monoatomic ideal gas in a box:

- ideal gas equation of state
- temperature given by kinetic energy, $\left\langle\frac{1}{2} m \dot{r}_{i, x}^{2}\right\rangle=\frac{1}{2} k_{\mathrm{B}} T$ (equipartition theorem) can be extended to any classical mechanical system
ergodic hypothesis in the microcanonical ensemble:
quantum: all eigenstates have the same probability
classical: density of phase-space states is constant on the constant-energy manifold
$\pi \propto \exp \left(-E / k_{\mathrm{B}} T\right)$ in the canonical ensemble is derived by:
set of heat-exchanging sub-ensembles $=$ big microcanonical ensemble
multiplication of prob. of two noninteracting systems, $\boldsymbol{\pi}\left(E_{1}+E_{2}\right)=\pi\left(E_{1}\right) \pi\left(E_{2}\right)$
Boltzmann equation for entropy

$$
\begin{aligned}
\mathrm{d} U & =\sum_{\psi} \pi(\psi) \cdot \mathrm{d} \mathcal{E}(\psi)+\sum_{\psi} \mathrm{d} \pi(\psi) \cdot \mathcal{E}(\psi)=-p \mathrm{~d} V+T \mathrm{~d} S \\
\Rightarrow \quad S & =-k_{\mathrm{B}} \sum_{\psi} \pi(\psi) \ln \pi(\psi) \text { or } S=k_{\mathrm{B}} \ln W \quad \Rightarrow F, G, \text { etc. }
\end{aligned}
$$

Boltzmann H-theorem (second law)

Canonical ensemble: Helmholtz energy

$$
\begin{gathered}
\pi(\psi)=\frac{\mathrm{e}^{-\beta \mathcal{E}(\psi)}}{Z}, \quad Z=\sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)} \quad \beta=\frac{1}{k_{\mathrm{B}} T} \\
S=-k_{\mathrm{B}} \sum_{\psi} \pi(\psi) \ln \pi(\psi)=-k_{\mathrm{B}} \sum_{\psi} \pi(\psi)[-\beta \mathcal{E}(\psi)-\ln Z]=\frac{U}{T}+k_{\mathrm{B}} \ln Z
\end{gathered}
$$

\Rightarrow Helmholtz energy:

$$
F=-k_{\mathrm{B}} T \ln Z
$$

$Z=$ canonical partition function $=$ statistical sum (also denoted Q)
Interpretation: number of "accessible" states (low-energy states are easily accessible, high-energy states are not)
From the Helmholtz energy F we can obtain all quantities ($\mathrm{d} F=-p \mathrm{~d} V-S \mathrm{~d} T$):

$$
\begin{array}{ll}
p=-\frac{\partial F}{\partial V} & U=F+T S \\
S=-\frac{\partial F}{\partial T} & H=U+p V \\
G=F+p V
\end{array}
$$

Semiclassical partition function

Hamilton formalism: positions of atoms $=\vec{r}_{i}$, momenta $=\vec{p}_{i}$.

$$
\mathcal{E}=\mathcal{H}=E_{\text {pot }}+E_{\text {kin }}, \quad E_{\text {pot }}=U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right), \quad E_{\text {kin }}=\sum_{i} \frac{\vec{p}_{i}^{2}}{2 m}
$$

Sum over states replaced by integrals (clasical mechanics needed):

$$
Z=\sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)}=\frac{1}{N!h^{3 N}} \int \exp \left[-\beta \mathcal{H}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, \vec{p}_{1}, \ldots, \vec{p}_{N}\right)\right] \mathrm{d} \vec{r}_{1} \cdots \mathrm{~d} \vec{p}_{N}
$$

where $h=2 \pi \hbar=$ Planck constant.

Why the factorial?

Particles are indistinguishable ... but at high enough T appear in different quantum states

Why Planck constant?

