Mechanical quantities

- Temperature (NVE MD):

notation here:

$U=U\left(r^{N}\right)=$ potential energy

$$
T_{\text {kin }}=\frac{E_{\text {kin }}}{f k_{\mathrm{B}} / 2}
$$

$E=E(T, V)=$ internal energy
$f=\#$ of degrees of freedom
Internal energy:

$$
E=\left\langle E_{\mathrm{kin}}+U\right\rangle \stackrel{N V T}{=} \frac{f}{2} k_{\mathrm{B}} T+\langle U\rangle \equiv E_{\mathrm{id}}+E_{\mathrm{res}}
$$

$$
\text { res }=\text { residual }
$$ see next slide

$\beta=1 / k_{B} T$

- dimensionless (scaled) coordinates $\vec{\xi}_{i}: \vec{r}_{i}=V^{1 / 3} \vec{\xi}_{i}$
- red derivative is calculated at constant $\bar{\xi}^{N}$,
whole configurations is uniformly shrank/swelled
$-p_{\text {id }}=$ kinetic contribution (=ideal gas), also $p_{\text {id }}=\phi 2 E_{\text {kin }} / 3 \mathrm{~V}$,
where in periodic b.c. $\phi=N /(N-1)$ takes into acccount 3 zero conserved momenta - $p_{\text {res }}=$ cohesion contribution
$=\frac{k_{\mathrm{B}} T}{Q_{N}} \int_{1^{3 N}} \exp \left[-\beta U\left(V^{1 / 3} \vec{\xi}^{N}\right)\right] N V^{N-1} \mathrm{~d} \vec{\xi}^{N}$

$$
+\frac{k_{\mathrm{B}} T}{Q_{N}} \int_{1^{3 N}} \exp \left[-\beta U\left(V^{1 / 3} \vec{\xi}^{N}\right)\right](-\beta)\left(\frac{\partial U\left(V^{1 / 3} \vec{\xi}^{N}\right)}{\partial V}\right)_{\vec{\xi}^{N}} V^{N} \mathrm{~d} \vec{\xi}^{N}
$$

$$
=\frac{N}{v} K_{B} T-\left\langle\left(\frac{\partial U\left(V^{1 / 3} \vec{\xi}^{N}\right)}{\partial V}\right)_{\vec{\xi}^{N}}\right\rangle=\begin{aligned}
& \text { ideal part } \\
& \text { (kinetic) }
\end{aligned}+\begin{aligned}
& \text { residual part } \\
& \text { (correction) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{d} F=-S \mathrm{~d} T-p \mathrm{~d} V \quad\langle X\rangle=\frac{1}{Q_{N}} \int_{V^{N}} X\left(\vec{r}^{N}\right) \mathrm{d} \exp \left[-\beta U\left(\vec{r}^{N}\right)\right] \vec{r}^{N} \\
& p=-\left(\frac{\partial F}{\partial V}\right)_{T}, \quad F=-k_{\mathrm{B}} T \ln \frac{Q_{N}}{N!\Lambda^{3 N}} \\
& Q_{N}=\int_{V^{N}} \exp \left[-\beta U\left(\vec{r}^{N}\right)\right] \mathrm{d} \vec{r}^{N} \stackrel{\vec{r}_{i}=V^{1 / 3} \vec{\xi}_{i}}{=} \int_{1^{3 N}} \exp \left[-\beta U\left(V^{1 / 3} \vec{\xi}^{N}\right)\right] V^{N} \mathrm{~d} \vec{\xi}^{N} \\
& p=-\left(\frac{\partial F}{\partial V}\right)_{T}=k_{B} T\left(\frac{\partial \ln Q_{N}}{\partial V}\right)_{\vec{\xi}^{N}}=\frac{k_{\mathrm{B}} T}{Q_{N}}\left(\frac{\partial Q_{N}}{\partial V}\right)_{\vec{\xi}^{N}}
\end{aligned}
$$

