	Fermat's Little theorem $\begin{gathered}\text { 2/18 } \\ \mathrm{mmpc} 7\end{gathered}$
Diophantine equation $x^{n}+y^{n}=z^{n}$ does not have a solution in positive integers for integer $n>2$. Conjectured by Pierre de Fermat in 1637 in the margin of a copy of Arithmetica where he claimed he had a proof that was too large to fit in the margin. $n=4$ Fermat $n=3$ Leonhard Euler (1770) $n=5$ Legendre / Dirichlet (1825) $n=7$ Lamé (1839) general Andrew Wiles (1994) - Elliptic curves $y^{2}=x^{3}+a x+b$ - Modular forms $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ with "much symmetry"	For $p=$ prime: $a^{p} \equiv a(\bmod p) \quad a^{p-1} \equiv 1 \quad(\bmod p), a \text { not multiple of } p$ Proof: Consider p-tuples of a objects; there are a^{p} of them. We remove 111..1, $222 . .2, \ldots$; there are $a^{p}-a$ left. These can be grouped to p-cyclically shifted groups; e.g., 21111, 12111, 11211, 11121, 11112. numbers a, b so that Extension: for a, n co-primes $\operatorname{gcd}(a, b)=1$ are $a^{\phi(n)} \equiv 1 \quad(\bmod n)$ called co-primes where $\phi(n)=$ Euler's totient function $=$ number of co-primes to n in interval [$1, n-$ 1]. NB: $\phi(p)=p-1$. Example: calculate $3^{7}(\bmod 7)$ by the square-and-multiply algorithm $\varepsilon \equiv{ }_{\iota} \varepsilon ' \tau \equiv{ }_{9} \varepsilon \text { ' } t \equiv_{\star} \varepsilon{ }^{\prime} 乙 \equiv_{\tau} \varepsilon:(\angle \text { pow })$ Inversion: If $a^{n-1} \not \equiv 1$ for a co-prime a, then n is composite Probabilistic test: If $a^{n-1} \equiv 1$ for several co-primes a, then n is a prime with a high probability
Modular inversion \quad 3/	SA cryptosystem $\quad 4 / 18$
Let a, b are co-primes and $a<b$. We want to solve $a x \equiv 1(\bmod b) \quad \text { or } a x+b y=1$ Extended Euclidean algorithm: $\begin{array}{ccl} & a & b \\ r_{0}:=b & s_{0}=0 & t_{0}=1 \\ r_{1}:=a & s_{1}=1 & t_{1}=0 \\ r_{2}:=r_{0}-q_{1} r_{1} & s_{2}:=s_{0}-q_{1} s_{1} & t_{2}:=t_{0}-q_{1} t_{1} \\ r_{3}:=r_{1}-q_{2} r_{2} & s_{3}:=s_{1}-q_{2} s_{2} & t_{3}:=t_{1}-q_{2} t_{2} \\ & \vdots & \\ 1 & x & y \end{array}$ where $q_{i}=$ reminder after $r_{i-1}: r_{i}(:=$ integer division $)$ Proof: based on $r_{i}=a s_{i}+b t_{i}$ for every line, proof by induction. Example: solve $6 x \equiv 1(\bmod 17)$	Rivest-Shamir-Adleman (1978) Choose 2 distinct primes p, q (not too close) Calculate $n=p q$ (modulo, part of the public key) Calculate $\lambda=(p-1)(q-1)$ (better: $\operatorname{Icm}(p-1, q-1))$ Public key: $e, 1<e<\lambda$, co-prime to λ (often $e=65537$) - Private key: d so that $d e \equiv 1(\bmod \lambda)$? Can integer factorization Encrypt $m: c \equiv m^{e}(\bmod n)$ be solved in polynomial time Decrypt $c: c^{d} \equiv m(\bmod n)$ on a classical computer? Proof. $\exists g, h, k$ so that $e d-1=g \lambda=h(p-1)=k(q-1)$ Using Fermat's little theorem (except $m \equiv 0(\bmod p)$, which is trivial) $m^{e d}=m^{e d-1} m=\left(m^{p-1}\right)^{h} m \equiv 1^{h} m \equiv m \quad(\bmod p)$ And similarly for q. Since p, q are co-primes, $\left(m^{e}\right)^{d} \equiv m \quad(\bmod p q)$
How it works $\begin{gathered}\text { 5/18 } \\ \text { mmpc }\end{gathered}$	The Enormous Theorem mmpc
Message sent via insecure channel (https, ssh) Alice calculates n, e and sends it openly to Bob. Bob encrypts a message using n, e and sends it to Alice. Alice decrypts the mesage using her private n, d. Digital signature Alice publishes n, e. Alice encrypts a file (better: a hash) using n, d. Bob can verify the encrypted hash using n, e. SSH login without password Generate a private/public key pair on your HOME computer: ssh-keygen -t rsa your PRIVATE key is .ssh/id_rsa your PUBLIC key is .ssh/id_rsa.pub copy your PUBLIC key to .ssh/authorized_keys on the REMOTE machine	Every finite simple group is isomorphic to one of the following groups: 1. A cyclic group with prime order; 2. An alternating group (group of even permut.) of degree at least 5; 3. A simple group of Lie type (over a finite field) (quite rich...); 4. The 26 sporadic simple groups. The biggest sporadic group $=$ "Monster", number of elements $\begin{aligned} & =2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \\ & =808017424794512875886459904961710757005754368000000000 \end{aligned}$ Proof finished 2004 - thousands of papers... Group is a set G with "multiplication" and "division": $\forall a, b \in G: a b \in G$ (closure) $\forall a, b, c \in G:(a b) c=a(b c)$ (associativity) $\exists e \in G: \forall a \in G$ it holds $e a=a e=a$ (identity element) $\forall a \in G \exists a^{-1}: a a^{-1}=a^{-1} a=e$ (inverse element)
Four color theorem $\begin{aligned} & \text { /118 } \\ & \text { mmpc }\end{aligned}$	Deterministic chaos [cd ../maple; xmaple mmpc7.mw] 8/18
Every map (on sphere or plane) can be colored by 4 colors Computer-assisted proof in 1976 by Kenneth Appel and Wolfgang Haken, based on 1,936 sub-maps. Easier for torus etc.	Weather, oil on pan ... Lorentz attractor: $\begin{aligned} & \dot{x}=\sigma y-\sigma x, \\ & \dot{y}=\rho x-x z-y, \\ & \dot{z}=x y-\beta z \end{aligned}$ Simpler model: $x:=a-x^{2}$ (see mmpc7. mw) universal properties; Feigenbaum: 4.669201609102990671853203821578... 2.502907875095892822283902873218... self-similarity (fractal)

