_j \right)^2$ $= \frac{1}{n} n \left[(1 - \frac{1}{n}) x_1 - \frac{1}{n} x_2 + \cdots \right]^2 = \frac{n-1}{n} \sigma(x)^2$ Hence for the corrected sample variance Similarly, the corrected sample
Arithmetic average as an example of statistic mmpcs Let us have a sample of a random variable. • • • • • • • • • • • • • • • •	How to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = ((x - \langle x \rangle)^2) \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n x_j \right)^2$ $= \frac{1}{n} n \left[(1 - \frac{1}{n}) x_1 - \frac{1}{n} x_2 + \cdots \right]^2 = \frac{n-1}{n} \sigma(x)^2$ Hence for the corrected sample variance Similarly, the corrected sample
Arithmetic average as an example of statisticmmpcsLet us have a sample of a random variable. Examples:•••••••••••••••••••••••••••••••••	For the corrected sample variance $\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x}_n)^2 = \frac{1}{n}\sum_{i=1}^{n}(x_i-\frac{1}{n}\sum_{j=1}^{n}x_j)^2$ $\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x}_n)^2 = \frac{1}{n}\sum_{i=1}^{n}\left(x_i-\frac{1}{n}\sum_{j=1}^{n}x_j\right)^2$ $= \frac{1}{n}n\left[(1-\frac{1}{n})x_1-\frac{1}{n}x_2+\cdots\right]^2 = \frac{n-1}{n}\sigma(x)^2$ Hence for the corrected sample variance $\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x}_n)^2$ Similarly, the corrected sample variance of the arithmetic average is (1 = number of degrees of freedom) it holds $\frac{1}{n(n-1)}\sum_{i=1}^{n}(x_i-\overline{x}_n)^2$
Arithmetic average as an example of statisticmmpcsLet us have a sample of a random variable. Examples:•••••••••••••••••••••••••••••••••	How to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = ((x - \langle x \rangle)^2) \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n x_j \right)^2$ $= \frac{1}{n} n \left[(1 - \frac{1}{n}) x_1 - \frac{1}{n} x_2 + \cdots \right]^2 = \frac{n-1}{n} \sigma(x)^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Similarly, the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Similarly, the corrected sample variance (1 = number of degrees of freedom) it holds $\left\langle \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2 \right\rangle = \sigma^2(x)$ The "uncorrected" sample variance
Arithmetic average as an example of statisticmmpcsLet us have a sample of a random variable. Examples:•••••••••••••••••••••••••••••••••	For the corrected sample of statistic mapped How to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = \langle (x - \langle x \rangle)^2 \rangle \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n x_j \right)^2$ $= \frac{1}{n} n \left[(1 - \frac{1}{n}) x_1 - \frac{1}{n} x_2 + \cdots \right]^2 = \frac{n-1}{n} \sigma(x)^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Similarly, the corrected sample variance of the arithmetic average is (1 = number of degrees of freedom) it holds $\left\langle \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2 \right\rangle = \sigma^2(x)$ The "uncorrected" sample variance on the model of the mathematic term of term
Arithmetic average as an example of statisticmmpcsLet us have a sample of a random variable. Examples:•••••••••••••••••••••••••••••••••	How to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = ((x - \langle x \rangle)^2) \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n x_j \right)^2$ $= \frac{1}{n} n \left[(1 - \frac{1}{n}) x_1 - \frac{1}{n} x_2 + \cdots \right]^2 = \frac{n-1}{n} \sigma(x)^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ So it is an unbiased estimate of $\sigma^2(x)$. But it's square root is a biased estimate of $\sigma(x)$. Friedrich Wilhelm Bessel.
Arithmetic average as an example of statisticmmpcsLet us have a sample of a random variable. Examples:• • • • • • • • • • • • • • • • • • •	How to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = \{(x - \{x\})\}^2\} \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n x_j\right)^2$ $= \frac{1}{n} n \left[(1 - \frac{1}{n}) x_1 - \frac{1}{n} x_2 + \cdots \right]^2 = \frac{n-1}{n} \sigma(x)^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Similarly, the corrected sample variance of the arithmetic average is (1 = number of degrees of freedom) it holds $\left\langle \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2 \right\rangle = \sigma^2(x)$ But it's square root is a biased estimate of $\sigma(x)$. Habits Habits
Arithmetic average as an example of statisticmmpcsLet us have a sample of a random variable. Examples:•••••••••••••••••••••••••••••••••	How to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = \{(x - \{x\})^2\} \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n x_j\right)^2$ $= \frac{1}{n} n \left[(1 - \frac{1}{n}) x_1 - \frac{1}{n} x_2 + \cdots \right]^2 = \frac{n-1}{n} \sigma(x)^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Similarly, the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Similarly, the corrected sample variance of the arithmetic average is (1 = number of degrees of freedom) it holds $\left\langle \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2 \right\rangle = \sigma^2(x)$ So it is an unbiased estimate of $\sigma^2(x)$. But it's square root is a biased estimate of $\sigma(x)$. Habite
