Molecular computer experiment

Also pseudoexperiment

REAL EXPERIMENT	COMPUTER EXPERIMENT
Record everything in a lab notebook	Record everything in a lab notebook
Choose method (device, assay)	Choose method (MD, MC,)
Build the experimental apparatus (from parts)	Download/buy/write a computer program (blocks of code)
Purchase chemicals, synthetise if not available	Get a force field, fit/calculate parameters if not available (e.g., partial charges)
Prepare the experiment	Prepare initial configurations, etc.
Perform the experiment, watch what's going on	Run the code, observe time development, control quantities, etc.
Analyse and calculate	Calculate mean values (with error estimates)
Clean the laboratory	Make backups, erase temporary files

MD or MC?

Often, MC and MD can be applied to similar systems.

MD

- realistic models, complex molecules (bonds, angles...)
- condensed matter in general (fluids, solutions; biochemistry)
- kinetic quantities (diffusivity, viscosity...)
- better parallelization, more packages available

MC

- simple qualitative models (lattice, hard-sphere-like)
- dilute systems
- critical phenomena
- fluid equilibria
- overcoming barriers, exchange of molecules, etc. is easier with MC
- less efficient parallelization, fewer packages available

Is it correct?

Systematic errors:

- inaccurate molecular model (force field)
- neglected quantum effects, neglected many-body forces . . .
- small sample (finite-size effects)
- insufficient time scale (long correlations, bottleneck problems)
- method problems: integration errors (too long timestep), inappropriate thermostat/barostat, not equilibrated enough, inaccurate treatment of Coulomb forces...

Random (stochastic, statistical) errors* are essential in stochastic methods

- time-correlated
- can be decreased by long calculations

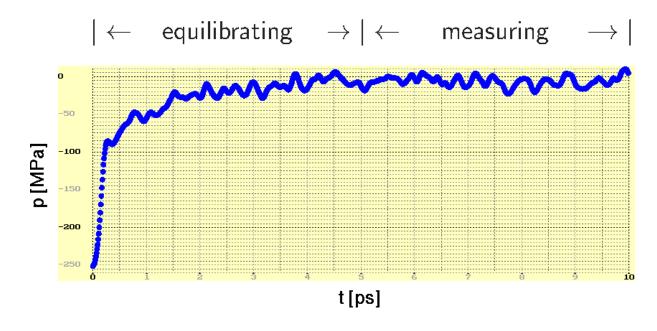
Uncertainty (in metrology) includes critical assessment of both the systematic and random errors*

^{*} different terminology in different fields (mathematical statistics, metrology, physics, chemistry)

*s*06/3

Simulation methodology

- Start (initial configuration):
 - experimental structure (biomolecules)
 - \bigcirc crystal \rightarrow liquid (melt), gas \rightarrow liquid (shrink); Packmol
 - random configuration (overlaps of molecules = problem in MD) problem for "ill-defined" models (TIP4P etc.)
 - lattice models: crystal/chaos
 - MD: velocities = Maxwell-Boltzmann (approximation enough)
- Equilibration → watch graphically (convergence/time profile)
- Measuring the quantities of interest incl. estimates of errors



*s*06/3

Calculations

Example. We simulate an argon droplet in a periodic cubic simulation cell. Let us have N = 1000 atoms and temperature T = 85 K. The distance between surfaces of periodic images of droplets should be equal to the droplet diameter. Calculate the size of the box in Å. Argon density is $\rho = 1.4 \,\mathrm{g\,cm^{-3}}$, molar mass $M(\mathrm{Ar}) = 40 \,\mathrm{g/mol}$.

