Fermat's Last Theorem	Fermat's Little theorem 2/18 mmpc7
Diophantine equation	For <i>p</i> = prime: gcd = greatest common divisor
$x^n + y^n = z^n$	$a^p \equiv a \pmod{p}$ $a^{p-1} \equiv 1 \pmod{p}$, a not multiple of p
 does not have a solution in positive integers for integer n > 2. Conjectured by Pierre de Fermat in 1637 in the margin of a copy of Arithmetical 	Proof: Consider <i>p</i> -tuples of <i>a</i> objects; there are a^p of them. We remove 1111, 2222,; there are $a^p - a$ left. These can be grouped to <i>p</i> -cyclically shifted groups; e.g., 21111, 12111, 11211, 11121.
where he claimed he had a proof that was too large to fit in the margin.n = 4 Fermat	Extension: for a, n co-primes $g(a, b) = 1$ are
n = 3 Leonhard Euler (1770)	$a^{\phi(n)} \equiv 1 \pmod{n}$
n = 5 Legendre / Dirichlet (1825)	where $\phi(n)$ = Euler's totient function = number of co-primes to <i>n</i> in interval [1, <i>n</i> -
n = 7 Lamé (1839)	1]. NB: $\phi(p) = p - 1$.
e general Andrew Wiles (1994)	Example: calculate 3 ⁷ (mod 7) by the square-and-multiply algorithm
- Elliptic curves $y^2 = x^3 + ax + b$	$(\text{mod } 7): 3^2 \equiv 2, 3^4 \equiv 4, 3^6 \equiv 1, 3^7 \equiv 3$
– Modular forms $\mathbb{C}^2 \to \mathbb{C}^2$ with "much symmetry"	Inversion: If $a^{n-1} \neq 1$ for a co-prime <i>a</i> , then <i>n</i> is composite
	Probabilistic test: If $a^{n-1} \equiv 1$ for several co-primes <i>a</i> , then <i>n</i> is a prime with a high probability
Modular inversion 3/18 mmpc7	RSA cryptosystem 4/18 mmpc7
Let a, b are co-primes and $a < b$. We want to solve	Rivest–Shamir–Adleman (1978) Icm = least common multiple
$ax \equiv 1 \pmod{b}$ or $ax + by = 1$	Choose 2 distinct primes p , q (not too close)
Extended Euclidean algorithm:	Calculate $n = pq$ (modulo, part of the public key)
	Calculate $\lambda = (p-1)(q-1)$ (better: lcm $(p-1, q-1)$)
	Public key: $e, 1 < e < \lambda$, co-prime to λ (often $e = 65537$)
$r_0 := b \qquad s_0 = 0 \qquad t_0 = 1 r_1 := a \qquad s_1 = 1 \qquad t_1 = 0$	Private key: d so that $de \equiv 1 \pmod{\lambda}$? Can integer factorization
$r_1 := r_0 - q_1 r_1 s_2 := s_0 - q_1 s_1 t_2 := t_0 - q_1 t_1$	Encrypt $m: c \equiv m^e \pmod{n}$ be solved in polynomial time
$r_3 := r_1 - q_2 r_2$ $s_3 := s_1 - q_2 s_2$ $t_3 := t_1 - q_2 t_2$	Decrypt $c: c^d \equiv m \pmod{n}$ on a classical computer?
:	Proof. $\exists g, h, k$ so that
1 x y	$ed - 1 = g\lambda = h(p-1) = k(q-1)$
where q_i = reminder after r_{i-1} : r_i (: = integer division)	Using Fermat's little theorem (except $m \equiv 0 \pmod{p}$, which is trivial) $m^{ed} = m^{ed-1}m = (m^{p-1})^h m \equiv 1^h m \equiv m \pmod{p}$
Proof: based on $r_i = as_i + bt_i$ for every line, proof by induction.	$m^{\circ\circ} = m^{\circ\circ} - m = (m^{p} -)^{\circ} m \equiv 1^{\circ} m \equiv m \pmod{p}$ And similarly for <i>q</i> . Since <i>p</i> , <i>q</i> are co-primes,
Example: solve $6x \equiv 1 \pmod{17}$	$(m^e)^d \equiv m \pmod{pa}$
	q.e.d.
How it works 5/18	The Enormous Theorem 6/18 mmpc7
	in the second
Message sent via insecure channel (https, ssh)	Every finite simple group is isomorphic to one of the following groups:
Message sent via insecure channel (https, ssh)	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5;
 Message sent via insecure channel (https, ssh) Alice calculates n, e and sends it openly to Bob. Bob encrypts a message using n, e and sends it to Alice. 	 Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich);
 Message sent via insecure channel (https, ssh) Alice calculates n, e and sends it openly to Bob. Bob encrypts a message using n, e and sends it to Alice. Alice decrypts the mesage using her private n, d. 	 Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups.