Arithmetic average as an example of statisticmmpcsLet us have a sample of a random variable.Examples:Examples:• shoe sizes of 1000 people• 100x rolled dice• • • • • • • • • • • • • • • • • • •	Standard deviation as an example of statisticImage: Standard deviation as an example of statisticHow to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = ((x - \langle x \rangle)^2) \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \frac{1}{n} \sum_{i=1}^n x_i)^2$ $= \frac{1}{n} n \left[(1 - \frac{1}{n}) x_1 - \frac{1}{n} x_2 + \cdots \right]^2 = \frac{n-1}{n} \sigma(x)^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Similarly, the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ The "uncorrected" sample variance of the arithmetic average is(1 = number of degrees of freedom) it holds $\left\langle \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2 \right\rangle = \sigma^2(x)$ The "uncorrected" sample variance so not contain term -1.So it is an unbiased estimate of $\sigma^2(x)$.But it's square root is a biased estimate of $\sigma(x)$.Friedrich Wilhelm Bessel.Metority to statistical processing asquantity = estimate of quantity \pm estimate of error [†] Physics: estimate of error [†] = σ = estimated (standard) error [†] ; loosely (estimated)
Arithmetic average as an example of statisticmmpcsLet us have a sample of a random variable.Examples:• shoe sizes of 1000 people• • • • • • • • • • • • • • • • • • •	Standard deviation as an example of statisticImage: Standard deviation as an example of statisticHow to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = ((x - \langle x \rangle)^2) \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \frac{1}{n} \sum_{i=1}^n x_i)^2$ $= \frac{1}{n} n \left[(1 - \frac{1}{n}) x_1 - \frac{1}{n} x_2 + \cdots \right]^2 = \frac{n-1}{n} \sigma(x)^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Similarly, the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ The image of the arithmetic average is(1 = number of degrees of freedom) it holds $\left\langle \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2 \right\rangle = \sigma^2(x)$ The "uncorrected" sample variances do not contain term -1.So it is an unbiased estimate of $\sigma^2(x)$.But it's square root is a biased estimate of $\sigma(x)$.Friedrich Wilhelm Bessel.Method to statistical processing as
Arithmetic average as an example of statisticmmpcsLet us have a sample of a random variable.Examples:• shoe sizes of 1000 people• • • • • • • • • • • • • • • • • • •	Standard deviation as an example of statisticImage: Number of StatisticHow to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = ((x - (x))^2) \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \frac{1}{n} \sum_{j=1}^n x_j)^2$ $= \frac{1}{n} n [(1 - \frac{1}{n})x_1 - \frac{1}{n}x_2 + \cdots]^2 = \frac{n-1}{n} \sigma(x)^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Similarly, the corrected sample $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ The "uncorrected" sample variance of the arithmetic average is(1 = number of degrees of freedom) it holds $\left\langle \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2 \right\rangle = \sigma^2(x)$ The "uncorrected" sample variances do not contain term -1.so it is an unbiased estimate of $\sigma^2(x)$.But it's square root is a biased estimate of $\sigma(x)$.Friedrich Wilhelm Bessel.Metrix until the result of statistical processing asquantity = estimate of quantity ± estimate of error [†] Physics: estimate of error [†] = σ = estimated (standard) error [†] ; loosely (estimated error [†] ; standard deviation (assumed of the arithmetic average or other statistic).Common notation: 123.4 ± 0.5 = 123.4(5) = 123.45In case of Gaussian distribution, the data are with 68 % probability within the
Arithmetic average as an example of statistic mmpcs Let us have a sample of a random variable. Examples: • shoe sizes of 1000 people • 100x rolled dice • pressure during a simulation Arithmetic average (sample average, sample mean): $\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$ for simplicity, I write (x) instead of (x) It is an unbiased estimate of (x) because $(\overline{x}_n) = \langle x \rangle$ Let's calculate the variance of \overline{x}_n : $Var(\overline{x}_n) = \langle (\overline{x}_n - \langle x \rangle)^2 \rangle = \left\langle \left(\frac{1}{n} \sum_{i=1}^n \Delta x_i\right)^2 \right\rangle = \frac{Varx}{n} \equiv \frac{\sigma(x)^2}{n}$, $\Delta x_i = x_i - \langle x \rangle$ We assumed that x_i 's are independent, $\langle \Delta x_i \Delta x_j \rangle = 0$ for $i \neq j$. For processing of uncorrelated data by the arithmetic average with equal weights, it holds: • Standard deviation of random variable $x =$ standard error (uncertainty) of one measurement: $\sigma(x) = \sqrt{\langle (x - \langle x \rangle)^2 \rangle}$ • standard error (standard uncertainty) of the arithmetic average \overline{x}_n = uncertainty,	Standard deviation as an example of statisticImpediation of the set of th
