The method of least squaresAnd
$$n = 1$$
 $k_{\perp} = n$ integration variables (in vectors of any dimension, $1 = 1 = n$)
 $n = nonlinear (non-all number variables (in vectors of any dimension), $1 = 1 = n$
 $n = nonlinear (non-all number variables (in vectors of $n = 1$
 $n = nonlinear (in vectors of $n = 1$
 $n = nonlinear (in vectors of $n = 1$
 $n = nonlinear (in vectors of $n = 1$
 $n = nonlinear (in vectors $n = 1$
 $n = 1$$$$$$$$$$$$$$$$$$

Numerical notes + 9/16 mmpc6	Real example 10/16 mmpc6
Linear model: Solvable by the linear algebra methods, usually easy. In case of problems, orthonormalization of a basis helps.	A simulation of a model of Pt in the slab geometry gave the following data for pressure in the
Nonlinear model:	direction perpendicular to the slab: T/K p/bar stderr/bar
Problem 1: several local minima, some of them $\rightarrow \infty$ Problem 2: long curved valleys – slow minimization	3700 14.7 2.2
Minimization of nonlinear functions of many variables:	3750 11.9 1.4
grid search (at start)	3800 14.9 2.6 3850 18.9 2.8
	3900 16.3 1.8
Monte Carlo search (at start)	3950 16.5 3.2
steepest descent (greedy)	4000 26.5 3.3 4050 24.3 2.6
conjugated gradients	4100 30.6 2.6
amoeba (Nelder–Mead)	4150 28.5 3.5
(Gauss-)Newton method (close to the solution)	4200 34.5 3.5 4250 43.4 2.6
(Levenberg-)Marquardt method (Newton + gradient, damping)	4300 48.0 3.1
simulated annealing	Calculate the boiling point of Pt at 1 bar and estimate the error.
Solution [plot/ptvle.sh] 11/16 mmpc6	Another example 12/16 mmpc6
We will assume the Clausius–Clapeyron equation and constant vaporization en- thalpy:	Fit the data to a suitable function $f(x)$ and provide the solution x_0 of equation $f(x_0) = 1$, including the standard error estimate. (S)6 t^{-7}
$\ln p = a + b/T$	хуσ
where <i>a</i> and <i>b</i> are constants to fit. Then, function <i>g</i> is the solution of equation $\ln p = a + b/T$ for $p = 1$ bar.	2 4.001 0.014 3 3.424 0.013
Oriect fitting to $p = \exp(a + b/T)$:	4 3.039 0.011
$s = 1.067$, $T_{vap} = 3021(55)$ K, rescaled by s (59)	5 2.710 0.010
Fitting $ln(p)$ vs. $1/T$ (linear regression):	6 2.482 0.009 7 2.208 0.008
$s = 1.081$, $T_{vap} = 2992(53)$ K, rescaled by s (57)	8 1.985 0.008
Without knowledge of standard errors of the data: $T_{vap} = 3015(74) \text{ K}$	9 1.749 0.007 10 1.528 0.007
Since the data are based on trajectories of the same length, the errors may be smoothed. Then:	
$s = 1.138$, $T_{vap} = 2965(63)$ K, rescaled by s (72)	
Summary: <i>T</i> _{vap} = 2965(72)	
Notes 13/16 mmpc6	Fitting in Excel and LibreOffice: Intro
Maple calculates the standard errors of parameters (option 'standarderrors' in Maple) and the covariance matrix ('variance ovariancematrix') from the	Excel and LibreOffice provide a general routine for linear regression LINEST.
