
Random numbers in algorithms
[simul/bias2d.sh] 1/23

s05/3

A deterministic algorithm is a sequence of operations giving the correct answer (or failing to
do so in such a way that we know about the failure).
Example: matrix inversion by the Gauss–Jordan elimination with full pivoting.

A Monte Carlo algorithm as a procedure using (pseudo)random number to obtain a result,
which is correct with certain probability; typically, a numerical result subject to a stochastic
error.
Example: Calculating the internal energy, 〈Ekin+ Epot〉, in a MD simulation in the NVT ensemble

A Las Vegas algorithm uses random numbers to obtain a deterministic result.
Example: matrix inversion by the Gauss–Jordan elimination with the pivot element selected at
random from several (large enough) pivot candidates.

Example of pseudo random number generator +

n = 75n−1 mod (231 − 1), r = n/231

0 500 1000

i

0

0.5

1

ri

Monte Carlo integration (naive Monte Carlo)
[xpi] 2/23

s05/3

Example: Calculate π by MC integration

INTEGER n total # of points
INTEGER i
INTEGER nu # of points in a circle
REAL x,y coordinates of a point in a sphere
REAL rnd(-1,1) function returning a random number in interval [−1,1)

nu := 0
FOR i := 1 TO n DO

x := rnd(-1,1)
y := rnd(-1,1)
IF x*x+y*y < 1 THEN nu := nu + 1

PRINT "pi=", 4*nu/n area of square = 4

PRINT "std. error=", 4*sqrt((1-nu/n)*(nu/n)/(n-1))

Also “random shooting”. Generally
∫

Ω
ƒ (1, . . . , D)d1 . . .dD ≈

|Ω|

K

K
∑

k=1
ƒ ((k)1 , . . . , (k)D)

where ((k)1 , . . . , (k)D) is a random vector from region Ω
(|Ω| = area, volume, . . . ; calculation of π: Ω = (−1,1)2, |Ω| = 4)

Exercise – Buffon’s needle
3/23
s05/3

Let a needle of length  be tossed randomly on a plane with parallel lines d units
apart,  ≤ d. The probability that the needle crosses a line is p = 2/πd.

[Georges-Louis Leclerc, Comte de Buffon, 1707–1788]

Proof:

expression ( < b)
gives 1 if the inequal-
ity holds true, 0 other-
wise (Iverson bracket)

p =
1

d/2

∫ d/2

0

dz

π/2

∫ π/2

0
dθ

�

z <


2
cosθ

�

=
1

d/2

1

π/2

∫ π/2

0



2
cosθdθ =

2

πd

Usage (δp is the standard error of p)
↙

rel. error

π ≈
2

pd
, where p =

ncrosses

ntotal
, δp ≈

√

√

√
p(1 − p)

n − 1
, δπ =

2

pd

δp

p
for me: grid: pic/buffon-grid.pdf and buffon.sh

Exercises + 4/23
s05/3

Easy. Calculate by Monte Carlo integration:
∫

>0,y>0,z>0,+y+z<1

1

|r⃗ − r⃗0|
dr⃗

where r⃗0 = (1,1,1)

0.12522728...

Hard. Calculate by Monte Carlo integration the second virial coefficient of the Lennard-Jones di-
atomics (ε/kBT = 1, σ = 1) for bond length L = σ.

B2 = −
1

2

∫ �

exp
�

−


kBT

�

− 1
�

dr⃗
dω1

4π

dω2

4π

 = LJ(|r⃗1A − r⃗2A|) + LJ(|r⃗1A − r⃗2B|) + LJ(|r⃗1B − r⃗2A|) + LJ(|r⃗1B − r⃗2B|)

Hints:
– dr⃗ → 4πr2dr
– substitute r = 1/ − 1 (MC

∫

is over  ∈ (0,1))
– dω = dcosθ dϕ (cosθ ∈ (−1,1), ϕ ∈ (0,2π))

25.1036(2)

Importance sampling
5/23
s05/3

〈ƒ 〉 ≈

∑K
k=1 e

−βU(r⃗Nk)ƒ (r⃗N)
∑

e−βU(r⃗
N
k)

r⃗Nk = random vector uniformly in the space (naive MC)