Example. Calculate the fractal dimension of a line segment.
Answer: $N_{m}=/ / m, D=\lim \log (/ / m) / \log (1 / m)=1$

Example. Calculate the fractal dimension of the Koch curve
$9 Z^{\prime} \tau=\varepsilon$ ul/tu|
Example. Calculate the fractal dimension of the trajectory of the Brownian motion (polymer in a θ-solvent)
1 step of random walk by $1(\stackrel{1 / 2}{\leftarrow}, \xrightarrow{1 / 2}):\left\langle R^{2}\right\rangle=1, m=1, l=1, N_{m}=1$
2 steps of random walk: $\left\langle R^{2}\right\rangle=1, m=1 / \sqrt{2}, l=\sqrt{2}, N_{m}=l / m=2$

$\boldsymbol{?}$ Twin primes	$13 / 18$
mmpc 7	

are prime numbers p_{1}, p_{2} so that $p_{2}-p_{1}=2$.
Are there infinitely many twin primes?

Probably yes, but not proven...
Brun's theorem: sum of reciprocal twin primes converges:
$\sum_{p, p+2 \text { are primes }}\left(\frac{1}{p}+\frac{1}{p+2}\right)=\left(\frac{1}{3}+\frac{1}{5}\right)+\left(\frac{1}{5}+\frac{1}{7}\right)+\left(\frac{1}{11}+\frac{1}{13}\right)+\cdots \approx 1.902160583104$
Euler 1737: the sum of reciprocal primes diverges
Yitang Zhang 2015: $\liminf _{n \rightarrow \infty}\left(p_{n-1}-p_{n}\right)<246$

? Goldbach's conjecture

Every even integer greater than 2 can be expressed as a sum of two primes.
The conjecture has been shown to hold for all integers less than 4×10^{18}

? Zarankiewicz and Hill conjectures

 $15 / 18$

To fully connect, algorithms exist for the number of crossing lines C :

$$
C\left(K_{n, m}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor \quad C\left(K_{n}\right)=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor
$$

Are there better solutions?