Residual quantities

$=$ with respect to the standard state of ideal gas at the same temperature, volume (= density), and composition as the given system. Usefull in the canonical (NVT) ensemble.
sometimes called "excess"
For the Helmholtz energy:
ideal gas: $Q_{N}=V^{N}$

$$
F=-k_{\mathrm{B}} T \ln Z_{N}=-k_{\mathrm{B}} T \ln \frac{Q_{N}}{N!\Lambda^{3 N}}=-k_{\mathrm{B}} T \ln \frac{V^{N}}{N!\Lambda^{3 N}}-k_{\mathrm{B}} T \ln \frac{Q_{N}}{V^{N}} \equiv F_{\text {id }}+F_{\text {res }}
$$

Refresh:
de Broglie thermal wavelength:

$$
\Lambda=\frac{h}{\sqrt{2 \pi m k_{\mathrm{B}} T}}
$$

chemical potential of ideal gas:

$$
\mu_{\mathrm{id}}=\left(\frac{\partial F_{\mathrm{id}}}{\partial N}\right)_{T, V}=k_{\mathrm{B}} T \ln \frac{N \Lambda^{3}}{V}
$$

Pressure - virtual volume change method

$$
p=\frac{N}{V} k_{B} T-\left\langle\left(\frac{\partial U\left(V^{1 / 3} \vec{\xi}^{N}\right)}{\partial V}\right)_{\vec{\xi}^{N}}\right\rangle
$$

Numerical derivative (for a selected series of configurations)

$$
\begin{gathered}
\frac{\partial U}{\partial V}=\frac{U(V+\Delta V)-U(V)}{\Delta V}+\mathcal{O}(\Delta V) \equiv \frac{U(\because \cdot)-U(\because \because)}{\Delta V}+\mathcal{O}(\Delta V) \\
\frac{\partial U}{\partial V}=\frac{U(V+\Delta V)-U(V-\Delta V)}{2 \Delta V}+\mathcal{O}\left(\Delta V^{2}\right)
\end{gathered}
$$

Implementation: $U(V+\Delta V)$ means that the whole configuration (all distances) is swelled by the same ratio; for molecules w.r.t. a reference point (then, $N=\#$ of molecules):

$$
\left(\frac{V+\Delta V}{V}\right)^{1 / 3}
$$

The scaled configuration is not included in the trajectory.
For models with a hard core such that swelling the box cannot cause an overlap, shrinking can be used: $P=N k_{B} T / V+\frac{k_{B} T}{\Delta V}\left\langle\mathrm{e}^{-[U(V-\Delta V)-U(V)] / k_{B} T}\right\rangle+\mathcal{O}(\Delta V)$

Pressure from the virial of force

The derivative expanded:

$$
\frac{\partial U\left(V^{1 / 3} \vec{\xi}^{N}\right)}{\partial V}=\sum_{i=1}^{N} \frac{1}{3} V^{-2 / 3} \vec{\xi}_{i} \cdot \frac{\partial U}{\partial \vec{r}_{i}}=\frac{1}{3 V} \sum_{i=1}^{N} \vec{r}_{i} \cdot \frac{\partial U}{\partial \vec{r}_{i}}
$$

The result is

$$
p=\frac{N}{V} k_{\mathrm{B}} T+\frac{1}{3 V}\left\langle W_{f}\right\rangle, \quad W_{f}=-\sum_{i=1}^{N} \vec{r}_{i} \cdot \frac{\partial U}{\partial \vec{r}_{i}}=\sum_{i=1}^{N} \vec{r}_{i} \cdot \vec{f}_{i}(\text { virial of force })
$$

cannot be directly applied in the periodic boundary conditions.
Pair additivity in the periodic boundary conditions \Rightarrow

$$
p=\frac{N}{V} k_{\mathrm{B}} T-\frac{1}{3 V} \sum_{i<j}\left\langle r_{i j} u^{\prime}\left(r_{i j}\right)\right\rangle \equiv p_{\mathrm{id}}+p_{\mathrm{res}}
$$

- For molecular models one can use either the site-frame ($N=\#$ of sites/atoms) or molecular frame ($N=$ \# of molecules; typically, ref. point = center of mass). Of course, the formulas differ.