〈ƒ 〉 ≈
1

K

K
∑

k=1
ƒ (r⃗N,(k)) r⃗N,(k) = random vector with a probability ∝ e−βU(r⃗

N
k)

Metropolis algorithm: r⃗N,(k+1) generated sequentially from r⃗N,(k)

naive MC importance sampling

Metropolis method (intuitively)
6/23
s05/3

Choose a particle,  (e.g., randomly)

Try to move it, e.g.:

or in/on sphere,
Gaussian,. . .

tr
 =  + (−d,d) ,

ytr
 = y + (−d,d) ,

ztr
 = z + (−d,d)

so that the probability of the reversed move is the same

Calculate the change in the potential energy, ΔU = Utr − U

If ΔU ≤ 0, the change is accepted
If ΔU ≥ 0, the change is accepted with probability exp(−βΔU), otherwise rejected

Because then it holds for the probability ratio:

new : old = ptr : p = exp(−βΔU)

(Moves → and ← are compared: Always the probability of
the energy-decreasing move = 1, and of the reversed move
= Boltzmann)

A bit of theory: random variables
7/23
s05/3

Random variable S gives values in {A},  = 1, . . .M, with probabilities π(A) = π.
Normalization:

∑

 π = 1

Markov chain is a sequence S(k), k = 1, . . . ,∞ such that S(k+1) depends only on S(k), or mathe-
matically

π(k+1)j =
M
∑

=1
π(k) W→j vector notation: πππ(k+1) = πππ(k) ·W

Normalization:
M
∑

j=1
W→j = 1 for all 

Example
[xoctave ../octave/markov.m MARKOV] 8/23

s05/3

Computer network:
§

1. in order
2. out of order

If in order: will crash with 10% probability
(the following day is out of order)

If out of order: gets fixed with 30% probability
(the following day is in order)

W =

0.9 0.1

0.3 0.7

!

limk→∞πππ(k) = (0.75, 0.25)

Profit:
§

2000 in order
500 out of order

X =

2000

500

!

Averaged profit =
∑

πX = πππ ·X = 1625

for me: xoctave waits 3 s to switch desktop

Detailed balance and microreversibility
9/23
s05/3

We are looking for W, so that π =
exp[−βU(A)]

∑

j exp[−βU(Aj)]
W = stochastic matrix, tran-
sition matrix, probability ma-
trix, Markov matrix. . .Conditions: W→j ≥ 0 for all , j = 1, . . . ,M

M
∑

j=1
W→j = 1 for all  = 1, . . . ,M

πππ ·W = πππ sometimes “detailed balance”

⇑

πW→j = πjWj→
microscopic reversibility
(detailed balance)

If

all states are accessible from an arbitrary state in a finite number of steps with a nonzero
probability and

no state is periodic

then the set of states is called ergodic and for any initial state probability distribution πππ(1) there
exists a limit πππ = limk→∞ πππ(k)

Metropolis method (more scientifically precise)
10/23
s05/3

One of solutions (Metropolis):

W→j =



























α→j for  ̸= j a πj ≥ π

α→j
πj
π

for  ̸= j a πj < π

1 −
∑

k, k ̸=
W→k for  = j

Equivalent form:

W→j = α→jmin
�

1,
πj
π

�

for  ̸= j

where matrix α→j = αj→ describes a trial change of a configuration
. . . equivalent to the algorithm given above

Algorithm – details
11/23
s05/3

Choose a particle (lattice site, . . .) to move

Atr := A(k) + random move (spin) of the chosen particle

ΔU := U(Atr) − U(A(k)) ≡ Utr − U(k)

The configuration is accepted (A(k+1) := Atr) with probability min{1,e−βΔU} otherwise rejected:

Version 1 Version 2 Version 3

 := (0,1)  := (0,1) IF ΔU < 0

IF  < min{1,e−βΔU} IF  < e−βΔU THEN A(k+1) := Atr

THEN A(k+1) := Atr THEN A(k+1) := Atr ELSE

ELSE A(k+1) := A(k) ELSE A(k+1) := A(k)  := (0,1)
IF  < e−βΔU

THEN A(k+1) := Atr

ELSE A(k+1) := A(k)

k := k + 1 and again and again

How to choose a particle to move
[start z-vitezneho-oblouku.mov]12/23

s05/3

In a cycle – check the reversibility!
Deterring examples of microreversibility violation:

Three species A, B, C in a ternary mixture moved sequentially in the order of A–B–C–A–B–C– · · ·
Sequence: move molecule A – move molecule B – change volume – · · ·

Randomly

Chaos is better than bad control

Heat-bath method + 13/23
s05/3

good for lattice models:

W→j =
exp(−βUj)

∑

Ak∈Cpart

exp(−βUk)
pro A, Aj ∈ Cpart

W→j does not depend on 

interpretation:  accept a new value after
thermalisation in the actual environment

(usually one) spin chosen,
the set of states = Cpart

new spin chosen ∝ Boltzmann probability
which depends on the environment

all the values of W→j needed
(better, the cumulative distribution function)
are precalculated in tables for all neighbourhoods

Acceptance ratio
14/23
s05/3

χ =
number of accepted configurations

number of all configurations

χ depends on the displament d. Optimal χ depends on the system, quantity, algorithm. Often 0.3

is a good choice. Exception: diluted systems. . .

0.005

0.010

0.015

0.020

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

δP

d

•

•

•
•
•••
•
•
•

•

0.005

0.010

0.015

0.020

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

χ

•

•

•
•

•••
•
•
•

•

LJ (reduced units): T = 1.2, ρ = 0.8

Exercise
15/23
s05/3

Write a computer code for one molecule of nitrogen in a gravitational field. Determine the
pressure at the elevation of 8850 m and the acceptance ratio. Pressure at sea level is 1 bar.
Assume constant temperature T = 300 K.

– The potential of a molecule is (z) =
§

∞ for z < 0
mgz for z ≥ 0

, where z is its altitude

– use the trial displacement of form ztr = z + Δz[−1,1]
– optimum Δz is around 30 km (see below)
– start from the height z = 0 followed by at least 20 steps of “equilibration”
– perform at least 10000 steps
– determine the number of cases of a molecule at heights in intervals [0,100) and [8850,8950)

– pressure is psea
#([8850,8950))

#([0,100)) 0.37bar

Determine the optimum size of the trial displacement Δz and corresponding optimum accep-
tance ratio χ with respect to quantity “averaged height of a molecule” 〈z〉. To do this, choose
several values of Δz (e.g., 5, 10, 20, 30, 50, 100 km) and calculate 〈z〉 inckuding the error es-
timate σ(z); e.g., by the block method (e.g., using 100 blocks by 100 MC steps). Plot σ(z) as a
function of Δz or χ. ∼30km,χ=0.3

(Pseudo)random numbers
[simul/ibm.sh 10000]16/23

s05/3

r = F(r−1, r−2, . . . , r−m)

Requirements:

the period (smallest number p such that r+p = r) is as long as possible;

distribution r is (in an interval given) uniform,
particularly: also the lowest bits are random;

(r, r+1), triplets (r, r+1, r+2), etc., are uncorrelated;

the same holds for “all” functions ƒ: pairs (ƒ0(r), ƒ1(r−1)), triplets (ƒ0(r), ƒ1(r+1), ƒ2(r+2)), etc.,
are uncorrelated;

the code is fast.

History: example of a bad generator by IBM: K(216 + 3,231)

Feedback shift-register generators
17/23
s05/3

R(A,B,C, . . .) : r = r−A ⊕ r−B ⊕ r−C ⊕ . . . ,

⊕ = addition modulo 2 = XOR: 0 ⊕ 0 = 1 ⊕ 1 = 0, 1 ⊕ 0 = 0 ⊕ 1 = 1

Max. period is 2max(A,B...) − 1

A word (32 or 64 bits) at once
E.g., R(108,250) , R(471,1586,6988,9689)

Example. R(5,2):

1 step:

5 4 3 2 1
1 1 0 1 1 0 1 ⊕ 1 = 0

more steps:

110110001111100110100100001010111011. . .

here period = 25 − 1 = 31 (maximum possible)

Feedback shift-register generators + 18/23
s05/3

Algorithm:

CONST A=103
CONST B=205
CONST M=255 where M is the smallest number of form 2k − 1 so that B ≤ M
INTEGER n unsigned integer
INTEGER r[0..M] array, filled in advance by random numbers of any origin

one step generating a random number (all bits):
n := n+1
r[n and M] := r[(n-A) and M] xor r[(n-B) and M]

where and and xor work bitwise
RETURN r[n and M]

The code is especially simple as a C/C++ macro:

#define rnd (++n, r[n&M] = r[(n-A)&M] ^ r[(n-B)&M])

Pros: fast, mathematical theory for the perion and correlations

Cons: fails with some tests; e.g., the random walk → → →

Remedy:

– combine two of them (still fast)
– Mersenne twister (high quality, popular)

Congruence generators
[simul/kongr.sh]19/23

s05/3

K(C,M) : r = Cr−1 mod M

where A mod B is a reminder after division A/B

K(57,232): period 232/8

K(75,231 − 1): period 231 − 2

Example. K(5,31):
1 7 18 2 14 5 4 28 10 8 25 20 16 19 9 1 7 18 2 14 5 4 28 10 8 25 20 16 19 9 1 7 18 . . .

Suppression of correlations – combine 2 generators

Declare a table and fill it by random numbers using generator #1

take randomly selected (index = random number using generator #2) item of the table

replace the “used” number by a new random number using generator #1

Other distributions
20/23
s05/3

Library functions usually give random number (0,1), uniformly distributed in (0,1) (or [0,1) or
[0,1] – be careful!), i.e.,

ϕ() =
§

1,  ∈ (0,1)
0,  ̸∈ (0,1)

A number uniformly distributed in interval (, b) is

(,b) =  + (b − )(0,1) .

Generally: function ƒ () applied to (0,1) →

ϕ(y) =
∑

,ƒ ()=y

1

|ƒ ′()|

Inverse problem: known distribution ϕ(),
∫

ϕ()d = 1, needed:
the distribution function

∫ y
−∞ϕ()d must be inverted.

Example:  = − ln gives ϕ() = exp(−) (check for  = 0!)

Gauss normal distribution
21/23
s05/3

Gauss =
q

−2 ln(0,1) cos(2π(0,1))

where both random numbers (0,1) are independent, function (0,1) thus has to be called twice.
Second indepent number: replace cos → sin.

Approximately:

Gauss ≈
p

2((0,1) − (0,1) + (0,1) − (0,1) + (0,1) − (0,1))

General distribution

When ϕ (in interval (, b)) is not known (or too complicated):

1. generate  = (,b),
2. generate  = (0,m), where m is the maximum of ϕ() in interval (, b),
3. if  < ϕ(), accept  as the number, otherwise repeat by step 1.

Multidimensional distribution
[cd simul; insphere.sh; onsphere.sh]22/23

s05/3

In a unit ball (ball = inside of a sphere)

1. generate  = (−1,1), y = (−1,1), z = (−1,1),
2. calculate r2 = 2 + y2 + z2,
3. if r2 < 1, accept vector (, y, z), otherwise repeat by step 1.

On a unit sphere: divide r⃗in ball
r (check for r ≈ 0), or:

1. z = (−1,1), ϕ = (0,1)
2.  =

Æ

1 − z2 sin(2πϕ), y =
Æ

1 − z2 cos(2πϕ)

Uniform discrete distribution

N = int(N(0,1))

Better not like this (r is a random integer):

N = r mod N

(very bad for congruence generators – lower significant bits are not random)

SIMOLANT: Try MC by yourself
23/23
s05/3

Install SIMOLANT (see previous lecture).

Menu: Method → Monte Carlo NVT (Metropolis)

If the automatic displacement setup is on (set MC move), turn
it off. Slider “d” will appear.

Using the slider, change the trial displacement d and observe
how the acceptance ratio (acc.r.) decreases and increases and
how the configurations change.

Decrease temperature and increase density and repeat. Com-
pare with a MD with a thermostat.

Menu: Boundary conditions → Periodic , and set the critical tem-
perature and density (∼ T = 0.85 and ρ = 0.3) and at least
N = 300 particles. Which displacement size “d” leads to the
fastest sampling of density fluctuations?