 Message sent via insecure channel (https, ssh) Alice calculates n, e and sends it openly to Bob. Bob encrypts a message using n, e and sends it to Alice. Alice decrypts the mesage using her private n, d. Digital signature 	 Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements
 Message sent via insecure channel (https, ssh) Alice calculates n, e and sends it openly to Bob. Bob encrypts a message using n, e and sends it to Alice. Alice decrypts the mesage using her private n, d. Digital signature Alice publishes n, e. 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 80801742479451287588645990496171075700575436800000000
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 80801742479451287588645990496171075700575436800000000 Proof finished 2004 – thousands of papers
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 – thousands of papers Group is a set <i>G</i> with "multiplication" and "division":
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 – thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\blacklozenge \forall a, b \in G: ab \in G$ (closure)
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 80801742479451287588645990496171075700575436800000000 Proof finished 2004 – thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\blacklozenge \forall a, b \in G: ab \in G$ (closure) $\blacklozenge \forall a, b, c \in G: (ab)c = a(bc)$ (associativity)
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 – thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\bigcirc \forall a, b, c \in G: (ab)c = a(bc) (associativity)$ $\bigcirc \exists a \in G : \forall a \in G \text{ it holds } ea = ae = a (identity element)$
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 – thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\forall a, b \in G: ab \in G$ (closure) $\forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\exists a \in G : \forall a \in G \text{ it holds } ea = ae = a$ (identity element) $\forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e$ (inverse element)
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 – thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\blacklozenge \forall a, b, c \in G: (ab)c = a(bc) (associativity)$ $\blacklozenge \exists e \in G: \forall a \in G \text{ it holds } ea = ae = a (identity element)$
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PUBLIC key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 – thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\bigcirc \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\bigcirc \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\bigcirc \exists a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e$ (inverse element) $\bigcirc \forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e$ (inverse element)
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 – thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\Psi a, b, c \in G: (ab)c = a(bc) (associativity)$ $\Theta \forall a, b, c \in G: (ab)c = a(bc) (associativity)$ $\Theta \forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e (inverse element)$ Peterministic chaos Weather, oil on pan Lorentz attractor:
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\Rightarrow \forall a, b \in G: ab \in G$ (closure) $\Rightarrow \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\Rightarrow \exists e \in G: \forall a \in G$ it holds $ea = ae = a$ (identity element) $\Rightarrow \forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e$ (inverse element) Deterministic chaos Weather, oil on pan Lorentz attractor: $\dot{x} = ay - \sigma x$,
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\Rightarrow \forall a, b \in G: ab \in G$ (closure) $\Rightarrow \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\Rightarrow \exists e \in G: \forall a \in G$ it holds $ea = ae = a$ (identity element) $\Rightarrow \forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e$ (inverse element) Deterministic chaos Weather, oil on pan Lorentz attractor:
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\Rightarrow \forall a, b \in G: ab \in G$ (closure) $\Rightarrow \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\Rightarrow \exists e \in G: \forall a \in G \text{ it holds } ea = ae = a \text{ (identity element)}$ $\Rightarrow \forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e \text{ (inverse element)}$ Weather, oil on pan Lorentz attractor: $\dot{x} = ay - \sigma x,$ $\dot{y} = \rho x - xz - y,$
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\Rightarrow \forall a, b \in G: ab \in G$ (closure) $\Rightarrow \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\Rightarrow \exists e \in G: \forall a \in G \text{ it holds } ea = ae = a \text{ (identity element)}$ $\Rightarrow \forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e \text{ (inverse element)}$ Weather, oil on pan Lorentz attractor: $\dot{x} = ay - \sigma x,$ $\dot{y} = \rho x - xz - y,$
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\Rightarrow \forall a, b \in G: ab \in G$ (closure) $\Rightarrow \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\Rightarrow \exists e \in G: \forall a \in G \text{ it holds } ea = ae = a \text{ (identity element)}$ $\Rightarrow \forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e \text{ (inverse element)}$ Weather, oil on pan Lorentz attractor: $\dot{x} = ay - \sigma x,$ $\dot{y} = \rho x - xz - y,$
