
The method of least squares 1/16
mmpc6

~ = independent variables (n vectors of any dimension,  = 1..n)
y = dependent variables (real numbers)
1/σ2 = weights
~ = parameters (p real parameters written as a vector), p ≤ n,

preferably p� n

We are looking for function ƒ~(~) (called “model”) dependent on p parameters ~
which describes data (~, y). The parameters ~ are to be determined so that the
sum of squared deviations is minimized:

min
~

S2, S2 =
n∑

=1

�
ƒ~(~) − y

σ

�2

Theorem (Gauss–Markov): for function ƒ~ linearly dependent on ~, the above so-
lution is the:

Best (gives the smallest variance of the estimated ~)
Linear (the assumption)
Unbiased (〈~〉 is correct)
Estimate (BLUE).

〈S2〉 = n− p

In the limit n→∞ it holds s =
q
S2/(n − p)→ 1 (assessment of the fit)

The method of least squares 2/16
mmpc6

Example. For ƒ(~) =  (a constant) and σ = 1 find the estimate of 

=y

The results of fitting (correlation, regression) include:

the estimate of ~

the estimates of standard errors of ~

the correlation between parameters (covariances)

often, the estimate of a function g(~) (incl. its error estimate)

Linearization 3/16
mmpc6

Let ~0 be the exact (looked for) value of parameters. For each ~:

ƒ~(~) ≈ ƒ~0 +
p∑

j=1
Δjƒj(~), ƒj(~) =

∂ƒ~0(~)

∂j

where ~ = ~0 + Δ~.

If the changes in parameters ~ are small, it is enough (without loss of generality) to
study the linear model, and for notation simplicity set ƒ~0 = 0 and ~0 = 0

ƒ~(~) =
p∑

j=1
jƒj(~),

where {ƒj(~)}
p
j=1 is a basis (not necessarily orthogonal)

Linear model 4/16
mmpc6

ƒ~(~) =
p∑

j=1
jƒj(~)

Let us assume that data y are independent random variables, but generally with
different standard deviations σ; we will write this as the correct value + random
variable δy: Kronecker delta: δj =

§
1 for  = j
0 for  6= j

y =
p∑

j=1
jƒj(~) + δy, 〈δy〉 = 0, 〈δyδyj〉 = σ2 δj

We shall minimize the following object function:

S2 =
n∑

=1



∑p
j=1 jƒj(~) − y

σ



2

Necessary condition for the minimum:

1

2

∂S2

∂k
=

n∑

=1

ƒk(~)

σ



∑p
j=1 jƒj(~) − y

σ


 = (A · ~ − ~b)k !

= 0

Let Fk = ƒk()/σ (matrix p × n), Y = y/σ, then A = F · FT, ~b = F · ~Y 〈δYδYj〉 = δj

The covariance matrix 5/16
mmpc6

A · ~ = ~b, ~ = A−1 · ~b = A−1 · F · ~Y
Errors of estimates and the correlations of parameters:

∑
is over

pairs of the
same indicesCov (, j) = 〈ΔΔj〉 =

∑
A−1α FαkδYk A

−1
jβ FβδY

=
∑

A−1α Fαk A
−1
jβ Fβδk

=
∑

A−1α Fαk A
−1
jβ Fβk

=
∑

A−1α AαβA
−1
jβ

=
∑

A−1α AαβA
−1
βj

= A−1j

The above matrix is called “covariance” or “variance-covariance” matrix (there are
variances in the diagonal)

The result of fitting includes not only the error estimates (on
the diagonal), but also their correlations (covariances)!

Linear fitting: Notes 6/16
mmpc6

Remember: if all σ are accurate estimates of standard deviations and there are
enough data points, n, then

n − p is called the “number
of degrees of freedom” and
often denoted as νs =

√√√ S2

n − p
should be close to unity.