Pressure tensor

Also called stress tensor (in solids):

$$
\overleftrightarrow{P}=\overleftrightarrow{P}_{\mathrm{id}}+\overleftrightarrow{P}_{\mathrm{res}}=\frac{1}{V} \sum_{i=1}^{N}\left(\phi m_{i} \vec{v}_{i} \vec{v}_{i}+\vec{f}_{i} \vec{r}_{i}\right)
$$

Tensor product $\overleftrightarrow{T}=\vec{u} \vec{v}$, also denoted $\overleftrightarrow{T}=\vec{u} \otimes \vec{v}: T_{a b}=v_{a} v_{b}$.
$\phi=N /(N-1)$ takes into acccount 3 zero conserved momenta in periodic b.c.
The scalar pressure is $1 / 3$ of its trace, $p=\operatorname{tr}(\stackrel{\leftrightarrow}{P}) / 3$.

- In models with rigid (constrained) bonds, the virial of constrained forces has to be included (it depends on velocities).
Diagonal terms are good for calculating surface tension.
Off-diagonal terms are good for calculating viscosity.*
Can be also calculated by the virtual box change:
- elongation in $\hat{x} \Rightarrow P_{x x}$,
- simulation cell shape change \Rightarrow off-diagonal terms.
*Suprisingly, the diagonal terms can be used to calculate viscosity, too.

Surface tension of liquid

Using slab geometry - elongated periodic box (2:1 or more)

$$
\gamma=\left(\frac{\partial V}{\partial \mathcal{A}}\right)_{V, T}=\left(\frac{\partial G}{\partial \mathcal{A}}\right)_{p, T}=-\frac{1}{4} L_{z} P_{\mathrm{t}}, \quad \text { where } P_{\mathrm{t}}=P_{x x}+P_{y y}-2 P_{z z}
$$

- It is "mechanical quantity".
- Cannot be used for interfacial energy of crystals (it is "entropic quantity").
- Cutoff corrections - several variants (cf. simen09).
- $P_{z z}=$ saturated vapor pressure;
if small enough, $P_{x x}, P_{y y}$ can be replaced by the usual pressure p.
- Alternative: virtual area change method [Gloor et al.: JCP 123, 134703 (2005)] scaling in \hat{x}, \hat{y} and inversely squared in \hat{z} so that volume is preserved:

$$
\gamma=\left\langle\left(\frac{\delta U}{\delta \mathcal{A}}\right)_{V}\right\rangle
$$

Fluctuation quantities

$\left\langle(\Delta X)^{2}\right\rangle=\operatorname{Var} X=$ (mean quadratic) fluctuation = variance $\quad \Delta X=X-\langle X\rangle$
fluctuation $=(\text { mech/el/ } \ldots \text { quantity })^{\prime}=(\text { thermodynamic potential })^{\prime \prime}$
Less accurate than mean values!
E.g. (NVT): $P=-\left(\frac{\partial F}{\partial V}\right)_{T}, E=\left(\frac{\partial \beta F}{\partial \beta}\right)_{V}$, then:

Heat capacity at constant $[V]$:

$$
C_{V}=\left(\frac{\partial E}{\partial T}\right)_{V}=\frac{1}{k_{\mathrm{B}} T^{2}} \operatorname{Var} E=\frac{1}{k_{\mathrm{B}} T^{2}}\left\langle\left(\Delta E_{\mathrm{kin}}+\Delta U\right)^{2}\right\rangle
$$