in Maple) and the covariance matrix ('variancecovariancematrix') from the (weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are re-	Function LINEST fits data \vec{y} (<i>n</i> -vector) to a linear function of <i>p</i> vectors \vec{x}_j , $j = 1p$:
in Maple) and the covariance matrix ('variancecovariancematrix') from the (weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j \tag{2}$
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are re- liable, you should divide the 'standarderrors' by the 'residualstandarddeviation',	
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are re- liable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square. • 'residualstandarddeviation' should be close to 1 (with precision perimitted by the	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j$ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.*
 (weighted) sum of squares even if weights w_i = 1/σ_i² are given. If your σ_is are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square. 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points). The sensitivities g_i, eq. (1), of the root of equation f(x) = y on parameters can be obtained from the formula for the derivative of implicit function: 	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j$ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are:
 (weighted) sum of squares even if weights w_i = 1/σ_i² are given. If your σ_is are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square. 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points). The sensitivities g_i, eq. (1), of the root of equation f(x) = y on parameters can be obtained from the formula for the derivative of implicit function: f(a_i + da_i, x + dx) = y 	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with a_0 +
 (weighted) sum of squares even if weights w_i = 1/σ_i² are given. If your σ_is are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square. 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points). The sensitivities g_i, eq. (1), of the root of equation f(x) = y on parameters can be obtained from the formula for the derivative of implicit function: f(a_i + da_i, x + dx) = y 	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j$ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are:
 (weighted) sum of squares even if weights w_i = 1/σ_i² are given. If your σ_is are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square. 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points). The sensitivities g_i, eq. (1), of the root of equation f(x) = y on parameters can be obtained from the formula for the derivative of implicit function: f(a_i + da_i, x + dx) = y [∂]/_{∂a_i} da_i + ^{∂f}/_{∂x} dx = 0 	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2 x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$
 (weighted) sum of squares even if weights w_i = 1/σ_i² are given. If your σ_is are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square. 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points). The sensitivities g_i, eq. (1), of the root of equation f(x) = y on parameters can be obtained from the formula for the derivative of implicit function: f(a_i + da_i, x + dx) = y 	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x 's and the functions are interpreted by elements.
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your $\sigma_i s$ are re- liable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square. • 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points). • The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i = \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i} / \frac{\partial f}{\partial x}$	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x's and the functions are interpreted by elements. 'AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE.
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ Istituting in Excel and LibreOffice: Syntax	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x 's and the functions are interpreted by elements. 'AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors (21)
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your $\sigma_i s$ are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i} \frac{\partial f}{\partial x}$ Fitting in Excel and LibreOffice: Syntax • Prepare column vectors \vec{y} and \vec{x} • Prepare the vectors with bases $\vec{x}_j, j = 1p$	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x's and the functions are interpreted by elements. 'AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors If data \vec{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns containing (cf. page 1):
