

Algorithm – details	(Pseudo)random numbers		
Choose a particle (lattice site,) to move			
• choose a particle function of the chosen particle • $A^{tr} := A^{(k)} + random move (spin) of the chosen particle$	$r_i = F(r_{i-1}, r_{i-2}, \dots, r_{i-m})$		
$ \Delta U := U(A^{\mathrm{tr}}) - U(A^{(k)}) \equiv U^{\mathrm{tr}} - U^{(k)} $	Requirements:		
• The configuration is accepted $(A^{(k+1)} := A^{tr})$ with probability min{1, $e^{-\beta\Delta U}$ } otherwise rejected:	 the period (smallest number p such that r_{i+p} = r_i) is as long as possible; distribution r_i is (in an interval given) uniform, 		
Version 1 Version 2 Version 3	particularly: also the lowest bits are random;		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• (r_i, r_{i+1}) , triplets (r_i, r_{i+1}, r_{i+2}) , etc., are uncorrelated;		
THEN $A^{(k+1)} := A^{\text{tr}}$ THEN $A^{(k+1)} := A^{\text{tr}}$ ELSE	• the same holds for "all" functions f_i : pairs $(f_0(r_i), f_1(r_{i-1}))$, triplets $(f_0(r_i), f_1(r_{i+1}), f_2(r_{i+2}))$, etc		
ELSE $A^{(k+1)} := A^{(k)}$ ELSE $A^{(k+1)} := A^{(k)}$ $u := u_{(0,1)}$ IF $u < e^{-\beta \Delta U}$	are uncorrelated; the code is fast.		
$\frac{1}{1} H = A^{tr}$	History: example of a bad generator by IBM: $K(2^{16} + 3, 2^{31})$		
$ELSE A^{(k+1)} := A^{(k)}$	· · · · · · · · · · · · · · · · · · ·		
• $k := k + 1$ and again and again			
How to choose a particle to move [start z-vitezneho-oblouku.mov] _{12/23} s05/3	Feedback shift-register generators 17/2 s05/.		
In a cycle – check the reversibility! Deterring examples of microreversibility violation:	$R(A, B, C, \ldots): r_i = r_{i-A} \oplus r_{i-B} \oplus r_{i-C} \oplus \ldots,$		
Three species A, B, C in a ternary mixture moved sequentially in the order of A–B–C–A–B–C– \cdots	\oplus = addition modulo 2 = XOR: 0 \oplus 0 = 1 \oplus 1 = 0, 1 \oplus 0 = 0 \oplus 1 = 1		
Sequence: move molecule A – move molecule B – change volume – ···	Max. period is $2^{\max(A,B)} - 1$		
Randomly Chase is better than had central	A word (32 or 64 bits) at once E.g., R(108, 250) , R(471, 1586, 6988, 9689)		
Chaos is better than bad control	Example. R(5, 2):		
A Later and a second	1 step:		
	54321 110110 1 \oplus 1=0		
	more steps:		
	1101100011111001101000001010111011		
	here period = $2^5 - 1 = 31$ (maximum possible)		
Heat-bath method $+\frac{13/23}{s05/3}$	Feedback shift-register generators + $\frac{18/2}{s05/}$		
good for lattice models:	Algorithm:		
-	CONST A=103		
$W_{i \to j} = \frac{\exp(-\beta U_j)}{\sum_{\substack{n \neq 0 \\ n \neq j}} \exp(-\beta U_k)} \text{pro } A_i, A_j \in \mathcal{C}_{\text{part}}$	CONST B=205 CONST M=255 where M is the smallest number of form $2^{k} - 1$ so that $B \le M$ INTEGER n unsigned integer		
Akeupart	INTEGER r[0M] array, filled in advance by random numbers of any origin		
• $W_{i \rightarrow j}$ does not depend on <i>i</i>	one step generating a random number (all bits): n := n+1		
interpretation: <i>i</i> accept a new value after thermalisation in the actual environment	<pre>r[n and M] := r[(n-A) and M] xor r[(n-B) and M] where and and xor work bitwise RETURN r[n and M]</pre>		
(usually one) spin chosen,	The code is especially simple as a C/C++ macro:		
the set of states = C_{part} new spin chosen \propto Boltzmann probability	<pre>#define rnd (++n, r[n&M] = r[(n-A)&M] ^ r[(n-B)&M])</pre>		
which depends on the environment	Pros: fast, mathematical theory for the perion and correlations		
• all the values of $W_{i\rightarrow j}$ needed	Cons: fails with some tests; e.g., the random walk $\rightarrow \rightarrow \rightarrow$ Remedy:		
(better, the cumulative distribution function) are precalculated in tables for all neighbourhoods	- combine two of them (still fast)		
	- Mersenne twister (high quality, popular)		
Acceptance ratio 14/23 s05/3	Congruence generators [simul/kongr.sh]19/23		
$\chi = \frac{\text{number of accepted configurations}}{\text{number of all configurations}}$	$K(C, M): r_l = Cr_{l-1} \mod M$		
