Molecular computer experiment

Also pseudoexperiment

REAL EXPERIMENT	COMPUTER EXPERIMENT
Record everything in a lab notebook	Record everything in a lab notebook
Choose method (device, assay)	Choose method (MD, MC,...)
Build the experimental apparatus (from parts)	Download/buy/write a computer program (blocks of code)
Purchase chemicals, synthetise if not available	Get a force field, fit/calculate parameters if not avail- able (e.g., partial charges)
Prepare the experiment	Prepare initial configurations, etc.
Perform the experiment, watch what's going on	Run the code, observe time development, control quantities, etc.
Analyse and calculate	Calculate mean values (with error estimates)
Clean the laboratory	Make backups, erase temporary files

MD or MC?
Often, MC and MD can be applied to similar systems.
MD
realistic models, complex molecules (bonds, angles...)
condensed matter in general (fluids, solutions; biochemistry)
kinetic quantities (diffusivity, viscosity....)
better parallelization, more packages available
MC
simple qualitative models (lattice, hard-sphere-like)
dilute systems
critical phenomena
fluid equilibria
overcoming barriers, exchange of molecules, etc. is easier with MC
less efficient parallelization, fewer packages available
Is it correct? $\quad 3 / 15$

Systematic errors:

- inaccurate molecular model (force field)
- neglected quantum effects, neglected many-body forces ...
- small sample (finite-size effects)
insufficient time scale (long correlations, bottleneck problems)
. method problems: integration errors (too long timestep), inappropriate thermostat/barostat, not equilibrated enough, inaccurate treatment of Coulomb forces. .
Random (stochastic, statistical) errors* are essential in stochastic methods
time-correlated
- can be decreased by long calculations

Uncertainty (in metrology) includes critical assessment of both the systematic and random errors*

* different terminology in different fields (mathematical statistics, metrology, physics, chemistry)

Simulation methodology

[sleep 3;simul/spceE.sh] 4/15

Start (initial configuration):

- experimental structure (biomolecules)
crystal \rightarrow liquid (melt), gas \rightarrow liquid (shrink); Packmol
- random configuration (overlaps of molecules = problem in MD) problem for "ill-defined" models (TIP4P etc.)
- lattice models: crystal/chaos
- MD: velocities $=$ Maxwell-Boltzmann (approximation enough)
- Equilibration \rightarrow watch graphically (convergence/time profile)
- Measuring the quantities of interest incl. estimates of errors

Calculations

[../simul/ar/showdrop.sh] $5 / 15$
$506 / 3$
Example. We simulate an argon droplet in a periodic cubic simulation cell. Let us have $N=1000$ atoms and temperature $T=85 \mathrm{~K}$. The distance between surfaces of periodic images of droplets should be equal to the droplet diameter. Calculate the size of the box in $\AA \AA$. Argon density is $\rho=$ $1.4 \mathrm{~g} \mathrm{~cm}^{-3}$, molar mass $M(\mathrm{Ar})=40 \mathrm{~g} / \mathrm{mol}$.
molar volume: $V_{\mathrm{m}}=M / \rho$
volume per 1 atom: $V_{1}=V_{\mathrm{m}} / N_{\mathrm{A}}$
volume of N atoms: $V=N V_{1}=N M / \rho N_{A}$
$=1000 \cdot 0.040 \mathrm{~kg} \mathrm{~mol}^{-1} /\left(1400 \mathrm{~kg} \mathrm{~m}^{-3} \cdot 6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)$
$=4.744 \times 10^{-27} \mathrm{~m}^{3}$
droplet radius: $\frac{4}{3} \pi R^{3}=V \Rightarrow R=2.24 \times 10^{-9} \mathrm{~m}$
box size: $\underline{L=90 \AA}$

One more example

Example. Consider a globular protein of molecular weight of 20 kDa . The density of the protein is $1.35 \mathrm{~g} \mathrm{~cm}^{-3}$. Calculate the approximate protein diameter.

