Random numbers in algorithms

［simul／bias2d．sh］ $1 / 23$
A deterministic algorithm is a sequence of operations giving the correct answer（or failing to do so in such a way that we know about the failure）．
Example：matrix inversion by the Gauss－Jordan elimination with full pivoting．
－A Monte Carlo algorithm as a procedure using（pseudo）random number to obtain a result， which is correct with certain probability；typically，a numerical result subject to a stochastic error．
Example：Calculating the internal energy，$\left\langle E_{\text {kin }}+E_{\text {pot }}\right\rangle$ ，in a MD simulation in the $N V T$ ensemble
－A Las Vegas algorithm uses random numbers to obtain a deterministic result．
Example：matrix inversion by the Gauss－Jordan elimination with the pivot element selected at random from several（large enough）pivot candidates．

Also＂random shooting＂．Generally

$$
\int_{\Omega} f\left(x_{1}, \ldots, x_{D}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{D} \approx \frac{|\Omega|}{K} \sum_{k=1}^{K} f\left(x_{1}^{(k)}, \ldots, x_{D}^{(k)}\right)
$$

where $\left(x_{1}^{(k)}, \ldots, x_{D}^{(k)}\right)$ is a random vector from region Ω
$\left(|\Omega|=\right.$ area，volume，\ldots ；calculation of $\left.\pi: \Omega=(-1,1)^{2},|\Omega|=4\right)$

Usage（ δp is the standard error of p ）
rel．error

$$
\pi \approx \frac{2 l}{p d^{\prime}}, \text { where } p=\frac{n_{\text {crosses }}}{n_{\text {total }}}, \delta p \approx \sqrt{\frac{p(1-p)}{n-1}}, \delta \pi=\frac{2 l}{p d} \frac{\delta p^{2}}{p}
$$

for me：grid：pic／buffon－grid．pdf and buffon．sh

Exercises

$+\begin{gathered}4 / 23 \\ 505 / 3\end{gathered}$

Easy．Calculate by Monte Carlo integration：

$$
\int_{x>0, y>0, z>0, x+y+z<1} \frac{1}{\left|\vec{r}-\vec{r}_{0}\right|} \mathrm{d} \vec{r}
$$

where $\vec{r}_{0}=(1,1,1)$
＇8てLてZらてt’0
Hard．Calculate by Monte Carlo integration the second virial coefficient of the Lennard－Jones di－ atomics $\left(\epsilon / k_{\mathrm{B}} T=1, \sigma=1\right)$ for bond length $L=\sigma$ ．

$$
\begin{gathered}
B_{2}=-\frac{1}{2} \int\left[\exp \left(-\frac{u}{k_{\mathrm{B}} T}\right)-1\right] \mathrm{d} \vec{r} \frac{\mathrm{~d} \omega_{1}}{4 \pi} \frac{\mathrm{~d} \omega_{2}}{4 \pi} \\
u=u_{\mathrm{L} J}\left(\left|\vec{r}_{1 A}-\vec{r}_{2 A}\right|\right)+u_{\mathrm{L}}\left(\left|\vec{r}_{1 A}-\vec{r}_{2 B}\right|\right)+u_{\mathrm{L}}\left(\left|\vec{r}_{1 B}-\vec{r}_{2 A}\right|\right)+u_{\mathrm{L}}\left(\left|\vec{r}_{1 B}-\vec{r}_{2 B}\right|\right)
\end{gathered}
$$

Hints：
$-\mathrm{d} \vec{r} \rightarrow 4 \pi r^{2} \mathrm{~d} r$
－substitute $r=1 / w-1$（MC \int is over $\left.w \in(0,1)\right)$
$-\mathrm{d} \omega_{i}=\mathrm{d} \cos \theta_{i} \mathrm{~d} \phi_{i}\left(\cos \theta_{i} \in(-1,1), \phi_{i} \in(0,2 \pi)\right)$