Often σ’s are not known but it may be assumed that all are the same. Then,
equation s = 1 may be used to back calculate σ:

σ =

√√√ S2

n − p
Put another way (most software incl. Maple works like this): If we define Fk =
ƒk(), A = F · FT, ~b = F · ~y, then (with the above σ and enough n) it holds:

Cov (, j) = A
−1
j σ2

If functions ƒj are perpendicular, then A is diagonal and the parameters are not
correlated. This is difficult to fulfill in practice for a nonlinear (but locally lin-
earized) estimate.

Error of a function of parameters 7/16
mmpc6

We have to calculate g(~) (incl. the error)

g~ ≈ g~0 +
p∑

j=1
jgj(~), gj =

∂g~0
∂j

(1)

〈(g~ − g~0)2〉 = 〈
∑

j

gjgj〉 =
∑

j

gCov (, j)gj

Examples of g(~):  (one of the parameters),
∫ 1
0

ƒ ()d

Errors by MC sampling
[plot/mat-num2.sh] 8/16

mmpc6

Minimize S2 ⇒ we get ~0 and g(~0)

For k = 1..m:

• Fabricate data:

y(k) = ƒ~0(~) + σ

where  is a random number with normalized Gauss’ distribution
(we know errors σ of data y; if not, σ = [S2/(n − p)]1/2 can be used)

• Calculate parameters ~(k) by the least squares
• Calculate g((k))

Treat the results g((k)) for k = 1..m as independent data → estimate of the
standard error σ(g)



Numerical notes + 9/16
mmpc6

Linear model: Solvable by the linear algebra methods, usually easy. In case of
problems, orthonormalization of a basis helps.

Nonlinear model:
Problem 1: several local minima, some of them →∞
Problem 2: long curved valleys – slow minimization

Minimization of nonlinear functions of many variables:

grid search (at start)

Monte Carlo search (at start)

steepest descent (greedy)

conjugated gradients

amoeba (Nelder–Mead)

(Gauss–)Newton method (close to the solution)

(Levenberg–)Marquardt method (Newton + gradient, damping)

simulated annealing

Real example 10/16
mmpc6

A simulation of a model of Pt in the slab geometry
gave the following data for pressure in the
direction perpendicular to the slab:

T/K p/bar stderr/bar
3700 14.7 2.2
3750 11.9 1.4
3800 14.9 2.6
3850 18.9 2.8
3900 16.3 1.8
3950 16.5 3.2
4000 26.5 3.3
4050 24.3 2.6
4100 30.6 2.6
4150 28.5 3.5
4200 34.5 3.5
4250 43.4 2.6
4300 48.0 3.1

Calculate the boiling point of Pt at 1 bar and estimate the error.

Solution
[plot/ptvle.sh]11/16

mmpc6

We will assume the Clausius–Clapeyron equation and constant vaporization en-
thalpy:

lnp =  + b/T

where  and b are constants to fit. Then, function g is the solution of equation
lnp =  + b/T for p = 1 bar.

Direct fitting to p = exp( + b/T):
s = 1.067, Tvap = 3021(55) K, rescaled by s (59)

Fitting ln(p) vs. 1/T (linear regression):
s = 1.081, Tvap = 2992(53) K, rescaled by s (57)

Without knowledge of standard errors of the data:
Tvap = 3015(74) K

Since the data are based on trajectories of the same length, the errors may be
smoothed. Then:
s = 1.138, Tvap = 2965(63) K, rescaled by s (72)

Summary: Tvap = 2965(72)

Another example 12/16
mmpc6

Fit the data to a suitable function ƒ () and provide the solution 0 of equation
ƒ (0) = 1, including the standard error estimate. 12.49(5)

 y σ
2 4.001 0.014
3 3.424 0.013
4 3.039 0.011
5 2.710 0.010
6 2.482 0.009
7 2.208 0.008
8 1.985 0.008
9 1.749 0.007

10 1.528 0.007

Notes 13/16
mmpc6

Maple calculates the standard errors of parameters (option ‘standarderrors’
in Maple) and the covariance matrix (‘variancecovariancematrix’) from the
(weighted) sum of squares even if weights  = 1/σ

2
 are given. If your σs are re-

liable, you should divide the ’standarderrors’ by the ‘residualstandarddeviation’,
and the ‘variancecovariancematrix’ by its square.