$$
m=\frac{20 \mathrm{~kg} \mathrm{~mol}^{-1}}{6.022 \times 10^{23} \mathrm{~mol}^{-1}}=3.32 \times 10^{-23} \mathrm{~kg}
$$

or $1 \mathrm{Da}=1 \mathrm{~g} \mathrm{~mol}^{-1} / \mathrm{N}_{\mathrm{A}}=1.6605 \times 10^{-27} \mathrm{~kg}$ (atomic mass unit)
$m=20000 \times 1.6605 \times 10^{-27} \mathrm{~kg}=3.32 \times 10^{-23} \mathrm{~kg}$

$$
V=\frac{m}{\rho}=\frac{3.32 \times 10^{-23} \mathrm{~kg}}{1350 \mathrm{~kg} \mathrm{~m}^{-3}}=2.46 \times 10^{-26} \mathrm{~m}^{3}
$$

$$
\frac{4 \pi}{3} r^{3}=\frac{\pi}{6} d^{3}=V
$$

$$
d=\sqrt[3]{\frac{6 V}{\pi}}=\sqrt[3]{\frac{6 \cdot 2.46 \times 10^{-26} \mathrm{~m}^{3}}{\pi}}=3.61 \times 10^{-9} \mathrm{~m} \doteq \underline{3.6 \mathrm{~nm}}=36 \AA
$$

Measurements

Trajectory $=$ sequence of configurations (MD: in time)

Convergence profile:

time development of a quantity (time profile, -) problems better seen

- cumulative (running average, -)
can estimate the inaccuracy

Type of statistical treatment:

averaged values (\leftarrow ergodic hypothesis)

- less often fluctuations

Type of quantity:

mechanical (temperature, pressure, internal energy, order parameters...)

- entropic (S, F, μ, \ldots)
- structure (correlation functions, number of neighbors, analysis of clusters...)
auxiliary or control quantities (order parameters, integrals of motion in MD)

Random errors

quantity $=$ (estimate of the mean value) \pm (estimate of the error)
Arithmetic average (example of a statistic, also statistical functional, estimator, in metrology measurement function):

$$
\bar{X}=\frac{1}{m} \sum_{i=1}^{m} x_{i} \quad \begin{aligned}
& \text { statistic }=\text { estimator } \\
& \text { statistics }=\text { field of mathematics }
\end{aligned}
$$

Standard error $=$ standard deviation of the statistic, usually denoted as σ

$$
\sigma_{x}=\sqrt{\left\langle(\bar{x}-\langle x\rangle)^{2}\right\rangle}
$$

For uncorrelated (independent) X_{i} and large m, \bar{X} has Gaussian normal distribution
The estimate of the standard error of the arithmetic average of uncorrelated data:

$$
\sigma_{X}^{\text {estim }}=\sqrt{\frac{\sum_{i=1}^{m} \Delta x_{i}^{2}}{m(m-1)^{\prime}}} \quad \text { where } \Delta x_{i}=x_{i}-\bar{X}
$$

Customs and bad habits

How the uncertainty of measured quantities are expressed in different fields:
Physics: $Q=123.4 \pm 0.5 \equiv 123.4(5) \equiv 123.45 \quad \AA$
$0.5=\sigma(Q)=$ (estimated) standard error/uncertainty of statistic Q (e.g., $Q=\bar{X}$), also: standard deviation (meaning of the average or other statistic)
loosely: (estimated) error/uncertainty, standard deviation, error margin, error bar,
In case normal distribution, it holds $\langle Q\rangle \in 123.4 \pm 0.5$ with probability 68%