Importance sampling

$\langle f\rangle \approx \frac{\sum_{k=1}^{K} \mathrm{e}^{-\beta U\left(\vec{r}_{k}^{N}\right)} f\left(\vec{r}^{N}\right)}{\sum \mathrm{e}^{-\beta U\left(\vec{r}_{k}^{N}\right)}} \quad \vec{r}_{k}^{N}=$ random vector uniformly in the space（naive MC）
$\langle f\rangle \approx \frac{1}{K} \sum_{k=1}^{K} f\left(\vec{r}^{N,(k)}\right) \quad \quad \vec{r}^{N,(k)}=$ random vector with a probability $\propto \mathrm{e}^{-\beta U\left(\vec{r}_{k}^{N}\right)}$
Metropolis algorithm：$\vec{r}^{N,(k+1)}$ generated sequentially from $\vec{r}^{N,(k)}$

Metropolis method（intuitively）

Choose a particle，i（e．g．，randomly）
－Try to move it，e．g．：

$$
\begin{aligned}
x_{i}^{\operatorname{tr}} & =x_{i}+u_{(-d, d)} \\
y_{i}^{\operatorname{tr}} & =y_{i}+u_{(-d, d)} \\
z_{i}^{\operatorname{tr}} & =z_{i}+u_{(-d, d)}
\end{aligned}
$$

or in／on sphere，
Gaussian,..
so that the probability of the reversed move is the same
Calculate the change in the potential energy，$\Delta U=U^{\text {tr }}-U$
If $\Delta U \leq 0$ ，the change is accepted
If $\Delta U \geq 0$ ，the change is accepted with probability $\exp (-\beta \Delta U)$ ，otherwise rejected
Because then it holds for the probability ratio：
new ：old $=p^{\text {tr }}: p=\exp (-\beta \Delta U)$
（Moves \rightarrow and \leftarrow are compared：Always the probability of the energy－decreasing move $=1$ ，and of the reversed move ＝Boltzmann）

A bit of theory：random variables

Random variable \mathcal{S} gives values in $\left\{A_{i}\right\}, i=1, \ldots M$ ，with probabilities $\pi\left(A_{i}\right)=\pi_{i}$ ． Normalization：$\sum_{i} \pi_{i}=1$
Markov chain is a sequence $\mathcal{S}^{(k)}, k=1, \ldots, \infty$ such that $\mathcal{S}^{(k+1)}$ depends only on $\mathcal{S}^{(k)}$ ，or mathe－ matically

$$
\pi_{j}^{(k+1)}=\sum_{i=1}^{M} \pi_{i}^{(k)} W_{i \rightarrow j} \quad \text { vector notation: } \boldsymbol{\pi}^{(k+1)}=\boldsymbol{\pi}^{(k)} \cdot \mathbf{w}
$$

Normalization：

$$
\sum_{j=1}^{M} w_{i \rightarrow j}=1 \quad \text { for all } i
$$

Example

$$
\begin{gathered}
w=\left(\begin{array}{ll}
0.9 & 0.1 \\
0.3 & 0.7
\end{array}\right) \\
\lim _{k \rightarrow \infty} \boldsymbol{\pi}^{(k)}=(0.75,0.25)
\end{gathered}
$$

Profit： $\begin{cases}2000 & \text { in order } \\ 500 & \text { out of order }\end{cases}$

$$
x=\binom{2000}{500}
$$

Averaged profit $=\sum \pi_{i} X_{i}=\boldsymbol{\pi} \cdot \mathbf{X}=1625$
for me：xoctave waits 3 s to switch desktop

Detailed balance and microreversibility

We are looking for W ，so that $\pi_{i}=\frac{\exp \left[-\beta U\left(A_{i}\right)\right]}{\sum_{j} \exp \left[-\beta U\left(A_{j}\right)\right]}$
Conditions：
$W_{i \rightarrow j} \geq 0 \quad$ for all $i, j=1, \ldots, M$
$\mathbf{w}=$ stochastic matrix，tran－ sition matrix，probability ma－ $\begin{aligned} \sum_{j=1}^{M} W_{i \rightarrow j}=1 & \text { for all } i=1, \ldots, M \\ \boldsymbol{\pi} \cdot \mathbf{W}=\boldsymbol{\pi} & \text { sometimes＂detailed balance＂}\end{aligned}$
\Uparrow
$\pi_{i} W_{i \rightarrow j}=\pi_{j} W_{j \rightarrow i} \quad$ microscopic reversibility
If
all states are accessible from an arbitrary state in a finite number of steps with a nonzero probability and
－no state is periodic
then the set of states is called ergodic and for any initial state probability distribution $\pi^{(1)}$ there exists a limit $\boldsymbol{\pi}=\lim _{k \rightarrow \infty} \boldsymbol{\pi}^{(k)}$