Arthmetic average as an example of statistic mmpcs Let us have a sample of a random variable. Examples: • shoe sizes of 1000 people • 100x rolled dice • pressure during a simulation Arithmetic average (sample average, sample mean): $\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$ for simplicity, I write (x) instead of (x) It is an unbiased estimate of (x) because $(\overline{x}_n) = \langle x \rangle$ Let's calculate the variance of \overline{x}_n : $Var(\overline{x}_n) = \langle (\overline{x}_n - \langle x \rangle)^2 \rangle = \left\langle \left(\frac{1}{n} \sum_{i=1}^n \Delta x_i \right)^2 \right\rangle = \frac{Var x}{n} \equiv \frac{\sigma(x)^2}{n}, \ \Delta x_i = x_i - \langle x \rangle$ We assumed that x_i 's are independent, $\langle \Delta x_i \Delta x_j \rangle = 0$ for $i \neq j$. For processing of uncorrelated data by the arithmetic average with equal weights, it holds: • Standard deviation of random variable $x =$ standard error (uncertainty) of one measurement: $\sigma(x) = \sqrt{\langle (x - \langle x \rangle)^2 \rangle}$ is approximated by $s_n(x) = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2}$	Standard deviation as an example of statisticImpose the set of
Arithmetic average as an example of statisticmmpcsLet us have a sample of a random variable. Examples: 	Standard deviation as an example of statisticImage: How to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n .How to estimate $\sigma(x)^2$? We do not know $\langle x \rangle$, but only its estimate, \overline{x}_n . $\sigma^2(x) = ((x - \langle x \rangle)^2) \approx \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n \sigma(x) \right)^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ Similarly, the corrected sample variance of the arithmetic average is(1 = number of degrees of freedom) it holds $\left(\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2\right) = \sigma^2(x)$ The "uncorrected" sample variances do not contain term -1.so it is an unbiased estimate of $\sigma^2(x)$.The "uncorrection comes fromBut it's square root is a biased estimate of $\sigma(x)$.Friedrich Wilhelm Bessel.Habits16/22 mpcWe write the result of statistical processing as quantity = estimate of quantity ± estimate of error [†] Physics: estimate of error [‡] = σ = estimated (standard) error [‡] ; loosely (estimated error [‡] ; standard deviation (assumed of the arithmetic average or other statistic).Common notation: 123.4 ± 0.5 = 123.4(5) = 123.4_5In case of Gaussian distribution, the data are with 68 % probability within the bounds.Biology, economy, engineering: Confidence level of 95 % i
Articinetic average as an example of statistic mmpcs Let us have a sample of a random variable. Examples: a shoe sizes of 1000 people 100x rolled dice pressure during a simulation Arithmetic average (sample average, sample mean): $\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$ It is an unbiased estimate of $\langle x \rangle$ because $\langle \overline{x}_n \rangle = \langle x \rangle$ Let's calculate the variance of \overline{x}_n : $Var(\overline{x}_n) = \langle (\overline{x}_n - \langle x \rangle)^2 \rangle = \left\langle \left(\frac{1}{n} \sum_{i=1}^n \Delta x_i\right)^2 \right\rangle = \frac{Var x}{n} \equiv \frac{\sigma(x)^2}{n}, \Delta x_i = x_i - \langle x \rangle$ We assumed that x_i 's are independent, $\langle \Delta x_i \Delta x_j \rangle = 0$ for $i \neq j$. Summary For processing of uncorrelated data by the arithmetic average with equal weights, it holds: $\sigma(x) = \sqrt{\langle (x - \langle x \rangle)^2 \rangle}$ is approximated by $s_n(x) = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2}$ $\sigma(x) = \sigma(x)/\sqrt{n}$	How to estimate $\sigma(\mathbf{x})^2$? We do not know $\langle \mathbf{x} \rangle$, but only its estimate, $\overline{\mathbf{x}}_n$. $\sigma^2(\mathbf{x}) = ((\mathbf{x} - \langle \mathbf{x} \rangle)^2) \approx \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}}_n)^2 = \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i - \frac{1}{n} \sum_{j=1}^n \mathbf{x}_j\right)^2$ $= \frac{1}{n} n \left[(1 - \frac{1}{n}) \mathbf{x}_1 - \frac{1}{n} \mathbf{x}_2 + \cdots \right]^2 = \frac{n-1}{n} \sigma(\mathbf{x})^2$ Hence for the corrected sample variance $\frac{1}{n-1} \sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}}_n)^2$ Similarly, the corrected sample variance of the arithmetic average is $(1 = \text{number of degrees of freedom) it holds}$ $\left\langle \frac{1}{n-1} \sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}}_n)^2 \right\rangle = \sigma^2(\mathbf{x})$ But it's square root is a biased estimate of $\sigma^2(\mathbf{x})$. Habits $\frac{1}{n(n-1)} \sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}}_n)^2$ We write the result of statistical processing as $\frac{quantity}{q} = \frac{estimate of quantity}{q} \pm \frac{estimate of error^{\dagger}}{r}$ Physics: estimate of error^{\dagger} = \sigma = estimated (standard) error^{\dagger}; loosely (estimated) error^{\dagger}; standard deviation (assumed of the arithmetic average or other statistic). Common notation: 123.4 ± 0.5 = 123.4(5) = 123.4_5 In case of Gaussian distribution, the data are with 68 % probability within the bounds. Biology, economy, engineering: Confidence level of 95 % is common (data are with 95 % probability within the bounds); recently, it has been criticized as insufficient. In case of Gaussian distribution: $\frac{estimate of error^{\dagger}}{2 \times (estimated standard error)$