$\operatorname{Cov}\left(U, E_{\text {kin }}\right)=\left\langle\Delta U \Delta E_{\text {kin }}\right\rangle=0, \operatorname{Var} E_{\text {kin }}=\frac{f}{2}\left(k_{\mathrm{B}} T\right)^{2}($ see exercise $) \Rightarrow$

$$
C_{V}=\frac{1}{k_{\mathrm{B}} T^{2}}\left\langle\left(\frac{f k_{\mathrm{B}} T}{2}+\Delta U\right)^{2}\right\rangle=\frac{f k_{\mathrm{B}}}{2}+\frac{1}{k_{\mathrm{B}} T^{2}}\left\langle(\Delta U)^{2}\right\rangle \equiv C_{V, \mathrm{id}}+C_{V, \text { res }}
$$

Isothermal compressibility - in the NPT ensemble

$$
\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}=\frac{\left\langle(\Delta V)^{2}\right\rangle}{V k_{\mathrm{B}} T}
$$

Permittivity can be calculated from the fluctuation of the cell dipole moment, $\left\langle M^{2}\right\rangle$, (more later).

Exercise

Calculate $\left\langle E_{\text {kin }}\right\rangle$ and $\operatorname{Var}\left(E_{\text {kin }}\right)$ for one degree of freedom, $E_{\text {kin }}=\frac{1}{2} m v^{2}$.

$$
\begin{aligned}
E_{\text {kin }} & =\frac{1}{2} m v^{2} \\
\pi(v) & =\frac{\exp \left(-\frac{1}{2} m v^{2} / k_{\mathrm{B}} T\right)}{\int \exp \left(-\frac{1}{2} m v^{2} / k_{\mathrm{B}} T\right) \mathrm{d} v} \\
\left\langle E_{\text {kin }}\right\rangle & =\int E_{\text {kin }} \pi(v) \mathrm{d} v \\
\operatorname{Var}\left(E_{\text {kin }}\right) & =\int\left(E_{\text {kin }}-\left\langle E_{\text {kin }}\right\rangle\right)^{2} \pi(v) \mathrm{d} v \\
& =\frac{1}{2}\left(k_{\mathrm{B}} T\right)^{2}
\end{aligned}
$$

restart;

inorm: =int (exp(-k/kT), v=-infinity..infinity);
inorm $:=\frac{\sqrt{2} k-T \cdots \sqrt{\pi}}{\sqrt{m-k-T \sim}}$

* averk: $=\operatorname{int}\left(K^{*} \exp (-K / k T), \mathrm{v}=-\mathrm{infinity} .\right.$. infinity $) /$ inorm;
averk $:=\frac{1}{2} k \sim T \cdots$
averk : $=\frac{1}{2} k \sim T_{\omega}$

$$
\text { - fluct }:=\frac{1}{2} k \omega^{2} T \omega^{2}
$$

Entropic quantities

These include $F, G((\Leftarrow$ partition function), S (number of states $W), \mu, \Delta G, \ldots$
They cannot be expressed as $\langle\cdot\rangle$.
Formally (for the canonical partition function) but totally useless:

$$
Q=\frac{\int \mathrm{e}^{-\beta U} \mathrm{~d} \vec{r}^{N}}{1}=\frac{\int \mathrm{e}^{-\beta U} \mathrm{~d} \vec{r}^{N}}{V^{-N} \int \mathrm{e}^{-\beta U} \mathrm{e}^{+\beta U} \mathrm{~d} \vec{r}^{N}}=\frac{V^{N}}{\left\langle\mathrm{e}^{\beta U}\right\rangle}
$$

Usage: equilibria in general; solubility, ligand-receptor binding, stability of biomolecules, ...