- Has the correct dimension (Z must be dimensionless)
- We get the same result for noninteracting quantum particles in a box
but fails if quantum effects are important (vide infra)

Semiclassical partition function

Integrals over positions and momenta are separated

Integrals over momenta can be evaluated: $\int \exp \left(-\frac{p_{1, x^{2} / 2 m}^{k_{B} T}}{k^{2}}\right) \mathrm{d} p_{1, x}=\sqrt{2 \pi k_{B} T m}$ After $3 N$ integrations we get:

$$
Z=\frac{Q}{N!\Lambda^{3 N}}, \quad \text { de Broglie thermal wavelength: } \Lambda=\frac{h}{\sqrt{2 \pi m k_{\mathrm{B}} T}}
$$

$\Lambda=$ de Broglie wavelength at typical particle velocity at given T

$$
\text { requirement: } \wedge \ll \text { typical atom-atom separation } \approx(V / N)^{1 / 3}
$$

Configurational integral:

$$
Q=\int \exp \left[-\beta U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)\right] \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}
$$

do not confuse:
$U=$ internal energy
$U\left(\vec{r}_{1}, \ldots\right)=$ potential

Mean value of a static quantity (observable):

$$
\langle X\rangle=\frac{1}{Q} \int X\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right) \exp \left[-\beta U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)\right] \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}
$$

Thermal de Broglie wavelength

Example

a）Calculate \wedge for helium at $T=2 \mathrm{~K}$ ．
b）Compare to the typical distance of atoms in liquid helium（density $0.125 \mathrm{~g} / \mathrm{cm}^{3}$ ）．
a）

$$
\begin{aligned}
\Lambda & =\frac{h}{\sqrt{2 \pi m k_{\mathrm{B}} T}} \\
& =\frac{6.6 \times 10^{-34}}{\sqrt{2 \times \pi \times \frac{0.004}{6 \times 10^{23} \times 1.38 \times 10^{-23} \times 2}}} \\
& =6.2 \times 10^{-10} \mathrm{~m}
\end{aligned}
$$

b）

$$
l=\sqrt[3]{V_{1}}=\sqrt[3]{\frac{M}{N_{\mathrm{A}} \rho}}=\sqrt[3]{\frac{0.004}{6 \times 10^{23} \times 125}}=3.8 \times 10^{-10} \mathrm{~m}
$$

$\underline{l<\Lambda \Rightarrow \text { cannot use classical mechanics }}$

Semiclassical monoatomic ideal gas

$$
\begin{gathered}
Q=\int \exp [0] \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}=\int_{V} \mathrm{~d} \vec{r}_{1} \cdots \int_{V} \mathrm{~d} \vec{r}_{N}=V^{N} \\
Z=\frac{Q}{N!\Lambda^{3 N}}=\frac{V^{N}}{N!\Lambda^{3 N}} \approx \frac{V^{N}}{N^{N} \mathrm{e}^{-N} \Lambda^{3 N^{\prime}}}, \quad F=-k_{\mathrm{B}} T \ln Z=-k_{\mathrm{B}} T N \ln \frac{V \mathrm{e}}{N \Lambda^{3}} \\
p=-\left(\frac{\partial F}{\partial V}\right)_{T}=\frac{k_{\mathrm{B}} T N}{V}=\frac{n R T}{V} \quad \begin{array}{l}
\mathrm{e}=\text { Eul } \\
e=\text { eler } \\
U=F+T S=F-T\left(\frac{\partial F}{\partial T}\right)_{V}=\frac{3 N k_{\mathrm{B}} T}{2} \\
\mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}=k_{\mathrm{B}} T \ln \left(\frac{N \Lambda^{3}}{V}\right)=k_{\mathrm{B}} T \ln \left(\frac{p \Lambda^{3}}{k_{\mathrm{B}} T}\right)
\end{array}
\end{gathered}
$$

(with respect to the standard state of a free molecule at zero temperature)
And verification:

$$
G=F+p V=k_{\mathrm{B}} T N \ln \frac{N \Lambda^{3}}{V \mathrm{e}}+N k_{\mathrm{B}} T=N \mu
$$

Monoatomic ideal gas

Or quantum calculation of the translational partition function:
Eigenvalues of energy of a point mass in a $a \times b \times c$ box:

$$
\mathcal{E}=\frac{h^{2}}{8 m}\left(\frac{n_{x}^{2}}{a^{2}}+\frac{n_{y}^{2}}{b^{2}}+\frac{n_{z}^{2}}{c^{2}}\right)
$$

Maxwell-Boltzmann statistics: high enough temperature so that a few particles compete for the same quantum state - it does not matter whether we have fermions or bosons; equivalently, $\Lambda \ll$ distance between particles.

