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Diophantine equation

n + yn = zn

does not have a solution in positive integers for integer n > 2.

Conjectured by Pierre de Fermat in 1637 in the margin of a copy of Arithmetica
where he claimed he had a proof that was too large to fit in the margin.

n = 4 Fermat

n = 3 Leonhard Euler (1770)

n = 5 Legendre / Dirichlet (1825)

n = 7 Lamé (1839)
...

general Andrew Wiles (1994)
– Elliptic curves y2 = 3 +  + b
– Modular forms C2→ C2 with “much symmetry”
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For p = prime: gcd = greatest common divisor

p ≡  (mod p) p−1 ≡ 1 (mod p),  not multiple of p

Proof: Consider p-tuples of  objects; there are p of them. We remove 111..1,
222..2,. . . ; there are p− left. These can be grouped to p-cyclically shifted groups;
e.g., 21111, 12111, 11211, 11121, 11112.

Extension: for , n co-primes
numbers , b so that
gcd(, b) = 1 are
called co-primes

ϕ(n) ≡ 1 (mod n)

where ϕ(n) = Euler’s totient function = number of co-primes to n in interval [1, n −
1].
NB: ϕ(p) = p − 1.

Example: calculate 37 (mod 7) by the square-and-multiply algorithm

(mod7):32≡2,34≡4,36≡1,37≡3

Inversion: If n−1 6≡ 1 for a co-prime , then n is composite

Probabilistic test: If n−1 ≡ 1 for several co-primes , then n is a prime with a
high probability
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Let , b are co-primes and  < b. We want to solve

 ≡ 1 (mod b) or  + by = 1

Extended Euclidean algorithm:

 b

r0 := b s0 = 0 t0 = 1
r1 :=  s1 = 1 t1 = 0

r2 := r0 − q1r1 s2 := s0 − q1s1 t2 := t0 − q1t1
r3 := r1 − q2r2 s3 := s1 − q2s2 t3 := t1 − q2t2

...

1  y

where q = reminder after r−1 : r (: = integer division)

Proof: based on r = s + bt for every line, proof by induction.

Example: solve 6 ≡ 1 (mod 17) 3
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Rivest–Shamir–Adleman (1978) lcm = least common multiple

Choose 2 distinct primes p, q (not too close)

Calculate n = pq (modulo, part of the public key)

Calculate λ = (p − 1)(q − 1) (better: lcm(p − 1, q − 1))
Public key: e, 1 < e < λ, co-prime to λ (often e = 65537)

Private key: d so that de ≡ 1 (mod λ)

Encrypt m: c ≡me (mod n)
? Can integer factorization
be solved in polynomial time
on a classical computer?Decrypt c: cd ≡m (mod n)

Proof. ∃g, h, k so that

ed − 1 = gλ = h(p − 1) = k(q − 1)
Using Fermat’s little theorem (except m ≡ 0 (mod p), which is trivial)

med =med−1m = (mp−1)hm ≡ 1hm ≡m (mod p)

And similarly for q. Since p, q are co-primes,

(me)d ≡m (mod pq)

q.e.d.
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Message sent via insecure channel (https, ssh)

Alice calculates n, e and sends it openly to Bob.

Bob encrypts a message using n, e and sends it to Alice.

Alice decrypts the mesage using her private n, d.

Digital signature

Alice publishes n, e.

Alice encrypts a file (better: a hash) using n, d.

Bob can verify the encrypted hash using n, e.

SSH login without password

Generate a private/public key pair on your HOME computer:
ssh-keygen -t rsa
your PRIVATE key is .ssh/id rsa
your PUBLIC key is .ssh/id rsa.pub

copy your PUBLIC key to .ssh/authorized keys on the REMOTE machine
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Every finite simple group is isomorphic to one of the following groups:

1. A cyclic group with prime order;
2. An alternating group (group of even permut.) of degree at least 5;
3. A simple group of Lie type (over a finite field) (quite rich...);
4. The 26 sporadic simple groups.

The biggest sporadic group = “Monster”, number of elements

= 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
= 808017424794512875886459904961710757005754368000000000

Proof finished 2004 – thousands of papers...

Group is a set G with “multiplication” and “division”:

∀, b ∈ G: b ∈ G (closure)

∀, b, c ∈ G: (b)c = (bc) (associativity)

∃e ∈ G : ∀ ∈ G it holds e = e =  (identity element)

∀ ∈ G ∃−1 : −1 = −1 = e (inverse element)
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Every map (on sphere or plane) can be colored by 4 colors

credit: http://www.artsrn.ualberta.ca/mengel/2015huco617/files/2015/04/Map.jpg

Computer-assisted proof in 1976 by Kenneth Appel and Wolfgang Haken, based on
1,936 sub-maps.

Easier for torus etc.