- thermodynamic integration:
over a real variable (T, V, P) or coupling parameter
- non-Boltzmann sampling:
gradual insertion, alchemical transmutation;
umbrella sampling
multiple histogram reweighting
metadynamics
Widom particle insertion method
reversible work calculated by the integration of force
local density method

Thermodynamic integration

Remember physical chemistry: $\mathrm{d} F=-\mathrm{S} \mathrm{d} T-p \mathrm{~d} V, \mathrm{~d} G=-\mathrm{S} \mathrm{d} T+V \mathrm{~d} p$
Canonical ensemble ($\beta=1 / k_{\mathrm{B}} T$):

$$
\left(\frac{\partial F}{\partial V}\right)_{T}=-p, \quad\left(\frac{\partial(\beta F)}{\partial \beta}\right)_{V}=E, \quad \text { or } \quad\left(\frac{\partial\left(\beta F_{\mathrm{res}}\right)}{\partial \beta}\right)_{V}=\langle U\rangle
$$

notation here:
$U=U\left(r^{N}\right)$
$=$ potential energy
$E=E(T, V)$
= internal energy

- Numerically integrated: p, E must be determined in many points
- Start from a suitable reference state (known state, ideal gas, harmonic crystal)

Proof \# 1 of $\frac{\partial(\beta F)}{\partial \beta}=E$:

$$
\frac{\partial(\beta F)}{\partial \beta}=\frac{\partial(F / T)}{\partial(1 / T)}=\frac{\partial(F / T)}{\partial T} / \frac{\partial(1 / T)}{\partial T}=\frac{-S T-F}{T^{2}} /\left(\frac{-1}{T^{2}}\right)=S T+F=E
$$

Proof \# 2 of $\frac{\partial(\beta F)}{\partial \beta}=E$:

$$
\frac{\partial(\beta F)}{\partial \beta}=\frac{-\partial \ln Z}{\partial \beta}=-\frac{1}{Z} \frac{\partial Z}{\partial \beta}=-\frac{\partial \sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)} / \partial \beta}{\sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)}}=-\frac{\sum_{\psi}\left[-\mathcal{E}(\psi) \mathrm{e}^{-\beta \mathcal{E}(\psi)}\right]}{\sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)}}=\langle\mathcal{E}\rangle=E
$$

Integration over a coupling parameter

Let us consider any dependence $(\beta U)(\lambda)$, e.g.:

$$
\begin{gathered}
(\beta U)(\lambda)= \begin{cases}\beta\left[U_{0}+\lambda\left(U_{1}-U_{0}\right)\right] & \lambda=\text { coupling parameter, } \lambda \in[0,1] \\
\lambda U & \lambda \equiv \beta \text { : see previous slide }\end{cases} \\
\frac{\partial \beta F_{\text {res }}}{\partial \lambda}=-\frac{\partial \ln Q}{\partial \lambda}=-\frac{1}{Q} \int \frac{\partial \mathrm{e}^{-\beta U}}{\partial \lambda} \mathrm{~d} \vec{r}^{N}=\frac{1}{Q} \int \frac{\partial(\beta U)(\lambda)}{\partial \lambda} \mathrm{e}^{-\beta U(\lambda)} \mathrm{d} \vec{r}^{N}=\left\langle\frac{\partial(\beta U)(\lambda)}{\partial \lambda}\right\rangle_{\lambda} \\
\left(\beta F_{\text {res }}\right)\left(\lambda_{1}\right)=\left(\beta F_{\text {res }}\right)\left(\lambda_{0}\right)+\int_{\lambda_{0}}^{\lambda_{1}}\left\langle\frac{\partial(\beta U)(\lambda)}{\partial \lambda}\right\rangle_{\lambda} \mathrm{d} \lambda
\end{gathered}
$$

then
where $\langle\cdot\rangle_{\lambda}=$ mean value in the ensemble (simulation) with potential $U(\lambda)$
How to integrate:

- Several discrete values of λ_{i} :
- fit to a suitable function and integrate it
- use a numerical quadrature method; e.g., the Simpson formula (points with a higher weight should be simulated longer)
A little change of λ in every MD step (the system is almost in equilibrium) + integration

Examples

For $\lambda=\beta$ we get as before:

$$
\beta_{1} F_{\text {res }}\left(\beta_{1}\right)-\beta_{0} F_{\text {res }}\left(\beta_{0}\right)=\int_{\beta_{0}}^{\beta_{1}}\langle U\rangle \mathrm{d} \beta
$$

- Integration from an Einstein crystal to a real crystal.