‘residualstandarddeviation’ should be close to 1 (with precision perimitted by the
number of data points).

The sensitivities g, eq. (1), of the root of equation ƒ () = y on parameters can
be obtained from the formula for the derivative of implicit function:

ƒ ( + d,  + d) = y

∂ƒ

∂
d +

∂ƒ

∂
d = 0

g ≡
∂

∂
= − ∂ƒ

∂
/
∂ƒ

∂

Fitting in Excel and LibreOffice: Intro 14/16
mmpc6

Excel and LibreOffice provide a general routine for linear regression LINEST.

Function LINEST fits data ~y (n-vector) to a linear function of p vectors ~j, j = 1..p:

~y = 0 +
p∑

j=1
bj~j (2)

The absolute term 0 is optional, cf. the 3rd argument to LINEST.
Function LINEST returns the values of parameters j including the standard errors
and S/

p
n − p for simple linear regression without weights.*

Example. For fitting to 1 + 2 + 3 ln, the basis vectors ~j are:

~1 = (~)0 = (1,1, ..,1)T or use version with 0+
~2 = ~ = (1, 2, .., n)T

~3 = ln(~) = (ln1, ln2, .., lnn)T

where ~ is the original vector of independent ’s and the functions are interpreted
by elements.
*AFAIK, the covariance matrix is not provided; after some effort it can be evaluated using formulas
on pages 3–4 and Excel/LibreOffice matrix functions as MMULT, MINVERSE.

Fitting in Excel and LibreOffice: Syntax 15/16
mmpc6

Prepare column vectors ~y and ~ Only a minimum subset
of syntax is explainedPrepare the vectors with bases ~j, j = 1..p

Mark rectangle (array) of size (p + 1) × 4 cells to accommodate the results

To the first cell of this rectangle, type
=LINEST(Y1:Yn,X1:Xpn,0,1) Use ; instead of , in

Czech localization
where the arguments are:

1 ~y = Y1 : Yn (column)
2 ~1..~p = X1 : Xpn is a p × n matrix (p columns)
3 0 means that 0+ is not considered
4 1 means rich output

Type the “three-finger salute” Ctrl-Shift-Enter

The resulting estimates are in the form of (p + 1) × 4 array: Note the reversed
order of the calcu-
lated parameters
r = correlation co-
efficient

〈bp〉 〈bp−1〉 . . . 〈b2〉 〈b1〉 ?
σ(bp) σ(bp−1) . . . σ(b2) σ(b1) n.a.
r2 S/

p
n − p n.a. n.a. n.a. n.a.

F-value n − p n.a. n.a. n.a. n.a.
? S2 =

∑
[ƒ () − y]2 n.a. n.a. n.a. n.a.

Fitting in Excel and LibreOffice: Data with errors
[cd ../xls; start qfit.ods; start qfit.mw]16/16

mmpc6

If data ~y are provided with reliable standard errors ~σ, we first prepare columns
containing (cf. page 1):

~y′ =
~y

~σ
, ~′j =

~j
~σ
, j = 1..p

where division of vectors is defined element-by-element.

The analysis is the same as on the previous page.

Note that the value of S/
p
n − p should be around 1. If the individual error estimates

of data, ~σ, are more reliable (based on more points) than this analysis, the obtained
σ(j) should be divided by S/

p
n − p.

Example. Fit the following data to function  + b + c2:

 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
y 11.876 10.918 9.746 8.761 7.791 7.003 6.408 5.452 5.010 4.325 3.622 3.466 4.087 3.257 3.517 3.546 2.575 2.525 3.807 3.162 4.141
σ 0.70 0.66 0.62 0.58 0.54 0.50 0.46 0.42 0.38 0.34 0.30 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 0.66 0.70=4.02(13),b=−1.98(11),c=0.99(9)