Partition function:

$$
\begin{gathered}
Z_{1}=\sum_{n_{x}=1}^{\infty} \sum_{n_{y}=1}^{\infty} \sum_{n_{z}=1}^{\infty} \exp (-\beta \mathcal{E}) \stackrel{\sum \rightarrow \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \exp (-\beta \mathcal{E}) \mathrm{d} n_{x} \mathrm{~d} n_{y} \mathrm{~d} n_{z}=\frac{V}{\Lambda^{3}}}{E=\sum_{i=1}^{N} E_{i} \Rightarrow Z=\frac{1}{N!} Z_{1}^{N}}
\end{gathered}
$$

Yes, it is the same! The choice of factor $1 / h^{3 N}$ in the semiclassical Z was correct.

Polyatomic ideal gas

The internal degrees of freedom are separated from the translational ones. The internal partition function is the sum over the internal degrees of freedom:

$$
q=\sum_{\psi_{\mathrm{in}}} \mathrm{e}^{-\beta \mathcal{E}(\psi)}
$$

Canonical partition function:

$$
Z=\frac{(q V)^{N}}{N!\Lambda^{3 N}}, \quad F=-k_{\mathrm{B}} T \ln Z=-k_{\mathrm{B}} T N \ln \frac{V \mathrm{eq}}{N \Lambda^{3}}
$$

Chemical potential:

$$
\mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}=k_{\mathrm{B}} T \ln \left(\frac{N \Lambda^{3}}{q V}\right)=k_{\mathrm{B}} T \ln \left(\frac{p \Lambda^{3}}{q k_{\mathrm{B}} T}\right)
$$

NPT ensemble: $T, p=$ const

Also isothermal-isobaric, loosely "isobaric": $V \rightarrow p$
The same argument now applied to V (as for E before):

$$
\boldsymbol{\pi}\left(V_{1+2}\right)=\boldsymbol{\pi}\left(V_{1}+V_{2}\right)=\boldsymbol{\pi}\left(V_{1}\right) \boldsymbol{\pi}\left(V_{2}\right)
$$

Together: $\boldsymbol{\pi}=\exp \left(\alpha_{i}-\beta E-\gamma V\right)$
γ is a universal property of a barostat - to be determined from ideal gas

$$
\langle V\rangle=\frac{\int V \mathrm{e}^{-\beta E_{\mathrm{kin}}} \mathrm{e}^{-\gamma V} \mathrm{~d} V \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{p}_{N}}{\int \mathrm{e}^{-\beta E_{\mathrm{kin}}} \mathrm{e}^{-\gamma V} \mathrm{~d} V \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{p}_{N}}=\frac{\int V^{N+1} \mathrm{e}^{-\gamma V} \mathrm{~d} V}{\int V^{N} \mathrm{e}^{-\gamma V} \mathrm{~d} V}=\frac{N+1}{\gamma}
$$

Tricks used:
$\int \mathrm{d} \vec{p}_{1} \ldots \mathrm{~d} \vec{p}_{N}$ gives the same factor, $\wedge^{-3 N}$
$-\int \mathrm{d} \overrightarrow{1}_{1} \ldots \mathrm{~d} \vec{r}_{N}=V^{N}$
correctly: $\int X \mathrm{~d} V \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}=\int_{0}^{\infty}\left[\int_{V} \ldots \int_{Y} X \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}\right] \mathrm{d} V$ (the order of integration is important $-\int \mathrm{d} V$ is the last)
or by substituting $V^{1 / 3} \xi_{i}=\vec{r}_{i}$ one gets $\mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}=V^{N} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{N}$
(then the integration order is irrelevant)
$\int_{0}^{\infty} V^{N} \mathrm{e}^{-\gamma V} \mathrm{~d} V=N!/ \gamma^{N+1}$ (recursively by parts)
$\langle V\rangle$ should be equal to $N k_{\mathrm{B}} T / p$ (at limit $N \rightarrow \infty$) $\Rightarrow \gamma=\frac{N+1}{N} \frac{p}{k_{\mathrm{B}} T} \approx \frac{p}{k_{\mathrm{B}} T}$