NB: Einstein crystal = independent harmonic oscillators at lattice sites.
There are minor problems (\Rightarrow correction) when the crystal is detached from the fixed sites.

- Integration from ideal gas around the critical point to liquid. Because of gas singularity at zero density, one of the integrals is (for NPT):

$$
\ln \phi=\frac{\mu-\mu^{\circ}}{R T}=\int_{0}^{p}\left(V_{\mathrm{m}}-\frac{R T}{p^{\prime}}\right) \mathrm{d} p^{\prime}
$$

It helps to use a virial equation of state for low densities

Non-Boltzmann sampling

We want $(\beta U)_{1}$, but we simulate $(\beta U)_{0}$ (can change $\beta / U /$ both)

$$
\begin{gathered}
\Delta(\beta U)=(\beta U)_{1}-(\beta U)_{0} \\
\langle X\rangle_{(\beta U)_{1}}=\frac{\int X \mathrm{e}^{-(\beta U)_{1}} \mathrm{~d} \vec{r}^{N}}{\int \mathrm{e}^{-(\beta U)_{1}} \mathrm{~d} \vec{r}^{N}}=\frac{\frac{1}{Q_{0}} \int X \mathrm{e}^{-(\beta U)_{0}} \mathrm{e}^{-\Delta(\beta U)^{2}} \mathrm{~d} \vec{r}^{N}}{\frac{1}{Q_{0}} \int \mathrm{e}^{-(\beta U)_{0}} \mathrm{e}^{-\Delta(\beta U)} \mathrm{d} \vec{r}^{N}}=\frac{\left\langle X \mathrm{e}^{-\Delta(\beta U)}\right\rangle_{0}}{\left\langle\mathrm{e}^{-\Delta(\beta U)}\right\rangle_{0}}
\end{gathered}
$$

Helmholtz energy:

$$
\begin{aligned}
\Delta\left(\beta F_{\text {res }}\right) & =\beta_{1} F_{\text {res }}\left((\beta U)_{1}\right)-\beta_{0} F_{\text {res }}\left((\beta U)_{0}\right) \\
& =-\ln \left(\frac{Q_{1}}{Q_{0}}\right)=-\ln \frac{\int \mathrm{e}^{-(\beta U)_{1}} \mathrm{~d} \vec{r}^{N}}{\int \mathrm{e}^{-(\beta U)_{0}} \mathrm{~d} \vec{r}^{N}} \\
& =-\ln \frac{\int \mathrm{e}^{-(\beta U)_{0}} \mathrm{e}^{-\Delta(\beta U)} \mathrm{d} \vec{r}^{N}}{\int \mathrm{e}^{-(\beta U)_{0}} \mathrm{~d} \vec{r}^{N}}=-\ln \left\langle\mathrm{e}^{-\Delta(\beta U)}\right\rangle_{0} \\
& =\ln \left\langle\mathrm{e}^{+\Delta(\beta U)}\right\rangle_{1}
\end{aligned}
$$

where the last equation follows from $0 \leftrightarrow 1$ interchange

Umbrella sampling

The system in the middle is sampled: $\operatorname{mid}=(\beta U)_{0}+\Delta(\beta U) / 2=\left(\beta_{0} U_{0}+\beta_{1} U_{1}\right) / 2$:

$$
\Delta\left(\beta F_{\text {res }}\right)=\ln \left\langle\mathrm{e}^{+\Delta(\beta U) / 2}\right\rangle_{\text {mid }}-\ln \left\langle\mathrm{e}^{-\Delta(\beta U) / 2}\right\rangle_{\text {mid }}
$$