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your $\sigma_i s$ are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ Fitting in Excel and LibreOffice: Syntax• Prepare column vectors \vec{y} and \vec{x} • Prepare the vectors with bases $\vec{x}_j, j = 1p$ • Mark rectangle (array) of size $(p + 1) \times 4$ cells to accommodate the results	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x 's and the functions are interpreted by elements. 'AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors If data \vec{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns containing (cf. page 1):
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ Fitting in Excel and LibreOffice: Syntax• Prepare column vectors \tilde{y} and \tilde{x} • Prepare the vectors with bases \tilde{x}_{j} , $j = 1p$ • Mark rectangle (array) of size $(p + 1) \times 4$ cells to accommodate the results• To the first cell of this rectangle, type $=$ LINEST(Y1:Yn.X1:X ^p n.0.1)	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x's and the functions are interpreted by elements. "AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors If data \vec{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ Fitting in Excel and LibreOffice: Syntax• Prepare column vectors \bar{y} and \bar{x} • Prepare the vectors with bases $\bar{x}_{j, j} = 1p$ • Mark rectangle (array) of size $(p + 1) \times 4$ cells to accommodate the results• To the first cell of this rectangle. type	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x 's and the functions are interpreted by elements. "AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors If data \vec{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns containing (cf. page 1): $\vec{y}' = \frac{\vec{y}}{\vec{\sigma}}, \ \vec{x}'_j = \frac{\vec{x}_j}{\vec{\sigma}}, \ j = 1p$
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ Fitting in Excel and LibreOffice: Syntax • Prepare column vectors \tilde{y} and \tilde{x} • Prepare the vectors with bases \tilde{x}_j , $j = 1p$ • Mark rectangle (array) of size $(p + 1) \times 4$ cells to accommodate the results• To the first cell of this rectangle, type $=$ LINEST(Y1:Yn,X1: x^p n,0,1)	$\vec{y} = \alpha_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term α_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights." Example. For fitting to $\alpha_1 + \alpha_2 x + \alpha_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $\alpha_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x 's and the functions are interpreted by elements. "AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors If data \vec{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns containing (cf. page 1): $\vec{y}' = \frac{\vec{y}}{\vec{\sigma}}, \vec{x}'_j = \frac{\vec{x}_j}{\vec{\sigma}}, j = 1p$ where division of vectors is defined element-by-element. The analysis is the same as on the previous page. Note that the value of $S/\sqrt{n-p}$ should be around 1. If the individual error estimates of data, $\vec{\sigma}$, are more reliable (based on more points) than this analysis, the obtained
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your $\sigma_i s$ are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ Fitting in Excel and LibreOffice: Syntax15/16 mmpc6Prepare column vectors \tilde{y} and \tilde{x} • Prepare the vectors with bases \tilde{x}_{j} , $j = 1p$ • Mark rectangle (array) of size $(p + 1) \times 4$ cells to accommodate the results• To the first cell of this rectangle, type $= LINEST(Y1:Yn,X1:X^pn,0,1)$ where the arguments are:1 $\tilde{y} = Y1 : Yn$ (column) $2 \tilde{x}_1\tilde{x}_p = X1 : X^pn$ is a $p \times n$ matrix (p columns) 3 0 means that a_0+ is not considered 4 1 means rich output	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights.* Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x 's and the functions are interpreted by elements. 'AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors mmpco If data \vec{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns containing (cf. page 1): $\vec{y}' = \frac{\vec{y}}{\vec{\sigma}}, \vec{x}'_j = \frac{\vec{x}_j}{\vec{\sigma}}, j = 1p$ where division of vectors is defined element-by-element. The analysis is the same as on the previous page. Note that the value of $S/\sqrt{n-p}$ should be around 1. If the individual error estimates of data, $\vec{\sigma}$, are more reliable (based on more points) than this analysis, the obtained $\sigma(a_j)$ should be divided by $S/\sqrt{n-p}$.
