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Statistical thermodynamics instant w013 | Semiclassical monoatomic ideal gas s01/3
@ monoatomic ideal gas in a box: L a7 a7 oF o7, N
@ ideal gas equation of state Q=] exp[0]dn...d7y = v e v =V
@ temperature given by kinetic energy, <%mr’izx> = lI<BT (equipartition theorem N N v
can be extended to any classical mechanical system y Z= L = ~———, F=—kgTInZ=—kgTNI ve
NIASN = NIAN ~ WNe—NA3N' Bl in BININSAS
@ ergodic hypothesis in the microcanonical ensemble: : : €
@ quantum: all eigenstates have the same probability X _ (BF) _ kTN _ nRT e = Euler number
@ classical: density of phase-space states is constant on the constant-energy manifold p= V)t T v v e = elementary charge
@ m o exp(—E/kgT) in the canonical ensemble is derived by: oF 3NkgT
@ set of heat-exchanging sub-ensembles = big microcanonical ensemble U=F+TS=F— T(ﬁ) =3
@ multiplication of prob. of two noninteracting systems, m(E1 + E2) = n(E1)m(E2) v
@ Boltzmann equation for entropy = (iF) — ka'In NA3 — kaTIn (PA3
du=>"m(y)-de@) + Y dm(y) - £(Y) =—pdV + TdS oNJtv v ksl
v v (with respect to the standard state of a free molecule at zero temperature)
= S=—ks) m()Inn(y) or S=kelnW = FG, etc. And verification:
v NA3
@ Boltzmann H-theorem (second law) G=F+pV=kgTNIn ve T NkgT = Ny
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Canonical ensemble: Helmholtz energy 50/1/3 Monoatomic ideal gas + 50/1/3
e—BEW) 1 Or quantum calculation of the translational partition function:
() = . Z=Ze—ﬂf(ll/) ﬁ=ﬁ . ) ) ]
B Eigenvalues of energy of a point mass in a a x b x ¢ box:

v
u
§=—ks > mY)IN(Y) = —ks D MY [~FEW)~InZ] = —+ kgInZ
[ 2
= Helmholtz energy:
F=—kgTInZ

Z = canonical partition function = statistical sum (also denoted Q)
Interpretation: number of “accessible” states (low-energy states are easily accessible, high-energy
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Maxwell-Boltzmann statistics: high enough temperature so that a few particles compete for
the same quantum state - it does not matter whether we have fermions or bosons; equivalently,
A < distance between particles.

Partition function:

states are not) SRR D3t I el el It _Vv
Z1= 3" D7 > exp(—BE) T~ exp(—pE) dnxdnydnz =

From the Helmholtz energy F we can obtain all quantities (dF = —pdV — SdT): nx=1ny=1n;=1 o Jo Jo

oF

p = —= U = F+TS N 1
Vv _ . _I N
oF H = U+pV E ;E, > Z N!Zl
S = —— =
aT G F+pv Yes, it is the same! The choice of factor 1/h3N in the semiclassical Z was correct.
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Semiclassical partition function <01/3 Polyatomic ideal gas s01/3
Hamilton formalism: positions of atoms = F;, momenta = p;. The internal degrees of freedom are separated from the translational ones.
[32 The internal partition function is the sum over the internal degrees of freedom:
&=MH=Epot+Ekin, Epot=U(PL ..., 7)., Ekin= Zﬁ g=3 e W)
m
Sum over states replaced by integrals (clasical mechanics needed): "
1 Canonical partition function:
- —BEW) = —_
z=3e =— | expl—BH(L P2, ... P BL, ., )T AP -+ Ay QU Veq
N'h
v = T F=—kBT|nZ=—kBTNInW
where h = 2mh = Planck constant. n
Why the factorial? Chemical potential:
aF NA3 A3
@ Particles are indistinguishable ... but at high enough T appear in different quantum states U= (m) =kgTIn (T) =kgTIn (%)
TV q gKe:
Why Planck constant?
@ Has the correct dimension (Z must be dimensionless)
@ We get the same result for noninteracting quantum particles in a box
but fails if quantum effects are important (vide infra)
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Semiclassical partition function s01/3 | NPT ensemble: T, p = const 501/3

Integrals over positions and momenta are separated
p2,/2m

T dp1,x = v/2mkgTm After 3N integra-
B

Integrals over momenta can be evaluated:f exp

tions we get:
h
V2mmkgT

Q ;
Z= W , de Broglie thermal wavelength: A=

A = de Broglie wavelength at typical particle velocity at given T
requirement: A < typical atom-atom separation ~ (V/N)/3

Configurational integral:

do not confuse:

Q= J exp[—BU(Fy, ..., Pn)]1dF...diy U = internal energy
U(F1,...) = potential

Mean value of a static quantity (observable):

1
(X) =6JX(Fl,...,7N)eXp[—ﬁU(F1,...,FN)]d?l...dPN

Also isothermal-isobaric, loosely “isobaric”: V — p
The same argument now applied to V (as for E before):
n(V14+2) = (V1 + V2) = (V1) n(V2)
Together: m = exp(a;—BE—7YV)
7Y is a universal property of a barostat - to be determined from ideal gas
JveFEine=Wdvdr...dpy _ [VN*le™Vdv N+1
V)= = =
[ e PEine=Wdvdry...dpy [ VNe=Wdv Y
For nitpickers:
(more in simen10):
(Vnpr(PNVT)) — V
keT (ap) 502V
“2n \opJr" 302
id. gas z _P
N~ kgT
so that +1 below can
be safely ignored. ..