For nitpickers:
(more in simen10):
$\left\langle V_{N P T}\left(p_{N V T}\right)\right\rangle-V$
$\approx \frac{k_{\mathrm{B}} T}{2 N}\left(\frac{\partial \rho}{\partial p}\right)_{T} \rho^{2} \frac{\partial^{2} V}{\partial \rho^{2}}$
id. gas $\frac{V}{N}=\frac{p}{k_{B} T}$
so that +1 below can be safely ignored. . .

NPT ensemble (contd.)

Normalization constant α (from the Boltzmann eq. and $\mathrm{e}^{\alpha}=1 / Z_{N p T}$):

$$
\begin{gathered}
S=k_{\mathrm{B}} \sum_{\psi} \pi(\psi)[\alpha-\beta \mathcal{E}(\psi)-\gamma V]=k_{\mathrm{B}} \alpha-\frac{U}{T}-\frac{p\langle V\rangle}{T} \\
-k_{\mathrm{B}} T \ln Z_{N p T}=U-T S+p\langle V\rangle=G \\
Z_{N p T}=\frac{1}{N!h^{3 N}} \int \chi \mathrm{e}^{-\beta(E+p V)} \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{p}_{N} \mathrm{~d} V
\end{gathered}
$$

where $\chi=\left\{1 / \wedge^{3}, \beta p, N / V, 1 / V, \ldots\right\}$ zajišt'uje bezrozměrnost ($N \rightarrow \infty$ stejné)
We easily get:

$$
\mathrm{d} G=-S \mathrm{~d} T+V \mathrm{~d} p
$$

$$
\left(\frac{\partial \ln Z_{N p T}}{\partial p}\right)_{T}=-\beta\langle V\rangle \frac{N+1}{N}+\frac{1}{p} \text { čili }\left(\frac{\partial G}{\partial p}\right)_{T}=\langle V\rangle \frac{N+1}{N}-\frac{k_{B} T}{p} \stackrel{N \rightarrow \infty}{\approx}_{\approx}\langle V\rangle
$$

The expectation value of X in the isobaric ensemble is

$$
\langle X\rangle=\frac{\int X \mathrm{e}^{-\beta(E+p V)} \mathrm{d} V \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{p}_{N}}{Z_{N p T}}
$$

Grandcanonical ensemble: $\mu=$ const

The same argument now applied to N (as for E, V before):

$$
\boldsymbol{\pi}\left(N_{1+2}\right)=\boldsymbol{\pi}\left(N_{1}+N_{2}\right)=\boldsymbol{\pi}\left(N_{1}\right) \boldsymbol{\pi}\left(N_{2}\right)
$$

Together: $\boldsymbol{\pi}=\exp \left(\alpha_{i}-\beta E+\delta N\right)$
δ is a universal property of a source of particles - to be determined from ideal gas

$$
\langle N\rangle=\frac{\sum_{N=0}^{\infty} \int \frac{N}{h^{3 N} N!} \mathrm{e}^{-\beta E_{\text {kin }}} \mathrm{e}^{\delta N} \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{p}_{N}}{\sum_{N=0}^{\infty} \int \frac{1}{h^{3 N} N!} \mathrm{e}^{-\beta E_{\text {kin }}} \mathrm{e}^{\delta N} \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{p}_{N}} \frac{\sum_{N=0}^{\infty} \frac{N}{N} \frac{V^{N}}{\Lambda^{3 N}} \mathrm{e}^{\delta N}}{\sum_{N=0}^{\infty} \frac{1}{N!} \frac{v^{N}}{\Lambda^{3 N}} \mathrm{e}^{\delta N}}=\frac{V}{\Lambda^{3}} \mathrm{e}^{\delta}
$$