Metropolis method（more scientifically precise）

One of solutions（Metropolis）：

$$
W_{i \rightarrow j}= \begin{cases}\alpha_{i \rightarrow j} & \text { for } i \neq j \text { a } \pi_{j} \geq \pi_{i} \\ \alpha_{i \rightarrow j} \frac{\pi_{j}}{\pi_{i}} & \text { for } i \neq j \text { a } \pi_{j}<\pi_{i} \\ 1-\sum_{k, k \neq i} W_{i \rightarrow k} & \text { for } i=j\end{cases}
$$

Equivalent form：

$$
w_{i \rightarrow j}=\alpha_{i \rightarrow j} \min \left\{1, \frac{\pi_{j}}{\pi_{i}}\right\} \text { for } i \neq j
$$

where matrix $\alpha_{i \rightarrow j}=\alpha_{j \rightarrow i}$ describes a trial change of a configuration
．．．equivalent to the algorithm given above

Algorithm - details		
Choose a particle (lattice site, ...) to move$A^{\mathrm{tr}}:=A^{(k)}+$ random move (spin) of the chosen particle$\Delta U:=U\left(A^{\mathrm{tr}}\right)-U\left(A^{(k)}\right) \equiv U^{\mathrm{tr}}-U^{(k)}$The configuration is accepted $\left(A^{(k+1)}:=A^{\text {tr }}\right)$ with probability $\min \{1$,		
Version 1	Version 2	Version 3
$\begin{aligned} & u:=u_{(0,1)} \\ & \text { IF } u<\min \left\{1, \mathrm{e}^{-\beta \Delta U}\right\} \\ & \text { THEN } A^{(k+1)}:=A^{\operatorname{tr}} \\ & \text { ELSE } A^{(k+1)}:=A^{(k)} \end{aligned}$	$\begin{aligned} & u:=u_{(0,1)} \\ & \text { IF } u<\mathrm{e}^{-\beta \Delta U} \\ & \text { THEN } A^{(k+1)}:=A^{\operatorname{tr}} \\ & \text { ELSE } A^{(k+1)}:=A^{(k)} \end{aligned}$	$\begin{aligned} & \text { IF } \Delta U<0 \\ & \text { THEN } A^{(k+1)}:=A^{\operatorname{tr}} \\ & \text { ELSE } \\ & \quad u:=u_{(0,1)} \\ & \text { IF } u<\mathrm{e}^{-\beta \Delta U} \\ & \text { THEN } A^{(k+1)}:=A^{\operatorname{tr}} \\ & \text { ELSE } A^{(k+1)}:=A^{(k)} \end{aligned}$

- Choose a particle (lattice site, ...) to move
- $A^{\mathrm{tr}}:=A^{(k)}+$ random move (spin) of the chosen particle
$k:=k+1$ and again and again
[start 2 -vitezneho-oblouku.mov] $12 / 2$

Heat-bath method

good for lattice models

$$
W_{i \rightarrow j}=\frac{\exp \left(-\beta U_{j}\right)}{\sum_{A_{k} \in \mathcal{C}_{\text {part }}} \exp \left(-\beta U_{k}\right)} \text { pro } A_{i}, A_{j} \in \mathcal{C}_{\text {part }}
$$

$W_{i \rightarrow j}$ does not depend on i
O interpretation: i accept a new value after thermalisation in the actual environment
(usually one) spin chosen, the set of states $=\mathcal{C}_{\text {part }}$
new spin chosen \propto Boltzmann probability which depends on the environment
Oll the values of $W_{i \rightarrow j}$ needed (better, the cumulative distribution function) are precalculated in tables for all neighbourhoods

Acceptance ratio

$$
\chi=\frac{\text { number of accepted configurations }}{\text { number of all configurations }}
$$

χ depends on the displament d. Optimal χ depends on the system, quantity, algorithm. Often $\mathbf{0 . 3}$ is a good choice. Exception: diluted systems. .

LJ (reduced units): $T=1.2, \rho=0.8$

Exercise

Write a computer code for one molecule of nitrogen in a gravitational field Determin the pressure at the elevation of 8850 m and the acceptance ratio. Pressure at sea level is 1 bar. Assume constant temperature $T=300 \mathrm{~K}$.