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\Rightarrow \forall a, b \in G: ab \in G$ (closure) $\Rightarrow \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\Rightarrow \exists e \in G: \forall a \in G \text{ it holds } ea = ae = a \text{ (identity element)}$ $\Rightarrow \forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e \text{ (inverse element)}$ Weather, oil on pan Lorentz attractor: $\dot{x} = ay - \sigma x,$ $\dot{y} = \rho x - xz - y,$
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\forall A, b \in G: ab \in G$ (closure) $\forall A, b, c \in G: (ab)c = a(bc)$ (associativity) $\exists B \in G : \forall a \in G \text{ it holds } ea = ae = a \text{ (identity element)}$ $\forall Va \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e \text{ (inverse element)}$ Weather, oil on pan Lorentz attractor: $\dot{x} = \sigma y - \sigma x$, $\dot{y} = \rho x - xz - y$, $\dot{z} = xy - \beta z$ we weather with the particular of the second of the following groups of the following
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\Rightarrow \forall a, b \in G: ab \in G$ (closure) $\Rightarrow \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\Rightarrow \exists e \in G : \forall a \in G \text{ it holds } ea = ae = a \text{ (identity element)}$ $\Rightarrow \forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e \text{ (inverse element)}$ Deterministic chaos Weather, oil on pan Lorentz attractor: $\dot{x} = ay - ax$, $\dot{y} = \rho x - xz - y$, $\dot{z} = xy - \beta z$ Simpler model: $x := a - x^2$ (see mmpc7.mw)
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the mesage using her private <i>n</i>, <i>d</i>. Digital signature Alice publishes <i>n</i>, <i>e</i>. Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PUBLIC key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine 	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\Rightarrow \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\Rightarrow \exists e \in G : \forall a \in G \text{ it holds } ea = ae = a \text{ (identity element)}$ $\Rightarrow \forall a \in G \exists a^{-1} : aa^{-1} = a^{-1}a = e \text{ (inverse element)}$ Weather, oil on pan Lorentz attractor: $\dot{x} = \sigma y - \sigma x$, $\dot{y} = \rho x - xz - y$, $\dot{z} = xy - \beta z$ weather, oil on pan
 Message sent via insecure channel (https, ssh) Alice calculates <i>n</i>, <i>e</i> and sends it openly to Bob. Bob encrypts a message using <i>n</i>, <i>e</i> and sends it to Alice. Alice decrypts the message using her private <i>n</i>, <i>d</i>. Digital signature Alice encrypts a file (better: a hash) using <i>n</i>, <i>d</i>. Bob can verify the encrypted hash using <i>n</i>, <i>e</i>. Sch login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id.rsa pub copy your PUBLIC key to .ssh/authorized.keys on the REMOTE machine Four color theorem Transport Every map (on sphere or plane) can be colored by 4 colors <i>Strugueureureureureureureureureureureureureur</i>	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": $\bigcirc \forall a, b \in G: ab \in G$ (closure) $\bigcirc \forall a, b, c \in G: (ab)c = a(bc)$ (associativity) $\bigcirc \exists e \in G : \forall a \in G \text{ it holds } ea = ae = a \text{ (identity element)}$ $\bigcirc \forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e \text{ (inverse element)}$ Deterministic chaos Weather, oil on pan Lorentz attractor: $\dot{x} = ay - ax$, $\dot{y} = \rho x - xz - y$, $\dot{z} = xy - \beta z$ Simpler model: $x := a - x^2$ (see mmpc7.mw) \bigcirc universal properties; Feigenbaum:
 Message sent via insecure channel (https, spl) Alce calculates n, e and sends it openly to Bok. Bo hencrypts a message using n, e and sends it to Alce. Alce decrypts the mesage using her private n, d. Dital signature Alce neurypts a file (better: a hash) using n, d. Bo can verify the encrypted hash using n, e. Sth login without password Generate a private/public key pair on your HOME computer: sh-keygen -t rsg your PUBLIC key is .ssh/id.rsa.pub copy your PUBLIC key to .ssh/authorized.keys on the REMOTE machine Four color theorem T 21/2 T Cery map (on sphere or plane) can be colored by 4 colors Weight of Color dot c	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich); 4. The 26 sporadic simple groups. The biggest sporadic group = "Monster", number of elements $= 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$ = 808017424794512875886459904961710757005754368000000000 Proof finished 2004 - thousands of papers Group is a set <i>G</i> with "multiplication" and "division": \blacklozenge $\forall a, b \in G: ab \in G$ (closure) \blacklozenge $\forall a, b, c \in G: (ab)c = a(bc)$ (associativity) \blacklozenge $\exists e \in G : \forall a \in G$ it holds $ea = ae = a$ (identity element) \blacklozenge $\forall a \in G \exists a^{-1}: aa^{-1} = a^{-1}a = e$ (inverse element) Deterministic chaos Weather, oil on pan Lorentz attractor: $\dot{x} = \sigma y - \sigma x$, $\dot{y} = \rho x - xz - y$, $\dot{z} = xy - \beta z$ Simpler model: $x := a - x^2$ (see mmpc7.mw) \blacklozenge universal properties; Feigenbaum: 4.669201609102990671853203821578