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i = \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ Fitting in Excel and LibreOffice: SyntaxPrepare column vectors \vec{y} and \vec{x} Only a minimum subset of syntax is explainedPrepare the vectors with bases \vec{x}_{j} , $j = 1p$ • Mark rectangle (array) of size $(p+1) \times 4$ cells to accommodate the results• To the first cell of this rectangle, type $= LINEST(Y1:Yn,X1:X^p,0,01)$ where the arguments are:1 $\vec{y} = Y1 : Yn$ (column)2 $\vec{x}_1\vec{x}_p = X1 : X^{pn}$ is a $p \times n$ matrix (p columns)3 0 means that a_0 + is not considered4 1 means rich output• Type the "three-finger salute" Ctrl-Shift-Enter	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights. ⁴ Example. For fitting to $a_1 + a_2 x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x 's and the functions are interpreted by elements. ¹ AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors If data \hat{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns containing (cf. page 1): $\vec{y}' = \frac{\vec{y}}{\vec{\sigma}}, \vec{x}'_j = \frac{\vec{x}_j}{\vec{\sigma}}, j = 1p$ where division of vectors is defined element-by-element. The analysis is the same as on the previous page. Note that the value of $S/\sqrt{n-p}$ should be around 1. If the individual error estimates of data, $\vec{\sigma}$, are more reliable (based on more points) than this analysis, the obtained $\sigma(a_j)$ should be divided by $S/\sqrt{n-p}$. Example. Fit the following data to function $a + bx + cx^2$:
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are reliable, you should divide the 'standarderrors' by the 'residual standard deviation', and the 'variance covariance matrix' by its square. • 'residual standard deviation' should be close to 1 (with precision perimitted by the number of data points). • The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ • Prepare column vectors \vec{y} and \vec{x} • Prepare the vectors with bases $\vec{x}_{j, j} = 1p$ • Mark rectangle (array) of size $(p + 1) \times 4$ cells to accommodate the results • To the first cell of this rectangle, type $= LINEST(Y1:Yn,X1:X^pn,0,1)$ where the arguments are: 1 $\vec{y} = Y1 : Yn$ (column) 2 $\vec{x}_1\vec{x}_p = X1 : X^{pn}$ is a $p \times n$ matrix (p columns) 3 0 means that a_0 + is not considered 4 1 means rich output • Type the "three-finger salute" Ctrl-Shift-Enter The resulting estimates are in the form of $(p + 1) \times 4$ array: Note the reversed	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights." Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x 's and the functions are interpreted by elements. 'AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice: Data with errors If data \vec{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns containing (cf. page 1): $\vec{y}' = \frac{\vec{y}}{\vec{\sigma}}, \vec{x}'_j = \frac{\vec{x}_j}{\vec{\sigma}}, j = 1p$ where division of vectors is defined element-by-element. The analysis is the same as on the previous page. Note that the value of $S/\sqrt{n-p}$ should be around 1. If the individual error estimates of data, $\vec{\sigma}$, are more reliable (based on more points) than this analysis, the obtained $\sigma(a_j)$ should be divided by $S/\sqrt{n-p}$. Example. Fit the following data to function $a + bx + cx^2$: $\frac{x}{20} - 18 - 16 - 14 - 12 - 10 - 08 - 06 - 04 - 02 00 02 04 06 08 10 12 14 16 18 20 0 y' = 1050 108 976 876 1771 700 670 670 68 542 500 4325 3527 337 337 337 337 337 337 337 337 337 3$
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ Fitting in Excel and LibreOffice: Syntax • Prepare column vectors \bar{y} and \bar{x} • Prepare column vectors \bar{y} and \bar{x} • Prepare the vectors with bases \bar{x}_j , $j = 1p$ • Mark rectangle (array) of size $(p + 1) \times 4$ cells to accommodate the results• To the first cell of this rectangle, type =LINEST(Y1:Yn,X1:X ^p n,0,1) where the arguments are:1 $\vec{y} = Y1 : Yn$ (column)2 $\bar{x}_1x_p = X1 : X^{pn}$ is a $p \times n$ matrix (p columns)3 0 means that a_0+ is not considered4 1 means rich output• Type the "three-finger salute" Ctrl-Shift-Enter The resulting estimates are in the form of $(p + 1) \times 4$ array: (b_p) (b_{p-1}) (b_p) (b_{p-1}) (b_p) (b_{p-1}) (b_p)	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights." Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x 's and the functions are interpreted by elements. 'AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors If data \vec{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns containing (cf. page 1): $\vec{y}' = \frac{\vec{y}}{\vec{\sigma}}, \vec{x}'_j = \frac{\vec{x}_j}{\vec{\sigma}}, j = 1p$ where division of vectors is defined element-by-element. The analysis is the same as on the previous page. Note that the value of $S/\sqrt{n-p}$ should be around 1. If the individual error estimates of data, $\vec{\sigma}$, are more reliable (based on more points) than this analysis, the obtained $\sigma(a_j)$ should be divided by $S/\sqrt{n-p}$. Example. Fit the following data to function $a + bx + cx^2$: $\begin{array}{c} x -20 & -18 & -16 & -14 & -12 & -10 & -08 & -06 & -04 & -02 & 00 & 02 & 04 & 06 & 08 & 10 & 12 & 14 & 15 & 18 & 20 \\ y 11376 10318 3974 6 3761 7731 7003 6408 5432 5000 4323 302 3408 03 03 03 03 03 03 03 03 03 03 03 03 03 $