molar volume: $V_{\rm m} = M/\rho$

volume per 1 atom: $V_1 = V_m/N_A$

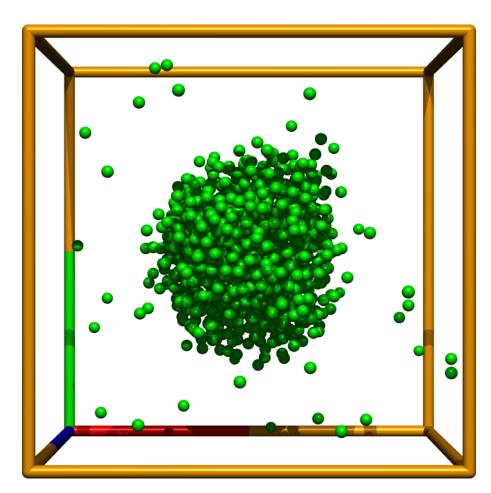
volume of N atoms: $V = NV_1 = NM/\rho N_A$

= $1000 \cdot 0.040 \,\mathrm{kg} \,\mathrm{mol}^{-1} / (1400 \,\mathrm{kg} \,\mathrm{m}^{-3} \cdot 6.022 \times 10^{23} \,\mathrm{mol}^{-1})$

 $= 4.744 \times 10^{-27} \,\mathrm{m}^3$

droplet radius: $\frac{4}{3}\pi R^3 = V \Rightarrow R = 2.24 \times 10^{-9} \text{ m}$

box size: L = 90 Å



One more example

Example. Consider a globular protein of molecular weight of 20 kDa. The density of the protein is $1.35 \, \mathrm{g \, cm^{-3}}$. Calculate the approximate protein diameter.

$$m = \frac{20 \,\mathrm{kg} \,\mathrm{mol}^{-1}}{6.022 \times 10^{23} \,\mathrm{mol}^{-1}} = 3.32 \times 10^{-23} \,\mathrm{kg}$$

$$m = 20000 \times 1.6605 \times 10^{-27} \,\mathrm{kg} = 3.32 \times 10^{-23} \,\mathrm{kg}$$

$$V = \frac{m}{\rho} = \frac{3.32 \times 10^{-23} \text{ kg}}{1350 \text{ kg m}^{-3}} = 2.46 \times 10^{-26} \text{ m}^3$$

$$\frac{4\pi}{3}r^3 = \frac{\pi}{6}d^3 = V$$

$$d = \sqrt[3]{\frac{6V}{\pi}} = \sqrt[3]{\frac{6 \cdot 2.46 \times 10^{-26} \,\mathrm{m}^3}{\pi}} = 3.61 \times 10^{-9} \,\mathrm{m} = 3.61 \,\mathrm{m} = 36 \,\mathrm{A}$$

Measurements

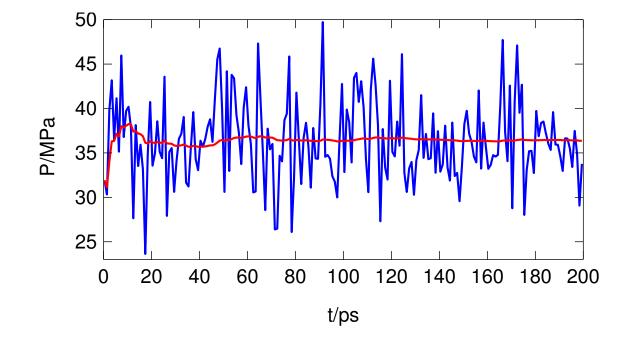
Trajectory = sequence of configurations (MD: in time)

Convergence profile:

- time development of a quantity (time profile, —) problems better seen
- cumulative (running average, —) can estimate the inaccuracy

Type of statistical treatment:

- averaged values (← ergodic hypothesis)
- less often fluctuations



Type of quantity:

- mechanical (temperature, pressure, internal energy, order parameters...)
- \bigcirc entropic (S, F, μ, \dots)
- structure (correlation functions, number of neighbors, analysis of clusters...)
- auxiliary or control quantities (order parameters, integrals of motion in MD)

quantity = (estimate of the mean value) \pm (estimate of the error)

Arithmetic average (example of a **statistic**, also *statistical functional, estimator*, in metrology *measurement function*):

$$\overline{X} = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 statistic = estimator statistics = field of mathematics