-	where $A \mod B$ is a reminder after division A/B		
χ depends on the displament <i>d</i> . Optimal χ depends on the system, quantity, algorithm. Often 0.3 is a good choice. Exception: diluted systems	K(5 ⁷ , 2 ³²): period 2 ³² /8		
$\chi = 0.3$	$K(7^5, 2^{31} - 1)$: period $2^{31} - 2$		
	Example. <i>K</i> (5, 31): 1 7 18 2 14 5 4 28 10 8 25 20 16 19 9 1 7 18 2 14 5 4 28 10 8 25 20 16 19 9 1 7 18		
0.015 - 0.015 -			
δΡ	Suppression of correlations – combine 2 generators		
	Declare a table and fill it by random numbers using generator #1		
	take randomly selected (index = random number using generator #1) item of the table		
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 d X	 replace the "used" number by a new random number using generator #1 		
LJ (reduced units): $T = 1.2$, $\rho = 0.8$			
Exercise 15/23 \$05/3	Other distributions 20/2. s05/3		
Write a computer code for one molecule of nitrogen in a gravitational field. Determine the pressure at the elevation of 8850 m and the acceptance ratio. Pressure at sea level is 1 bar.	Library functions usually give random number $u_{(0,1)}$, uniformly distributed in (0, 1) (or [0, 1) or [0, 1] – be careful!), i.e.,		
Assume constant temperature $T = 300$ K.	$\phi(x) = \begin{cases} 1, & x \in (0, 1) \\ 0, & x \notin (0, 1) \end{cases}$		
- The potential of a molecule is $u(z) = \begin{cases} \infty & \text{for } z < 0 \\ mgz & \text{for } z \ge 0 \end{cases}$ where z is its altitude	A number uniformly distributed in interval (a, b) is		
- The potential of a molecule is $u(z) = \begin{cases} \infty & \text{for } z < 0 \\ mgz & \text{for } z \ge 0 \end{cases}$, where z is its altitude - use the trial displacement of form $z^{\text{tr}} = z + \Delta z u_{[-1,1]}$ - optimum Δz is around 30 km (see below)	A number uniformly distributed in interval (a, b) is $u_{(a,b)} = a + (b-a)u_{(0,1)}.$		
- The potential of a molecule is $u(z) = \begin{cases} \infty & \text{for } z < 0 \\ mgz & \text{for } z \ge 0 \end{cases}$, where z is its altitude - use the trial displacement of form $z^{\text{tr}} = z + \Delta zu_{[-1,1]}$ - optimum Δz is around 30 km (see below) - start from the height $z = 0$ followed by at least 20 steps of "equilibration"	$u_{(a,b)} = a + (b-a)u_{(0,1)}.$		
- The potential of a molecule is $u(z) = \begin{cases} \infty & \text{for } z < 0 \\ mgz & \text{for } z \ge 0 \end{cases}$, where z is its altitude - use the trial displacement of form $z^{\text{tr}} = z + \Delta z u_{[-1,1]}$ - optimum Δz is around 30 km (see below) - start from the height z = 0 followed by at least 20 steps of "equilibration" - perform at least 10000 steps - determine the number of cases of a molecule at heights in intervals [0,100) and [8850,8950)	$u_{(a,b)} = a + (b-a)u_{(0,1)}.$ Generally: function $f(u)$ applied to $u_{(0,1)} \rightarrow$		
- The potential of a molecule is $u(z) = \begin{cases} \infty & \text{for } z < 0 \\ mgz & \text{for } z \ge 0 \end{cases}$, where z is its altitude - use the trial displacement of form $z^{\text{tr}} = z + \Delta zu[-1,1]$ - optimum Δz is around 30 km (see below) - start from the height $z = 0$ followed by at least 20 steps of "equilibration" - perform at least 10000 steps	$u_{(a,b)} = a + (b-a)u_{(0,1)}.$		
- The potential of a molecule is $u(z) = \begin{cases} \infty & \text{for } z < 0 \\ mgz & \text{for } z \ge 0 \end{cases}$, where z is its altitude - use the trial displacement of form $z^{\text{tr}} = z + \Delta zu_{[-1,1]}$ - optimum Δz is around 30 km (see below) - start from the height $z = 0$ followed by at least 20 steps of "equilibration" - perform at least 10000 steps - determine the number of cases of a molecule at heights in intervals [0,100) and [8850,8950) - pressure is $p_{\text{sea}} \frac{\#(1880,8950))}{\#([0,100))}$ Determine the optimum size of the trial displacement Δz and corresponding optimum accep-	$u_{(a,b)} = a + (b-a)u_{(0,1)} .$ Generally: function $f(u)$ applied to $u_{(0,1)} \rightarrow$		
