Molecular dynamics

hard spheres etc. - collisions

- "classical" MD - integration of the equations of motion

Brownian (stochastic) dynamics, dissipative particle dynamics = MD + random forces Forces are needed:

$$
\vec{f}_{i}=-\frac{\partial U\left(\vec{r}^{N}\right)}{\partial \vec{r}_{i}} \quad i=1, \ldots, N
$$

Example - pair forces:

$$
u=\sum_{i<j} u\left(r_{i j}\right) \Rightarrow \vec{f}_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{N} \vec{f}_{j i} \equiv-\sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{\mathrm{~d} u\left(r_{j i}\right)}{\mathrm{d} r_{j i}} \frac{\partial r_{j i}}{\partial \vec{r}_{i}}=-\sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{\mathrm{~d} u\left(r_{j i}\right)}{\mathrm{d} r_{j i}} \frac{\vec{r}_{j i}}{r_{j i}}
$$

Notation: $\vec{r}_{i j}=\vec{r}_{j}-\vec{r}_{i}, r_{i j}=\left|\vec{r}_{i j}\right|$

$$
\frac{\mathrm{d}^{2} \vec{r}_{i}}{\mathrm{~d} t^{2}}=\ddot{\vec{r}}_{i}=\frac{\vec{f}_{i}}{m_{i}}, \quad i=1, \ldots, N
$$

Method of finite differences, timestep h
Initial value problem: \vec{r} and $\dot{\vec{r}}$ at time t_{0} are known

Methods:

- Runge-Kutta: many evaluations of the right-hand side/step (costly!)
- Predictor-corrector: a bit better, rarely used
- Verlet and clones (symplectic = good energy conservation)

Oultiple timestep methods: more timescales (usually symplectic)

- Geometric integrators (symplectic)

Verlet method

Taylor expansion:

$$
\begin{aligned}
\vec{r}_{i}(t-h) & =\vec{r}_{i}(t)-h \dot{\vec{r}}_{i}(t)+\frac{h^{2}}{2} \ddot{\vec{r}}_{i}(t)-\ldots & & +1 \times \\
\vec{r}_{i}(t) & =\vec{r}_{i}(t) & & -2 \times \\
\vec{r}_{i}(t+h) & =\vec{r}_{i}(t)+h \dot{\vec{r}}_{i}(t)+\frac{h^{2}}{2} \ddot{\vec{r}}_{i}(t)+\ldots & & +1 \times
\end{aligned}
$$

\Rightarrow numeric 2nd derivative: $\ddot{\vec{r}}_{i}(t)=\frac{\vec{f}_{i}(t)}{m_{i}}=\frac{\vec{r}_{i}(t-h)-2 \vec{r}_{i}(t)+\vec{r}_{i}(t+h)}{h^{2}}+\mathcal{O}\left(h^{2}\right)$
Verlet method: $\quad \vec{r}_{i}(t+h)=2 \vec{r}_{i}(t)-\vec{r}_{i}(t-h)+h^{2} \frac{\vec{f}_{i}(t)}{m_{i}}$
Initial values: $\quad \vec{r}_{i}\left(t_{0}-h\right)=\vec{r}_{i}\left(t_{0}\right)-h \dot{\vec{r}}_{i}\left(t_{0}\right)+\frac{h^{2} \vec{f}_{i}\left(t_{0}\right)}{2} \frac{\mathcal{O}\left(h^{3}\right), ~}{m_{i}}$
(1) time-reversible (\Rightarrow no energy drift); even symplectic
\ominus cannot use for $\ddot{r}=f(r, \dot{r})$ because $\dot{r}(t)$ is not known at time t
Identical trajectories: leap-frog, velocity Verlet, Gear $(m=3)$, Beeman
velocity $=$ displacement (change in position) per unit time h (vector)

$$
\vec{v}(t+h / 2)=\frac{\vec{r}(t+h)-\vec{r}(t)}{h}
$$

acceleration $=$ change in velocity per unit time

$$
\vec{a}(t)=\frac{\vec{v}(t+h / 2)-\vec{v}(t-h / 2)}{h}=\frac{\vec{f}}{m}
$$

\Rightarrow

$$
\left.\begin{array}{rl}
\vec{v}(t+h / 2) & :=\vec{v}(t-h / 2)+\vec{a}(t) h \\
\vec{r}(t+h) & :=\vec{r}(t)+\vec{v}(t+h / 2) h \\
t & :=t+h
\end{array}\right\} \text { repeated }
$$

equivalent to Verlet (identical trajectory)
but: velocities at different time, a bit different (by $\mathcal{O}\left(h^{2}\right)$) kinetic energy

Equivalence of Verlet and leap-frog

Leap-frog:

$$
\left.\begin{array}{rl}
v(t+h / 2) & :=v(t-h / 2)+a(t) h \\
r(t+h) & :=r(t)+v(t+h / 2) h \\
t & :=t+h
\end{array}\right\} \text { repeated }
$$

2nd equation twice in 2 different times:

$$
\begin{aligned}
r(t+h) & =r(t)+v(t+h / 2) h & & x+1 \\
r(t) & =r(t-h)+v(t-h / 2) h & & x-1
\end{aligned}
$$

Subtract both equations:

$$
r(t+h)-r(t)=r(t)-r(t-h)+v(t+h / 2) h-v(t-h / 2) h
$$

insert for the difference of velocities:

$$
r(t+h)-2 r(t)+r(t-h)=h[v(t+h / 2)-v(t-h / 2)]=a(t) h^{2}=\frac{f(t)}{m} h^{2}
$$

which is the Verlet method

Example: planetary orbit
energy is well conserved
perihelion precession $\mathcal{O}\left(h^{2}\right)$
harmonic oscillator: frequency shifted $\mathcal{O}\left(h^{2}\right)$

Verlet once again

By methods of theoretical mechanics:

- expressing the position and momentum propagators in operator form
- some tricks to overcome their noncommutativity
we can derive the velocity Verlet:

$$
\begin{aligned}
& r(t+h)=r(t)+v(t) h+\frac{f(t)}{m} \frac{h^{2}}{2} \\
& v(t+h)=v(t)+\frac{f(t)+f(t+h) h}{m} \frac{h}{2}
\end{aligned}
$$

The same trajectory as Verlet with $v(t)=\frac{r(t+h)-r(t-h)}{2 h} \ldots$
kinetic energy differs from leap-frog by $\mathcal{O}\left(h^{2}\right)$
... but we can also learn a lot about energy conservation

What is this good for?

$$
\exp \left(i \hat{L}_{p} h / 2\right) \exp \left(i \hat{L}_{r} h\right) \exp \left(i \hat{L}_{p} h / 2\right)=\exp (i \hat{L} h+\epsilon)
$$

error ϵ can be estimated ($\propto h^{3}$)
we can calculate a "perturbed Hamiltonian" (error $\mathcal{O}\left(h^{3}\right)$ per step, $\mathcal{O}\left(h^{2}\right)$ globally), exactly constant with the Verlet method
i.e., Verlet is symplectic \Rightarrow error is bound
(time reversibility \Rightarrow only error $\propto t^{1 / 2}$)
multiple-timestep methods and higher-order methods
energy conservation error is used to set the timestep h

symplectic

reversible

irreversible