- Biology, economy, politology, engineering, pharmacology: $Q=123.4 \pm 1.0 ~ \mathrm{~K} \pm 1.0=$ $\pm 2 \sigma(Q)=$ confidence interval at (confidence) level 95%
looselyn: $\pm 1.0=$ confidence interval, $1.0=$ error/uncertainty,
In case normal distribution, it holds $\langle Q\rangle \in 123.4 \pm 1.0$ with probability 95%
- Chemistry: often ignored; if given, nobody knows the confidence level
, „Physical certainty" starts at $\pm 5 \sigma_{X}$ (confidence level 0.999999 43)
The type of error/uncertainty must be always specified
$\alpha=$ significance level, often 5%
$1-\alpha=$ confidence level, often 95%

Analysis of time series and error estimation

Problem: correlations

block method: $\bar{X}_{j}=\frac{1}{B} \sum_{i=1}^{B} X_{i+(j-1) B}$

- analysis of correlations \Rightarrow

$$
\sigma_{X}=\sqrt{\frac{\sum_{i=1}^{m} \Delta X_{i}^{2}}{m(m-1)}(1+2 \tau)} \quad \tau=\sum_{k=1}^{\infty} c_{k} \quad c_{k}=\frac{\left\langle\Delta X_{0} \Delta X_{k}\right\rangle}{\left\langle(\Delta X)^{2}\right\rangle}
$$

$\mathrm{MC}: c_{k}$ is monotonously decreasing [ex.: $c_{k}=\sum_{\lambda \neq 1} c_{\lambda} \lambda^{k}, \lambda \in(-1,1)$]
MD: $c_{k} \rightarrow c(t)$ (time autocorrelation function): damped oscillations

- even better = both approaches combined:
first to block a bit, then $\tau \approx c_{1}$
- from running average (roughly ≈ 10 blocks):

$$
\sigma_{X}^{\text {estim }} \approx 0.6\left[\max _{2 \text { nd half }}(X)-\min _{2 \text { nd half }}(X)\right]
$$

or to be on the safe side (this formula is approximate):
$\operatorname{err} x \approx \max _{2 \text { nd half }}(x)-\min _{2 \text { nd }}$ half (X)
$\Rightarrow\langle X\rangle \in\left(\bar{X}-\mathrm{err}_{X}, \bar{X}+\right.$ err X) with probability $\approx 85 \%$ (for long enough time series)

where the variance, or fluctuation, is defined by $\operatorname{Var} X=\left\langle(X-\bar{X})^{2}\right\rangle$

Error analysis - division and multiplication

Example. Calculate 3.46(7)/0.934(13).
fraction: 3.46/0.934 $=3.704$
rel. error $=\sqrt{\left(\frac{0.07}{3.46}\right)^{2}+\left(\frac{0.013}{0.934}\right)^{2}}=0.0246$
abs. error $=3.704 \times 0.0246=0.091$
$3.46(7) / 0.934(13)=3.70(9)$ (or rounded up: 3.70(10))

Error analysis

Error of function f of a variable with error is (linearized; i.e., for small σ):

$$
f\left(x \pm \sigma_{x}\right)=f(x) \pm f^{\prime}(x) \sigma_{x}
$$

$$
\ln \left(x \pm \sigma_{x}\right)=\ln x \pm \frac{\sigma_{x}}{x}, \quad \exp \left(x \pm \sigma_{x}\right)=\exp x \pm \sigma_{x} \exp x, \quad \frac{1}{x \pm \sigma_{x}}=\frac{1}{x} \pm \frac{\sigma_{x}}{|x|^{2}}
$$

Example. Calculate the activity of H^{+}from $\mathrm{pH}=2.125(5)$. activity:

$$
a_{\mathrm{H}^{+}}=10^{-2.125}=\exp (-2.125 \times \ln 10)=0.00750
$$

error Method 1:

$$
\sigma=0.005 \times \ln 10 \times a=0.000086
$$

error Method 2:

$$
\sigma=\left|10^{-2.125}-10^{-2.125-0.005}\right|=0.000087
$$

activity with error (uncertainty) estimate:
$a_{\mathrm{H}^{+}}=0.00750(9)$