Tricks used:
$\int \mathrm{d} \vec{p}_{1} \ldots \mathrm{~d} \vec{p}_{N}=\Lambda^{-3 N}$
$\int d \vec{r}_{1} \ldots d \vec{r}_{N}=V^{N}$
$\sum \frac{1}{N!} x^{N}=\mathrm{e}^{x}$, where $x=\frac{V^{N}}{\Lambda^{3 N}} \mathrm{e}^{\delta N}$
derivative by $x: \sum \frac{1}{N!} N x^{N-1}=\mathrm{e}^{x} \Rightarrow \sum_{0}^{\infty} \frac{N}{N!} x^{N}=x \mathrm{e}^{x}$
On comparing with $\exp \left(-\beta \mu_{\mathrm{id}}\right.$, point particle $)=V / \Lambda^{3} N$ one gets $\delta=\beta \mu$.

Grandcanonical ensemble: $\mu=$ const (contd.)

Normalization constant α (from the Boltzmann eq. and $\mathrm{e}^{\alpha}=1 / Z_{\mu V T}$):

$$
\begin{gathered}
S=k_{\mathrm{B}} \sum_{\psi} \pi(\psi)[\alpha-\beta \mathcal{E}(\psi)+\delta N]=k_{\mathrm{B}} \alpha-\frac{U}{T}+\frac{\mu\langle N\rangle}{T} \\
-k_{\mathrm{B}} T \ln Z_{\mu V T}=U-T S-\mu\langle N\rangle=\Omega
\end{gathered}
$$

where

$$
Z_{\mu V T}=\sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N!h^{3 N}} \int \mathrm{e}^{-\beta E \mathrm{~d} \vec{r}_{1} \ldots . . \mathrm{d} \vec{p}_{N}, ~ . ~}
$$

Grandcanonical potential $\Omega=F-\mu N=F-G=-p V$

$$
\mathrm{d} F=-\mathrm{S} \mathrm{~d} T-p \mathrm{~d} V+\mu \mathrm{d} N \Rightarrow \mathrm{~d} \Omega=-\mathrm{S} \mathrm{~d} T-p \mathrm{~d} V-N \mathrm{~d} \mu
$$

Grandcanonical ensemble: $\mu=$ const (contd.)

The expectation value of X in the grandcanonical ensemble is

$$
\langle X\rangle=\frac{\sum_{0}^{\infty} \frac{a^{N}}{N!} \int X \mathrm{e}^{-\beta E} \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{p}_{N}}{\sum_{0}^{\infty} \frac{a^{N}}{N!} \int \mathrm{e}^{-\beta E} \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{p}_{N}}, \quad \text { where } a=\mathrm{e}^{\beta \mu}
$$

The last eq. is usually integrated over momenta (incl. internal degrees of freedom); for $X=X\left(N, \vec{r}^{N}\right)$ it holds:

$$
\begin{equation*}
\langle X\rangle=\frac{\sum_{0}^{\infty} \frac{a^{\prime N}}{N!} \int X e^{-\beta E} d \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}}{\sum_{0}^{\infty} \frac{a^{\prime N}}{N!} \int \mathrm{e}^{-\beta E} \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}}, \quad \text { where } a^{\prime}=\frac{a q}{\Lambda^{3}} \tag{1}
\end{equation*}
$$

Grandcanonical ensemble: $\mu=$ const (contd.)

The quotient in series (1) can be expressed as

$$
e^{\beta \mu_{\mathrm{id}}}=\rho \wedge^{3} / q
$$

$$
a^{\prime}=\frac{a q}{\Lambda^{3}}=\mathrm{e}^{\beta \mu_{\mathrm{res}}} \rho, \quad \rho=\frac{\langle N\rangle}{V}, \quad \mu_{\mathrm{res}}=\mu-\mu^{\mathrm{id}}(\rho)
$$

where $\mu_{\text {res }}$ is the residual chemical potential = chemical potential with respect to the standard state of ideal gas at given temperature and volume (= density), which can be compared with tables (after pressure is recalculated from $p^{\text {st }}$ using the ideal gas equation of state).