Fractals

Problem: what is the length of the borderline? Answer: it depends on the meter m :

$l=$ const m^{1-D}

$D=1.02$ South Africa
$D=1.25$ west GB

Fractal: geometric set, which resembles a part of itself (after a continuous transformation, usually shrinking)
Random fractal: self-similarity in a statistical-sense
(Almost) definition of the fractal dimension:

$$
D=\lim _{m \rightarrow 0} \frac{\log N_{m}}{\log (1 / m)}
$$

where $N_{m}=\#$ of line segments/squares/cubes \ldots of length/edge...m needed to cover the set $(1 / m=\#$ of line segments of length m to cover a unit line segment, $D=1$)

Poincaré hypothesis

[cd show;mz MugTorus. gif] $12 / 18$
Every simply-connected, closed 3-manifold is homeomorphic to the 3-sphere.

- 3-sphere $=\{\vec{r},|\vec{r}|=1\}$ in \mathbb{R}^{4}
- simply-connected $=$ path-connected + any circle can be be contracted to a point
path-connected $=\exists$ a continuouos path between points
- closed $=$ compact + without boundary
- compact = any open cover has a finite subcover; any infinite sequence has a converging subsequence
3-manifold = locally as 3D Euclidean
O homeomorphism = continuous function between topological spaces that has a continuous inverse function
Proven by Grigori Perelman 2002, 2003
He rejected Millennium Prize (\$1M) and Fields medal
Cf. Poincaré homology sphere (glued dodekahedron, binary icosahedral group, $n=$ 120)

? Odd perfect number

Perfect number = positive integer that is equal to the sum of its positive divisors, excluding the number itself.
Euclid proved that $2^{p} 1\left(2^{p} 1\right)$ is an even perfect number whenever $2^{p} 1$ is prime (Mersenne prime).

$$
6=110_{2} \quad 28=11100_{2} \quad 496=111110000_{2}
$$

It is unknown whether there is any odd perfect number N. I yes:
D $\quad N 10^{1500}$
The largest prime factor of N is greater than 10^{8}
N has at least 101 prime factors and at least 10 distinct prime factors.

? Riemann hypothesis

Riemann zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots .
$$

for $s \in \mathbb{C}$ and $\Re(s)>1$, and its analytic continuation Euler:

$$
\zeta(s)=\prod_{p \text { is prime }} \frac{1}{1-p^{-s}}
$$

Single pole at $s=1$ (res =1)
Hypothesis (1859): roots = negative even integers (trivial) and complex numbers with real part $1 / 2$.
Proven (2004) for the first 10^{13} roots, but not in general
Consequences to the distribution of primes

? Complexity theory: $P=N P \quad$| $17 / 18$ |
| :--- |
| mmpc 7 |

$\mathbf{P}=$ problem can be solved (on a computer) in a polynomial time (as a function of problem size) ${ }^{*}$
e.g.: sorting, square root
$\mathbf{N P}^{\dagger}=$ a known solution can be verified in a polynomial time
e.g., subset sum problem, sudoku

NP-complete = problems to which any other NP-problem can be reduced in polynomial time, and whose solution may still be verified in polynomial time e.g., decide whether a solution of traveling salesman is indeed the shortest

NP-hard = at least as hard as the hardest NP
H is NP-hard if every NP problem can be reduced in polynomial time to H
e.g., traveling salesman, quantum theory, ...
likely but not proven: $P \neq N P$
\Rightarrow NP-hard problems cannot be solved in polynomial time
*for numbers problem size = \# of digits
Nondeterministic Polynomial
? Probably $P \neq N P$
but not proven! And thus many problems are hard

credit: "P np np-complete np-hard" by Beenam Esfahbod. Licensed under CC BY-SA 3.0 via Commons