- The potential of a molecule is $u(z)=\left\{\begin{array}{ll}\infty & \text { for } z<0 \\ m g z & \text { for } z \geq 0\end{array}\right.$, where z is its altitude
- use the trial displacement of form $z^{\mathrm{tr}}=z+\Delta z u_{[-1,1]}$
- optimum Δz is around 30 km (see below)
- start from the height $z=0$ followed by at least 20 steps of "equilibration"
- perform at least 10000 steps
- determine the number of cases of a molecule at heights in intervals $[0,100)$ and $[8850,8950$) - pressure is $p_{\text {sea }} \frac{\#([8850,8950))}{\#([0,100))}$

Determine the optimum size of the trial displacement Δz and corresponding optimum acceptance ratio χ with respect to quantity "averaged height of a molecule" $\langle z\rangle$. To do this, choose several values of Δz (e.g., $5,10,20,30,50,100 \mathrm{~km}$) and calculate $\langle z\rangle$ inckuding the error estimate $\sigma(z)$; e.g., by the block method (e.g., using 100 blocks by 100 MC steps). Plot $\sigma(z)$ as a function of Δz or χ.
$\varepsilon{ }^{\prime} 0=\chi$ 'سخ $0 \varepsilon ~$
$r_{i}=F\left(r_{i-1}, r_{i-2}, \ldots, r_{i-m}\right)$
Requirements:

- the period (smallest number p such that $r_{i+p}=r_{i}$) is as long as possible;
- distribution r_{i} is (in an interval given) uniform, particularly: also the lowest bits are random;
(r_{i}, r_{i+1}), triplets $\left(r_{i}, r_{i+1}, r_{i+2}\right)$, etc., are uncorrelated;
- the same holds for "all" functions f_{i} : pairs $\left(f_{0}\left(r_{i}\right), f_{1}\left(r_{i-1}\right)\right)$, triplets $\left(f_{0}\left(r_{i}\right), f_{1}\left(r_{i+1}\right), f_{2}\left(r_{i+2}\right)\right)$, etc., are uncorrelated;
O the code is fast.
History: example of a bad generator by IBM: $K\left(2^{16}+3,2^{31}\right)$

Feedback shift-register generators

$R(A, B, C, \ldots): \quad r_{i}=r_{i-A} \oplus r_{i-B} \oplus r_{i-C} \oplus \ldots$

$\oplus=$ addition modulo $2=X O R: 0 \oplus 0=1 \oplus 1=0,1 \oplus 0=0 \oplus 1=1$
Max. period is $2^{\max (A, B \ldots)}-1$
A word (32 or 64 bits) at once
E.g., $R(108,250), R(471,1586,6988,9689)$

Example. $R(5,2)$
1 step:
54321
$110110 \quad 1 \oplus 1=0$
more steps:
110110001111100110100100001010111011..
here period $=2^{5}-1=31$ (maximum possible)

Feedback shift-register generators

 $+\begin{aligned} & 18 / 23 \\ & 505 / 3\end{aligned}$
Algorithm:

CONST A=103
CONST $\quad B=205$
CONST $M=255$ where M is the smallest number of form $2^{k}-1$ so that $B \leq M, ~$
INTEGER n unsigned integer
INTEGER $r[0 \ldots M]$ array, filled in advance by random numbers of any origin
one step generating a random number (all bits):
$\mathrm{n}[\mathrm{n}$ and M$]:=\mathrm{r}[(\mathrm{n}-\mathrm{A})$ and $M]$ xor $\mathrm{r}[(\mathrm{n}-\mathrm{B})$ and $M]$
where and and xor work bitwise
The code is especially simple as a C/C++ macro:
\#define rnd (++n, r[n\&M] =r[(n-A)\&M] ^r[(n-B)\&M])
Pros: fast, mathematical theory for the perion and correlations
Cons: fails with some tests; e.g., the random walk $\rightarrow \rightarrow \rightarrow$
Remedy:

- combine two of them (still fast)
- Mersenne twister (high quality, popular)

Congruence generators

$K(C, M): \quad r_{i}=C r_{i-1} \bmod M$

where $A \bmod B$ is a reminder after division A / B
$K\left(5^{7}, 2^{32}\right)$: period $2^{32} / 8$
$K\left(7^{5}, 2^{31}-1\right)$: period $2^{31}-2$
Example. $K(5,31)$:
17182145428108252016199171821454281082520161991718 ..