- The potential of a molecule is $u(z) = \begin{cases} \infty & \text{for } z < 0 \\ mgz & \text{for } z \ge 0 \end{cases}$, where z is its altitude - use the trial displacement of form $z^{\text{tr}} = z + \Delta z u_{[-1,1]}$ - optimum Δz is around 30 km (see below) - start from the height z = 0 followed by at least 20 steps of "equilibration" - perform at least 10000 steps - determine the number of cases of a molecule at heights in intervals [0,100) and [8850,8950) - pressure is $p_{\text{sea}} \frac{\#(8850,8950))}{\#(0,100)}$ Determine the optimum size of the trial displacement Δz and corresponding optimum acceptance ratio χ with respect to quantity "averaged height of a molecule" (z). To do this, choose	$u_{(a,b)} = a + (b - a)u_{(0,1)}.$ Generally: function $f(u)$ applied to $u_{(0,1)} \rightarrow \phi(y) = \sum_{x,f(x)=y} \frac{1}{ f'(x) }$		
- The potential of a molecule is $u(z) = \begin{cases} \infty & \text{for } z < 0 \\ mgz & \text{for } z \ge 0 \end{cases}$, where z is its altitude - use the trial displacement of form $z^{\text{tr}} = z + \Delta zu_{[-1,1]}$ - optimum Δz is around 30 km (see below) - start from the height $z = 0$ followed by at least 20 steps of "equilibration" - perform at least 10000 steps - determine the number of cases of a molecule at heights in intervals [0,100) and [8850,8950) - pressure is $p_{\text{sea}} \frac{\#(1880,8950))}{\#([0,100))}$ Determine the optimum size of the trial displacement Δz and corresponding optimum accep-	$u_{(a,b)} = a + (b - a)u_{(0,1)}.$ Generally: function $f(u)$ applied to $u_{(0,1)} \rightarrow \phi(y) = \sum_{x,f(x)=y} \frac{1}{ f'(x) }$ Inverse problem: known distribution $\phi(x), \int \phi(x)dx = 1$, needed:		

Gauss normal distribution 21/23 505/3	SIMOLANT: Try MC by yourself	
$u_{\text{Gauss}} = \sqrt{-2 \ln u_{(0,1)}} \cos(2\pi u_{(0,1)})$ where both random numbers $u_{(0,1)}$ are independent, function $u_{(0,1)}$ thus has to be called twice. Second indepent number: replace $\cos \rightarrow \sin$. Approximately: $u_{\text{Gauss}} \approx \sqrt{2} (u_{(0,1)} - u_{(0,1)} + u_{(0,1)} - u_{(0,1)} + u_{(0,1)} - u_{(0,1)})$	 Install SIMOLANT (see previous lecture). Menu: Method → Monte Carlo NVT (Metropolis) If the automatic displacement setup is on (set MC move), turn it off. Slider "d" will appear. Using the slider, change the trial displacement d and observe how the acceptance ratio (acc.r.) decreases and increases and how the configurations change. Decrease temperature and increase density and repeat. Com- 	N= T-3 g=0 Tbag Pvir, Etot 7,49 Ly, 21- Hotol 6,76
General distribution When ϕ (in interval (a, b)) is not known (or too complicated): 1. generate $x = u_{(a,b)}$, 2. generate $u = u_{(0,m)}$, where m is the maximum of $\phi(x)$ in interval (a, b) , 3. if $u < \phi(x)$, accept x as the number, otherwise repeat by step 1.	 pare with a MD with a thermostat. Menu: Boundary conditions → Periodic, and set the critical temperature and density (~ T = 0.85 and p = 0.3) and at least N = 300 particles. Which displacement size "d" leads to the fastest sampling of density fluctuations? 	mole dra co'
Multidimensional distribution [cd simul; insphere.sh; onsphere.sh]22/23 s05/3		
In a unit ball (ball = inside of a sphere) 1. generate $x = u_{(-1,1)}, y = u_{(-1,1)}, z = u_{(-1,1)},$ 2. calculate $r^2 = x^2 + y^2 + z^2,$ 3. if $r^2 < 1$, accept vector (x, y, z) , otherwise repeat by step 1. On a unit sphere: divide $\frac{T_{\text{In ball}}}{r}$ (check for $r \approx 0$), or: 1. $z = u_{(-1,1)}, \phi = u_{(0,1)}$ 2. $x = \sqrt{1-z^2} \sin(2\pi\phi), y = \sqrt{1-z^2} \cos(2\pi\phi)$		
Uniform discrete distribution		
$u_N = int(Nu_{(0,1)})$ Better not like this (<i>r</i> is a random integer): $u_N = r \mod N$ (very bad for congruence generators – lower significant bits are not random)		