Standard error = standard deviation of the statistic, usually denoted as σ

$$\sigma_X = \sqrt{\left\langle \left(\overline{X} - \langle X \rangle \right)^2 \right\rangle}$$

For **uncorrelated** (independent) X_i and large m, \overline{X} has Gaussian normal distribution

The **estimate** of the standard error of the arithmetic average of uncorrelated data:

$$\sigma_X^{\text{estim}} = \sqrt{\frac{\sum_{i=1}^m \Delta X_i^2}{m(m-1)}}, \quad \text{where } \Delta X_i = X_i - \overline{X}$$

Customs and bad habits

How the uncertainty of measured quantities are expressed in different fields:

Physics: $Q = 123.4 \pm 0.5 \equiv 123.4(5) \equiv 123.4_5$ \nearrow $0.5 = \sigma(Q) = \text{(estimated) standard error/uncertainty of statistic } Q \text{ (e.g., } Q = \overline{X}\text{), also: standard deviation (meaning of the average or other statistic) loosely: (estimated) error/uncertainty, standard deviation, error margin, error bar,...$

In case normal distribution, it holds $\langle Q \rangle \in 123.4 \pm 0.5$ with probability 68 %

- Biology, economy, politology, engineering, pharmacology: $Q = 123.4 \pm 1.0$ $\neq \pm 1.0 = \pm 2\sigma(Q) = \text{confidence interval at (confidence) level 95 % looselyn: <math>\pm 1.0 = \text{confidence interval}$, 1.0 = error/uncertainty, . . . In case normal distribution, it holds $\langle Q \rangle \in 123.4 \pm 1.0$ with probability 95 %
- Chemistry: often ignored; if given, nobody knows the confidence level
- **Physical certainty"** starts at $\pm 5\sigma_X$ (confidence level 0.999 999 43)

The type of error/uncertainty must be always specified

```
\alpha = significance level, often 5 % 1 - \alpha = confidence level, often 95 %
```

Problem: correlations

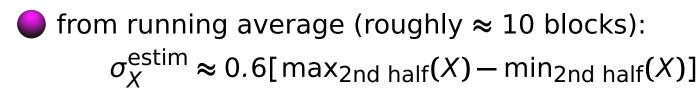
- igoplus block method: $\overline{X}_j = \frac{1}{B} \sum_{i=1}^B X_{i+(j-1)B}$
- analysis of correlations ⇒

$$\sigma_X = \sqrt{\frac{\sum_{i=1}^m \Delta X_i^2}{m(m-1)}(1+2\tau)} \qquad \tau = \sum_{k=1}^\infty c_k \qquad c_k = \frac{\langle \Delta X_0 \Delta X_k \rangle}{\langle (\Delta X)^2 \rangle}$$

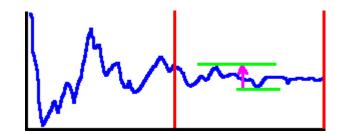
MC: c_k is monotonously decreasing [ex.: $c_k = \sum_{\lambda \neq 1} c_{\lambda} \lambda^k$, $\lambda \in (-1, 1)$]

MD: $c_k \rightarrow c(t)$ (time autocorrelation function): damped oscillations

even better = both approaches combined: first to block a bit, then $\tau \approx c_1$



or to be on the safe side (this formula is approximate): $err_X \approx max_{2nd half}(X) - min_{2nd half}(X)$



*s*06/3

Generate random correlated data (1st order process):

$$X_{k+1} = qX_k + u$$

where $u = u_{[0,1)}$ or u_{Gauss} etc., and |q| < 1.

