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Statistical thermodynamics instant s01/3
@ monoatomic ideal gas in a box:
@ ideal gas equation of state
1, -2

@ temperature given by kinetic energy, (smr7_) = lI<|3T (equipartition theorem)
. 27X 2
can be extended to any classical mechanical system

@ ergodic hypothesis in the microcanonical ensemble:

@ gquantum: all eigenstates have the same probability

@ classical: density of phase-space states is constant on the constant-energy manifold
@ 71 x exp(—E/kgT) in the canonical ensemble is derived by:

@ set of heat-exchanging sub-ensembles = big microcanonical ensemble

@ multiplication of prob. of two noninteracting systems, m(E1 + E>) = w(E1)n(E>)
@ Boltzmann equation for entropy

dU =) m(y)-dEW) + > dn(y)-£(Y) =—pdV + TdS
y y

= S =—I<BZ1I(¢/)In n(Yy) or S=kglnW = F G, etc.
U
@ Boltzmann H-theorem (second law)



Canonical ensemble: Helmholtz energy

s01/3
o—BEW) . B -

¢

U
S=—kg ), M) Inm(y) =—ks > (W) [-BEW)~InZ] = —+kpInZ
g Y

= Helmholtz energy:

F=—kgl'InZ

Z = canonical partition function = statistical sum (also denoted Q)

Interpretation: number of “accessible” states (low-energy states are easily accessible, high-energy
states are not)

From the Helmholtz energy F we can obtain all quantities (dF = —pdV — 5dT):

oF
p = eY; U = F+TS
3F H = U+ pV
S = 3T G = F+pV



Semiclassical partition function

Hamilton formalism: positions of atoms = F;, momenta = p;.
=2
P;

5=%=Epot+Ekin, Epot=U(F1,---,FN), Exin = %
[

Sum over states replaced by integrals (clasical mechanics needed):
7 = Ze—ﬁﬁ(tﬂ) —

Y
where h = 2mh = Planck constant.

N'h3N

Why the factorial?

JeXp[—ﬁ"H(FLFz,---,I’N,ﬁl,---,ﬁN)]dfl-“dﬁN
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@ Particles are indistinguishable ... but at high enough T appear in different quantum states

Why Planck constant?
@ Has the correct dimension (Z must be dimensionless)
@ We get the same result for noninteracting quantum particles in a box

but fails if quantum effects are important (vide infra)
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Semiclassical partition function s01/3

Integrals over positions and momenta are separated

P1x/2m |
Integrals over momenta can be evaluated: | exp| — I< 7 dp1 x = v/ 2mkgTm After 3N integra-
B
tions we get:
Q | h
Z = 3N de Broglie thermal wavelength: A=
AVAY v 2TmkgT

N\ = de Broglie wavelength at typical particle velocity at given T

requirement: A < typical atom-atom separation ~ (V/N)1/3

Configurational integral:
do not confuse:
Q= J exp[—pU(r,...,Fy)]dry...diy U = internal energy
U(ry,...) = potential
Mean value of a static quantity (observable):

1
(X) = an(Fl, ..., Iny)exp[—pU(ry, ..., Iy)]dry...driy
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Thermal de Broglie wavelength s01/3

Example

a) Calculate A for helium at T =2 K.
b) Compare to the typical distance of atoms in liquid helium (density 0.125 g/cm?3).

¥ 8E(@iyzole

a)
h
N =
v 2TmkgT
6.6x 1034
B 0.004 —23
\/2 x mx 20025 1.38x10723 x 2
= 6.2x10710m
credit: hight3ch.com/superfluid-liquid-helium/
b)

M 0.004
[ = 3vi= %|—= 3 =3.8x10"10m
Nao \IGx 1023 x 125

[ < \ = cannot use classical mechanics
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Semiclassical monoatomic ideal gas s01/3

Z

Q=Jexp[0]df1...dFN=J di"lmf diy = VN
Vv

v
? v v F kgl InZ kgT N | —Ve
T NIASN T NIASN T yNe=Np3ne T T TRBEIE = TEBI R S
5 =_(f) _keTN _ nRT e = Euler number
oV /)t 4 4 e = elementary charge
oF 3NkgT
U=F+TS=F—T[—| =
oT )y 2

oF NA3 pA3
u=(—) = kgTIn| — | = kgT In| —
oN TV "4 kgl

(with respect to the standard state of a free molecule at zero temperature)

And verification:

NA3
G=F+pV=I<BTNInV—+NI<BT=N/J
e
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Or quantum calculation of the translational partition function:

Eigenvalues of energy of a point massin a a x b x ¢ box:

h2 (n2 nZ n
£ = + =+
8m\ a2 b? c

2
4
2

Maxwell-Boltzmann statistics: high enough temperature so that a few particles compete for
the same quantum state - it does not matter whether we have fermions or bosons; equivalently,

N\ < distance between particles.