Tricks used:
@ [dp1...dpy gives the same factor, A3V
@ [dr...dPy=VN w
correctly: [ XdVdry...diy =[5 [[y... [y XdF1...dPN]dV
(the order of integration is important - J/dv is the last)
or by substituting V/3g; = ; one gets dFy...dPy = VNdE; ... dEy
(then the integration order is irrelevant)
@ [ VNemVdv = Nl/yN+1 (recursively by parts)
N+1 p P

V) should be equal to NkgT/p (at limit N — c0) = = —
(V) q 8T/p ( ) Y =N ket ket
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Thermal de Broglie wavelength 501/3

Example

a) Calculate A for helium at T=2 K.
b) Compare to the typical distance of atoms in liquid helium (density 0.125 g/cm3).
yg8e@iyzol(e

a)
A h
~ J/2nmksl
6.6x10734
V2 xmx 230« 1.38x10723 x 2
= 6.2x10710m
credit: hight3ch.com/superfluid-liquid-helium/

b)

M 0.004
[ = Yvi=3—=3 —————— =3.8x10"10m
! \JNAp 6x1023 x 125

< A\ = cannot use classical mechanics
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NPT ensemble (contd.) 501,3
Normalization constant a (from the Boltzmann eq. and e® = 1/ZnpT):

p(v)

u
S=kgy m(y)a—BEW)—YV]= keo— = ——
v

—kgTInZnpr = U—TS+p(V)= G

1
Znpr = N!hBNJXe—I’(E‘fPV)drl ...dpndV

where x = {1/A3, Bp,N/V,1/V,...} zajist'uje bezrozmérnost (N — co stejné)
We easily get:: dG =—-S5dT + Vdp

alnZ, N+1 1 oG N+1 kgl N—
(ﬂ) =—B(V)—— + = il (—) Y L v 1Y)
p T N P opJr N P

The expectation value of X in the isobaric ensemble is
[ Xe=BEXPVIdvdry ... dpy
B ZNpT

(x)
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Grandcanonical ensemble: 1 = const 501/3 Grandcanonical ensemble: i = const (contd.) 50{/3
The same argument now applied to N (as for E, V before): The expectation value of X in the grandcanonical ensemble is
m(N142) = m(N1 + N2) = m(N1) m(N2) o N -
Together: m = exp(a;— BE + 6N) ZMJXe—B dry...dpy
& is a universal property of a source of particles - to be determined from ideal gas (X) = 0 where q = efH
o SN ’ .
&N ® NN & [ ePEqr, ... dp,
Z ePEkineSNGF .. dpn Z T8N Z N e PEdr ... dpn
h3NN1 . NIA3SN v 0
(N) = N=0 id. N=0 AP
i 1 BEunatN _ 1wV o A3 The last eq. is usually integrated over momenta (incl. internal degrees of freedom); for X = X(N, 7)
———e Prking®Ndry ... dpn ———re R
h3NNI N!ASN it holds:
N=0 =0 00
Tricks used: Z JXe_BEdﬁ .dfy
.fdﬁl"‘dﬁ"’:/\_m =20 wherea’:ﬂ (1)
=yN "o N A3
.fd?l...di v § Z j BEdrl
@ 34X = &, where x = VeV 5
@ derivative by x: Z%Nx’\’_l =eX = 28° %x” = xeX
On comparing with exp(—BUid, point particle) = V/A3N one gets & = By.
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Grandcanonical ensemble: 1 = const (contd.) 501/3 Grandcanonical ensemble: 1 = const (contd.) 501/3
Normalization constant a (from the Boltzmann eq. and e% = /Zuvr): The quotient in series (1) can be expressed as eBuid =p/\3/q

U pn) ,_ad9_ g, w i
= - —_— a’'=—==ePHresp p="-_—, =u—
s kB%:n(w)[cx BEW) + 8N] = kpa T + T 3 P p="7 Hres=H—l (0)

—kgTInZyyr=U—TS—p(N) =
where

oo e/}uN
= —BE,
z”w—NZomf e Pdr ... dpy

Grandcanonical potential Q=F—uN=F—G=—pV

dF =—SdT—pdV + udN = dQ=-SdT —pdV — Ndu

where Ures is the residual chemical potential = chemical potential with respect to the standard
state of ideal gas at given temperature and volume (= density), which can be compared with
tables (after pressure is recalculated from pst using the ideal gas equation of state).




