Info 1/25	Molecular simulations
Into s00/3	Molecular simulations s00/3 molecular dynamics (MD)
Department of Physical Chemistry A402 4. patro	 molecular dynamics (MD) time development of a system composed of many molecules
University of Chemistry and lechhology, Prague 4th floor	 Interdevelopment of a system composed of many molecules instantaneous forces acting on atoms cause their motion
Technická 5 (building A) room 402	Monte Carlo (MC); more precisely: Metropolis method and its variants
http://www.mapy.cz/s/98vC	a sequence of configurations of the system is generated using random numbers
jiri.kolafa@vscht.cz 220 444 257	an attempt is made to move a molecule (randomly with a certain distribution)
	this trial move is accepted or rejected so that its probability is the same as in reality
	kinetic Monte Carlo
• výtah líft	the simulated process is divided into elementary events (e.g., adsorption of an atom on a growing crystal, catalytical reaction)
Google: Kolafa Molecular modeling and simulation Kolafa Molekulární modelování a simulace	 the event to happen is chosen according to a known probability
	Quantum simulations – MD, MC
	Las Vegas algorithms – deterministic result (random pivot, search for minimum)
jkv -Wn -S2 pic/scaling.jpg_2/25	7/25
Elements of modeling s00/3	sou/3
 ? elementary particles + gravity, GUT, dark energy, known elementary particles: Standard model, atomic public 	Liquids:
 known elementary particles: Standard model, atomic nuclei, Nuclei + electrons + photons: QED, accurate spectroscopy 	 how structure affects properties (anomalies of water), solutions phase equilibria, solubility
 Nuclei + electrons: Schrödinger equation – small molecules, spectra, gas-phase equilibria, 	 phase equilibria, solubility surfaces, interfaces, surfactants
chemical kinetic, photochemistry	Solids:
Atoms [*] – classical (or quantum) atomistic modeling	 crystal structure, materials (defects)
implicit solvent: continuum + random forces	adsorption (zeolites)
Coarse-grained models: meso/nanoscopic scale element = polyatomic group see DOI: 10.1017/S0033583515000256 for time- and size-scales of simulation	Biochemistry:
$(surfactant = head + tail, polymer = [bead]_n)$ techniques	proteins, nucleic acids, ion channels, lipid membranes
 Microscopic scale (dispersions, granular materials) Continuum: partial differential equations – beat weather models, neutrons in A-bomb, statics 	Nanoobjects:
 Continuum: partial differential equations – heat, weather models, neutrons in A-bomb, statics gravity: spacetime – black holes, gravitational waves in civil engineering 	micelles, polymers, self-assembly (coarse-grained models, lattices) Similar methods can be used for:
gravity: spacetime – black holes, gravitational waves multiscale modeling: QM/MM (enzymes etc.)	 Similar methods can be used for: granular materials, optimization, spreading of epidemics, active matter,
'optionally: auxiliary interaction centers (sites), bigger groups (-CH ₃)	agent-based models, evo-devo (evolutionary developmental biology)
Potential Energy Surface (PES) show/SPCEdimer.sh 3/25 s00/3	Structure optimization (example of molecular mechanics) \$125 \$100/3
Nuclei are much heavier than electrons ⇒ electron motion is much faster (Born–Oppenheimer approximation) for me (show/SPCEdimer.sh):	
approximation) for me (show/SPCEdimer.sh): - change cfg - click [info]	
energy as a function of positions of all nuclei	
$E_{\text{pot}}(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)$	
Chemical example: reaction coordinate Potential Energy	
A reaction proceeds over (near to) a sad-	
dle point (transition state) transition state→	chair twist (skew) boat experiment: 28 kJ/mol experiment: 45 kJ/mol
Reactants Dividing	model: 26 kJ/mol model: 53 kJ/mol
Reactive T Surface	
Trajectory Minima Saddle Points	
credits: http://www.ud.ac.uk/-uccentstpublications.html, http://beoy.cm.utexas.edu/herketman/tesacr/tht 4/25 500/3	Liquid water (example of equilibrium molecular dynamics) s00/3
from quantum calculations (Schrödinger equation: ab initio, DFT) – expensive	10000 molecules
via neural network trained on quantum data – medium cost	• 300 K
approximated by a formula ("force field", "potential", "model",) – cheap force field: E _{pot} = sum of many terms	periodic in x, y
term = function form + parameters for atoms/groups	adhesive pad
combination: QM/MM methods (quantum mechanics/molecular mechanics)	nonadhesive lid
PES and modeling in chemistry	
 using classical mechanics: static calculations: minimum of energy, potential around a molecule 	
 time development of system (molecular dynamics, MD); 	
with ab initio PES = AIMD (demanding!) thermodynamic variables by sampling (Monte Carlo, MC)	
using quantum mechanics to nuclei:	
 – path integral methods (PI MC, PI MD); with AIMD extremely demanding – classical mechanics + quantum corrections 	
combination force field + classical mechanics = "molecular mechanics" (MM); strictly speaking does not include MC and MD	
Molecular mechanics: static approach 5/25 500/3	More movies: https://vesmir.cz/cz/on-line-clanky/2014/07/struktura-anomalie-vody.html Electrospray of Cytochrome C s00/3
We use PES, usually described by a force field	
Energy minimization $(T = 0)$	Electrospray: spray of charged aerosol Cross section is determined
"molecular mechanics", "structure optimization"	Focussing Drift Tube Quadrupole Mass
Refinement – more accurate structure (from diffraction data)	Desolvation Lens He 5-8 Torr Spectrometer
 Biochemistry: molecular shape (lock and key), hydrophillic/hydrophobic QSAR (Quantitative Structure-Activity Relationship) descriptors 	
	Electrospray
	Needle Detector 350-2100eV Oundrungle Mana Focussing Assembly
but what about motion?	350-2100eV Source Lens Quadrupole Mass Focussing Assembly

Jan Jirsák, Filip Moučka, Ivo Nezbeda: Ind. Eng. Chem. Res. 53, 8257–8264 (2014)