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ Pitting in Excel and LibreOffice: SyntaxPrepare column vectors \bar{y} and \bar{x} • Prepare column vectors \bar{y} and \bar{x} • Prepare the vectors with bases \bar{x}_j , $j = 1p$ • Mark rectangle (array) of size $(p+1) \times 4$ cells to accommodate the results• To the first cell of this rectangle, type $= LINEST(Y1:Yn, X1:X^pn, 0, 1)$ where the arguments are:1 $\bar{y} = Y1 : Yn$ (column)2 $\bar{x}_1\bar{x}_p = X1 : X^{pn}$ is a $p \times n$ matrix (p columns)3 0 means that $a_0 + i$ is not considered4 1 means rich output• Type the "three-finger salute" Ctrl-Shift-Enter The resulting estimates are in the form of $(p+1) \times 4$ array: $\frac{(b_p)}{(b_p-1)} \dots (b_2)} \frac{(b_1)}{(b_1)} \frac{7}{(b_1)}$ Note the reversed order of the calculated parameters $r =$ correlation co-	$\vec{y} = \alpha_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term α_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights." Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x's and the functions are interpreted by elements. 'AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors If data \vec{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns containing (cf. page 1): $\vec{y}' = \frac{\vec{y}}{\vec{\sigma}}, \ \vec{x}'_j = \frac{\vec{x}_j}{\vec{\sigma}}, \ j = 1p$ where division of vectors is defined element-by-element. The analysis is the same as on the previous page. Note that the value of $S/\sqrt{n-p}$ should be around 1. If the individual error estimates of data, $\vec{\sigma}$, are more reliable (based on more points) than this analysis, the obtained $\sigma(a_j)$ should be divided by $S/\sqrt{n-p}$. Example. Fit the following data to function $a + bx + cx^2$: x -20 - 18 -16 - 14 - 12 - 10 - 08 -06 - 04 - 02 - 00 - 02 - 04 - 06 - 04 - 12 - 14 - 16 - 18 - 20
(weighted) sum of squares even if weights $w_i = 1/\sigma_i^2$ are given. If your σ_i s are reliable, you should divide the 'standarderrors' by the 'residualstandarddeviation', and the 'variancecovariancematrix' by its square.• 'residualstandarddeviation' should be close to 1 (with precision perimitted by the number of data points).• The sensitivities g_i , eq. (1), of the root of equation $f(x) = y$ on parameters can be obtained from the formula for the derivative of implicit function: $f(a_i + da_i, x + dx) = y$ $\frac{\partial f}{\partial a_i} da_i + \frac{\partial f}{\partial x} dx = 0$ $g_i \equiv \frac{\partial x}{\partial a_i} = -\frac{\partial f}{\partial a_i}/\frac{\partial f}{\partial x}$ Isylation of syntax is explained• Prepare column vectors \bar{y} and \bar{x} • Prepare the vectors with bases \bar{x}_{j} , $j = 1p$ • Mark rectangle (array) of size $(p + 1) \times 4$ cells to accommodate the results• To the first cell of this rectangle, type =LINEST(Y1:Yn,X1:X ^p n,0,1) where the arguments are:1 $\bar{y} = Y1 : Yn$ (column)2 $x_1x_p = X1 : X^{pn}$ is a $p \times n$ matrix (p columns)3 0 means that $a_0 + i$ is not considered4 1 means rich output• Type the "three-finger salute" Ctrl-Shift-Enter The resulting estimates are in the form of $(p + 1) \times 4$ array: $(b_p) - (b_{p-1}) - \dots - (b_2) - (b_1) - ? - (b_2) - (b_{(b_1)} - ? - (b_{(b_2)} - (b_{(p-1)}) - \dots - (b_{(b_2)} - (b_{(b_1)}) - ? - (b_{(b_2)} - (b_{(b_{(b_{(b_1)} - 1))}) - (b_{(b_{(b_{(b_{(b_{(b_{(b_{(b_{(b_{(b_{$	$\vec{y} = a_0 + \sum_{j=1}^{p} b_j \vec{x}_j $ (2) The absolute term a_0 is optional, cf. the 3rd argument to LINEST. Function LINEST returns the values of parameters a_j including the standard errors and $S/\sqrt{n-p}$ for simple linear regression without weights. Example. For fitting to $a_1 + a_2x + a_3 \ln x$, the basis vectors \vec{x}_j are: $\vec{x}_1 = (\vec{x})^0 = (1, 1,, 1)^T$ or use version with $a_0 + \vec{x}_2 = \vec{x} = (x_1, x_2,, x_n)^T$ $\vec{x}_3 = \ln(\vec{x}) = (\ln x_1, \ln x_2,, \ln x_n)^T$ where \vec{x} is the original vector of independent x 's and the functions are interpreted by elements. "AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas on pages 3-4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE. Fitting in Excel and LibreOffice: Data with errors If data \vec{y} are provided with reliable standard errors $\vec{\sigma}$, we first prepare columns containing (cf. page 1): $\vec{y}' = \frac{\vec{y}}{\vec{\sigma}}, \vec{x}'_j = \frac{\vec{x}_j}{\vec{\sigma}}, j = 1p$ where division of vectors is defined element-by-element. The analysis is the same as on the previous page. Note that the value of $S/\sqrt{n-p}$ should be around 1. If the individual error estimates of data, $\vec{\sigma}$, are more reliable (based on more points) than this analysis, the obtained $\sigma(a_j)$ should be divided by $S/\sqrt{n-p}$. Example. Fit the following data to function $a + bx + cx^2$: $\begin{pmatrix} x - 20 & -18 & -16 & -14 & -12 & -10 & -08 & -06 & -04 & -02 & 00 & 02 & 04 & 06 & 08 & 10 & 12 & 14 & 15 & 18 & 20 \\ y \ 11376 \ 10398 \ 9746 \ 8761 \ 7791 \ 7030 \ 6406 \ 542 \ 530 \ 633 \ $