But one must be careful if σ_i are known with a low precision.

Few data...

+ 25/25 mmpc5

3. Few data. Data are samples n_i measurements, where x_i are averages and σ_i are the respective standard error estimates. Then

$$\overline{\mathbf{x}} = \frac{\sum_{i=1}^{m} n_i \mathbf{x}_i}{\sum_{i=1}^{m} n_i}, \quad \sigma = \sqrt{\frac{\sum_{i=1}^{m} n_i (n_i - 1)\sigma_i^2 + \sum_{i=1}^{m} n_i (\mathbf{x}_i - \overline{\mathbf{x}})^2}{\left(\sum_{i=1}^{m} n_i - 1\right)\sum_{i=1}^{m} n_i}}$$

Example. Accordning to the dachshunds data:

$$\begin{aligned} x &= [12.1, 20, 15.1, 20.8, 19.7] : \overline{x}_5 = 17.54 \pm 1.68 \\ y &= [18.9, 10.1, 12.1, 9.2, 12.4, 16.7, 12.7] : \overline{y}_7 = 13.16 \pm 1.31 \end{aligned}$$

.9, 10.1, 12.1, 9.2, 12.4, 16.7, 12.7] :
$$\overline{y}_7 = 13.16 \pm 1.31$$

Calculate the best estimate of the support height by all three methods.

1. $w_i = n_i$: 14.983 ± 1.040 2. $w_i = 1/\sigma^2$: 14.812 ± 1.036 3. 14.882 ± 1.185 (the same as for merged data)