Suppression of correlations - combine $\mathbf{2}$ generators

Declare a table and fill it by random numbers using generator \#1
O take randomly selected (index = random number using generator \#2) item of the table

- replace the "used" number by a new random number using generator \#1

Other distributions

Library functions usually give random number $u_{(0,1)}$, uniformly distributed in $(0,1)$ (or $[0,1)$ or [0,1] - be carefu!!), i.e.,

$$
\phi(x)= \begin{cases}1, & x \in(0,1) \\ 0, & x \notin(0,1)\end{cases}
$$

A number uniformly distributed in interval (a, b) is

$$
u_{(a, b)}=a+(b-a) u_{(0,1)}
$$

Generally: function $f(u)$ applied to $u_{(0,1)} \rightarrow$

$$
\phi(y)=\sum_{x, f(x)=y} \frac{1}{f^{\prime}(x) \mid}
$$

Inverse problem: known distribution $\phi(x), \int \phi(x) \mathrm{d} x=1$, needed:
the distribution function $\int_{-\infty}^{y} \phi(x) \mathrm{d} x$ must be inverted.
Example: $x=-\ln u$ gives $\phi(x)=\exp (-x)$ (check for $u=0!$)

Gauss normal distribution \quad| $21 / 23$ |
| :--- |
| $505 / 3$ |

$$
u_{\text {Gauss }}=\sqrt{-2 \ln u_{(0,1)}} \cos \left(2 \pi u_{(0,1)}\right)
$$

where both random numbers $u_{(0,1)}$ are independent, function $u_{(0,1)}$ thus has to be called twice. Second indepent number: replace $\cos \rightarrow \sin$.
Approximately:

$$
u_{\text {Gauss }} \approx \sqrt{2}\left(u_{(0,1)}-u_{(0,1)}+u_{(0,1)}-u_{(0,1)}+u_{(0,1)}-u_{(0,1)}\right)
$$

General distribution

When ϕ (in interval (a, b)) is not known (or too complicated):

1. generate $x=u_{(a, b)}$,
2. generate $u=u_{(0, m)}$, where m is the maximum of $\phi(x)$ in interval (a, b),
3. if $u<\phi(x)$, accept x as the number, otherwise repeat by step 1 .

SIMOLANT: Try MC by yourself

- Install SIMOLANT (see previous lecture).
- Menu: Method \rightarrow Monte Carlo NVT (Metropolis)
- If the automatic displacement setup is on (\|set MC move), turn it off. Slider " d " will appear.
Using the slider, change the trial displacement d and observe how the acceptance ratio (acc.r.) decreases and increases and how the configurations change.
Decrease temperature and increase density and repeat. Compare with a MD with a thermostat.
Menu: Boundary conditions \rightarrow Periodic, and set the critical temperature and density ($\sim T=0.85$ and $\rho=0.3$) and at least $N=300$ particles. Which displacement size "d" leads to the fastest sampling of density fluctuations?

Multidimensional distribution [cd simul; insphere.sh; onsphere.sh] $22 / 23$
In a unit ball (ball $=$ inside of a sphere)

1. generate $x=u_{(-1,1)}, y=u_{(-1,1)}, z=u_{(-1,1)}$
2. calculate $r^{2}=x^{2}+y^{2}+z^{2}$,
3. if $r^{2}<1$, accept vector (x, y, z), otherwise repeat by step 1 .

On a unit sphere: divide $\frac{\vec{r}_{\text {in ball }}}{r}$ (check for $r \approx 0$), or:

1. $z=u_{(-1,1)}, \phi=u_{(0,1)}$
2. $x=\sqrt{1-z^{2}} \sin (2 \pi \phi), y=\sqrt{1-z^{2}} \cos (2 \pi \phi)$

Uniform discrete distribution

$$
u_{N}=\operatorname{int}\left(N u_{(0,1)}\right)
$$

Better not like this (r is a random integer):

$$
u_{N}=r \bmod N
$$

(very bad for congruence generators - lower significant bits are not random)