Partition function:

oo‘ oo‘ oo‘ S © r0O0 ~OO vV
Zi= D, 2, 2, exp(=B¢) szO JO JO exp(=p&)dnxdnydnz = 3

nx=1ny=1nz=1

N
— ) — =N
E—leEl = Z—N!Zl
=

Yes, it is the same! The choice of factor 1/h3N in the semiclassical Z was correct.



Polyatomic ideal gas

The internal degrees of freedom are separated from the translational ones.

The internal partition function is the sum over the internal degrees of freedom:

q — Ze_ﬁg(dj)
Yin
Canonical partition function:
(gV)V Veq
Z = IS F=—kglInZ = —I<|3TNIn—N/\3

Chemical potential:
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NPT ensemble: T, p = const s01/3

Also isothermal-isobaric, loosely “isobaric”: V — p
The same argument now applied to V (as for E before):

n(Vi4+2) = n(V1+ V2) =n(V1)n(V2)
Together: m = exp(a;— BE—vyV)
Y is a universal property of a barostat — to be determined from ideal gas
[ve=PEkine=Ydvdry...dpy [VN*le=Vdv N+1

~ [ePEkne=YVdvdry...dpy  [VNe=Wdv v
For nitpickers:
(more in simenl0):

(VnpT(PNVT)) —V

(V)

Tricks used:
@ fdﬁl ...dpy gives the same factor, A—3N
@ [dr...dPy=VN

2
correctly: fXdVdFl...dFszgo[fv,,,f Xdry...dry]dV ~ kBT(ap) 22
(the order of integration is important — | dV is the last) 2N \op /1 9p?
or by substituting V1/3&; = F; one gets dry...dFy = VNdE7 ... dEy d.gasV P
(then the integration order is irrelevant) = N = T
B
@ [, VNe="Vdv = NI/yN*+1 (recursively by parts) so that +1 below can
N+1 -
(V) should be equal to NkgT/p (at limit N - ) = 7y = P P besafely ignored...

N kgl kgl



NPT ensemble (contd.) 18{}3‘

Normalization constant a (from the Boltzmann eq. and e¥ = 1/Zyp7):

U p(Vv)

S=ks ), mW)a—pEW) =YV =kpa—————
¢

—kgT InZnpr = U—TS+p(V)= G

where x = {1/A3, Bp, N/V, 1/V, ...} zajit'uje bezrozmérnost (N — oo stejné)
We easily get:: dG =-5dT + Vdp
(aInZNpT) —_B(v N+1 . 1 - (E) _ (V)N+ 1 B kiTN;,oo
op T p opJT N p
The expectation value of X in the isobaric ensemble is
[ XemPFEFPVIdVdry ... dpy

ZNpT

(X)



Grandcanonical ensemble: u = const

The same argument now applied to N (as for E, V before):

M(N142) =n(N1+ N2)=n(N1)m(N3)

Together: m = exp(a;— BE + 6N)
6 is a universal property of a source of particles — to be determined from ideal gas

00 00 N
[N BEkinadN N VT sn
e~ Ptking%Mdry ... dp ——e
NZ—:OJ h3WN! " NZ:ON!ABN 4
(N)= — = — = e5
S —BEkingNyp dp SR 5N A3
NZ_IOJ h3NN!e e ri...apn Z_: MA?’Ne

Tricks used:

@ [dp1...dpy=A"3N
@ [dr...diy=VN

1 VN
@ > X"V =eX, where x = A3Ne5N
N—1 _ 5Xx N X
@ derivative by x: ZN,NX =eX =37 N,x = xe

On comparing with exp(—pBUid, point particle) = V/A3N one gets 6 = Gu.
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Grandcanonical ensemble: u = const (contd.) s01/3

Normalization constant a (from the Boltzmann eq. and e =1/Z,,y7):

U N
S=kpg Y m(y)a—BEW)+6N] = Kgar—— + &T)
y

—kpTINZyyr=U—TS—u(N) = Q

where

00 e,B/JN .
ZHVT=NZ:()N!h3NJe_'B dri...... dppn

Grandcanonical potential QO=F—uN=F—-G=—pV
dF =-5dT7T —pdV + udN = dQ=-5dT7T — pdV — Ndu
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Grandcanonical ensemble: u = const (contd.) s01/3

The expectation value of X in the grandcanonical ensemble is

_ where g = ePH,

The last eq. is usually integrated over momenta (incl. internal degrees of freedom); for X = X(N, FV)
it holds:
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Grandcanonical ensemble: u = const (contd.)

s01/3
The quotient in series (1) can be expressed as ePHid = pN3/q
aq (N) .
a/ = — = e,B,Ures , = —, = || — id
A3 P, P Y Hres = U— U (p)

where ures is the residual chemical potential = chemical potential with respect to the standard
state of ideal gas at given temperature and volume (= density), which can be compared with
tables (after pressure is recalculated from pSt using the ideal gas equation of state).