Deterministic chaos
[cd ../maple; xmaple mmpc7.mw] 8/18
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Weather, oil on pan ...
Lorentz attractor:

̇ = σy − σ,
ẏ = ρ − z − y,
ż = y − βz

credit: wikipedia

Simpler model:  :=  − 2 (see mmpc7.mw)

universal properties; Feigenbaum:
4.669201609102990671853203821578...
2.502907875095892822283902873218...

self-similarity (fractal)



Bifurcation map  := r(1 − ) 9/18
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Problem: what is the length of the borderline?
Answer: it depends on the meter m:

 = constm1−D

D = 1.02 South Africa
D = 1.25 west GB

Fractal: geometric set, which resembles a part of itself (after a continuous trans-
formation, usually shrinking)
Random fractal: self-similarity in a statistical-sense

(Almost) definition of the fractal dimension:

D = lim
m→0

logNm

log(1/m)

where Nm = # of line segments/squares/cubes . . . of length/edge. . . m needed to
cover the set (1/m = # of line segments of length m to cover a unit line segment,
D = 1)

Fractal dimension
[cd show;mz Kochsim.gif]11/18
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Example. Calculate the fractal dimension of a line segment.
Answer: Nm = /m, D = lim log(/m)/ log(1/m) = 1

Example. Calculate the fractal dimension of the Koch curve ln4/ln3
.
=1.26

Example. Calculate the fractal dimension of the trajectory of the Brownian motion
(polymer in a θ-solvent)

1 step of random walk by 1 (
1/2← ,

1/2→ ): 〈R2〉 = 1, m = 1,  = 1, Nm = 1
2 steps of random walk: 〈R2〉 = 1, m = 1/

p
2,  =

p
2, Nm = /m = 2

D=2(doesnotdependonthespacedimension)

Poincaré hypothesis
[cd show;mz MugTorus.gif]12/18
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Every simply-connected, closed 3-manifold is homeomorphic to the 3-sphere.

3-sphere = {~r, |~r| = 1} in R4

simply-connected = path-connected + any circle can be be contracted to a point

path-connected = ∃ a continuouos path between points

closed = compact + without boundary

compact = any open cover has a finite subcover;
any infinite sequence has a converging subsequence

3-manifold = locally as 3D Euclidean

homeomorphism = continuous function between topological spaces that has a
continuous inverse function

Proven by Grigori Perelman 2002, 2003
He rejected Millennium Prize ($1M) and Fields medal

Cf. Poincaré homology sphere (glued dodekahedron, binary icosahedral group, n =
120)

? Twin primes 13/18
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are prime numbers p1, p2 so that p2 − p1 = 2.

Are there infinitely many twin primes?

Probably yes, but not proven...

Brun’s theorem: sum of reciprocal twin primes converges:

∑

p,p+2 are primes
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Euler 1737: the sum of reciprocal primes diverges

Yitang Zhang 2015: lim inf
n→∞ (pn−1 − pn) < 246

? Goldbach’s conjecture

Every even integer greater than 2 can be expressed as a sum of two primes.

The conjecture has been shown to hold for all integers less than 4 × 1018

? Odd perfect number 14/18
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Perfect number = positive integer that is equal to the sum of its positive divisors,
excluding the number itself.

Euclid proved that 2p1(2p1) is an even perfect number whenever 2p1 is prime
(Mersenne prime).

6 = 1102 28 = 111002 496 = 1111100002

It is unknown whether there is any odd perfect number N. I yes:

N > 101500

The largest prime factor of N is greater than 108

N has at least 101 prime factors and at least 10 distinct prime factors.

? Zarankiewicz and Hill conjectures 15/18
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To fully connect, algorithms exist for the number of crossing lines C:

C(Kn,m) = b n2cbn−12 cbm2 cbm−12 c C(Kn) =
1
4b n2cbn−12 cbn−22 cbn−32 c

Are there better solutions?

[M. Balko, Vesmír 11, 628 (2019)]

? Riemann hypothesis 16/18
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Riemann zeta function:

ζ(s) =
∞∑

n=1

1

ns
=
1

1s
+
1

2s
+
1

3s
+ · · · .

for s ∈ C and ℜ(s) > 1, and its analytic continuation

Euler:

ζ(s) =
∏

p is prime

1

1 − p−s
credit: http://wismuth.com/complex/gallery.html

Single pole at s = 1 (res = 1)

Hypothesis (1859): roots = negative even integers (trivial) and complex numbers
with real part 1/2.

Proven (2004) for the first 1013 roots, but not in general

Consequences to the distribution of primes
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P = problem can be solved (on a computer) in a polynomial time (as a function of
problem size)*

e.g.: sorting, square root

NP� = a known solution can be verified in a polynomial time
e.g., subset sum problem, sudoku

NP-complete = problems to which any other NP-problem can be reduced in poly-
nomial time, and whose solution may still be verified in polynomial time
e.g., decide whether a solution of traveling salesman is indeed the shortest

NP-hard = at least as hard as the hardest NP
H is NP-hard if every NP problem can be reduced in polynomial time to H
e.g., traveling salesman, quantum theory, . . .

likely but not proven: P 6= NP
⇒ NP-hard problems cannot be solved in polynomial time

*for numbers problem size = # of digits
�Nondeterministic Polynomial

? Probably P 6= NP 18/18
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.. but not proven! And thus many problems are hard.

credit: “P np np-complete np-hard” by Behnam Esfahbod. Licensed under CC BY-SA 3.0 via Commons –

https://commons.wikimedia.org/wiki/File:P np np-complete np-hard.svg#/media/File:P np np-complete np-hard.svg