Calculate the arithmetic average incl. error by different methods

Note: it is known analytically,

$$\sigma_X = \sqrt{\frac{1+q}{1-q}} \sqrt{\frac{\operatorname{Var} X}{m}} = \frac{1}{1-q} \sqrt{\frac{\operatorname{Var} u}{m}}$$

where the variance, or fluctuation, is defined by $Var X = \langle (X - \overline{X})^2 \rangle$

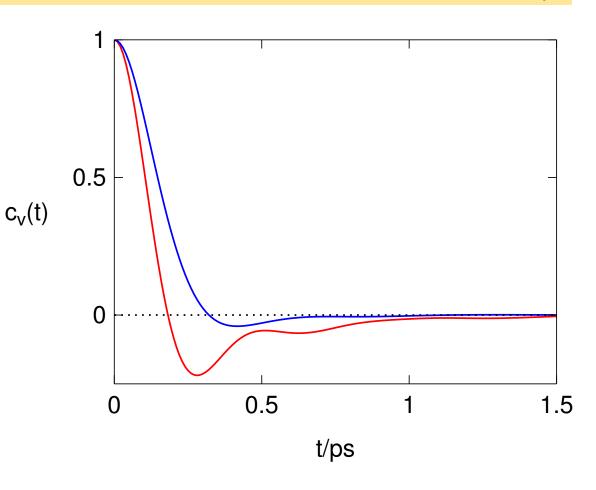
Time autocorrelation function

 $+\frac{12/15}{506/3}$

Velocity-velocity autocorrelation function of liquid argon:

- $-150 \text{ K}, 1344 \text{ kg m}^{-3},$
- $-120 \text{ K}, 1680 \text{ kg m}^{-3}.$

Results from a 100 ps trajectory for 216 Lennard-Jones particles



Typical behavior (MC + MD):

- fluid: $\lim_{t\to\infty} c(t) = \text{const } t^{-3/2}$ (hydrodynamic tail)
- \bigcirc jumps between states: $c(t) \propto \lambda^t$ (λ just below 1)

Sum of independent measurements: squares of standard deviations are additive

Example. Let us integrate numerically $I = \int_0^1 f(x) dx$ by the Simpson's formula:

$$I = \int_0^1 f(x) dx \approx \frac{1}{6} [f(0) + 4f(0.5) + f(1)]$$

For f(x) we have measured the following data with standard errors:

Calculate *I* including the error estimate.

$$I = \frac{1}{6}[1.34 + 4 \times 1.57 + 1.77] = 1.565$$

$$\sigma(I)^2 = (0.05/6)^2 + (0.03 \times 4/6)^2 + (0.06/6)^2 = 0.000569 \implies \sigma(I) = 0.024$$

$$\underline{I = 1.565(24)}$$

Error analysis – division and multiplication

Squares of relative errors are additive

Example. Calculate 3.46(7)/0.934(13).

fraction: 3.46/0.934 = 3.704

rel. error =
$$\sqrt{\left(\frac{0.07}{3.46}\right)^2 + \left(\frac{0.013}{0.934}\right)^2} = 0.0246$$

abs. error = $3.704 \times 0.0246 = 0.091$

3.46(7)/0.934(13) = 3.70(9) (or rounded up: 3.70(10))

Error analysis

Error of function f of a variable with error is (linearized; i.e., for small σ):

$$f(x \pm \sigma_X) = f(x) \pm f'(x)\sigma_X$$

$$\ln(x \pm \sigma_X) = \ln x \pm \frac{\sigma_X}{x}, \qquad \exp(x \pm \sigma_X) = \exp x \pm \sigma_X \exp x, \qquad \frac{1}{x \pm \sigma_X} = \frac{1}{x} \pm \frac{\sigma_X}{|x|^2}$$

Example. Calculate the activity of H^+ from pH = 2.125(5).

activity:

$$a_{H^+} = 10^{-2.125} = \exp(-2.125 \times \ln 10) = 0.00750$$

error Method 1:

$$\sigma = 0.005 \times \ln 10 \times \alpha = 0.000086$$

error Method 2:

$$\sigma = |10^{-2.125} - 10^{-2.125 - 0.005}| = 0.000087$$

activity with error (uncertainty) estimate:

$$a_{H^+} = 0.00750(9)$$