Often, term "umbrella sampling" is extended to using many steps of similar kind

Multiple histogram reweighting I

Building the density of states as a funtion of energy in a wide range of temperatures from overlapping histograms of energies obtained in a number of simulations at different temperatures. Configurational integral and residual Helmholtz energy at temperature $T_{i}, \beta_{i}=1 / k_{\mathrm{B}} T_{i}$

$$
Q_{i}=\mathrm{e}^{-\beta_{i} F_{i}}=\int \mathrm{e}^{-\beta_{i} U\left(\vec{r}^{N}\right)} \mathrm{d} \vec{r}^{N}=\int D(E) \mathrm{e}^{-\beta_{i} E_{\mathrm{d}}} \mathrm{~d}
$$

$$
\boldsymbol{\pi}(E)=D(E) \mathrm{e}^{-\beta E}
$$

where $D(E)$ is the density of states:

$$
D(E) \propto E^{k N}
$$

$$
D(E)=\int_{U\left(\vec{r}^{N}\right)=E} 1 \mathrm{~d} \vec{r}^{N} \equiv \int \delta\left(U\left(\vec{r}^{N}\right)-E\right) \mathrm{d} \vec{r}^{N}
$$

where k is a constant

$$
\stackrel{\text { rectangle }}{\approx} \int_{U\left(\vec{r}^{N}\right) \in(E-\Delta E / 2, E+\Delta E / 2)} 1 \mathrm{~d} \vec{r}^{N}
$$

[Ghoufi et al. (2008)]

Detour: Density of states for a particle in a box

One particle in 1D in a box of length L, energies of eigenstates according to the Schrödinger equation:

$$
E_{n}=\frac{n^{2} h^{2}}{8 L^{2}} \propto n^{2}, n=1,2, \ldots
$$

Let's have $f=3 N$ such degrees of freedom. The number of states \#(E) with energy less than E satisfies the equation

$$
n_{1}^{2}+n_{2}^{2}+\cdots+n_{f}^{2}<E=\left[E^{1 / 2}\right]^{2}
$$

For large $E, \#(E)=1 / 2^{f}$ of the volume of the $E^{1 / 2}$-ball in f-dimendional space:

$$
\begin{gathered}
\#(E)=\frac{\pi^{f / 2} E^{f / 2}}{\Gamma(f / 2+1)} \propto E^{f / 2} \Rightarrow D(E)=\frac{\mathrm{d} \#(E)}{\mathrm{d} E} \propto E^{f / 2-1} \\
\pi(E)=D(E) \mathrm{e}^{-\beta E}
\end{gathered}
$$

The Boltzmann factor $\mathrm{e}^{-\beta E}$ eventually wins!
For large N, the product converges to a Gaussian with $\operatorname{Var}(E) \propto f \propto N\left(\sigma=N^{1 / 2}\right)$

Multiple histogram reweighting II

In the simulation, we calculate the histogram $h_{i}(E)$ for a set of (equidistant) energies E, or some equivalent Gaussian-based δ-function approximation. We will use the normalized histogram and the \int-form. (To repeat, subscript ${ }_{i}$ refers to T_{i}.)

$$
\begin{gathered}
\sum_{E} h_{i}(E)=\int h_{i}(E) \mathrm{d} E=1 \\
h_{i}(E)=\frac{D(E) \mathrm{e}^{-\beta_{i} E}}{\int D(E) \mathrm{e}^{-\beta_{i} E} \mathrm{~d} E}=D(E) \mathrm{e}^{-\beta_{i}\left(E-F_{i}\right)}
\end{gathered}
$$

Using one temperature only but F_{i} is not known (yet):

$$
\begin{equation*}
D(E)=h_{i}(E) \mathrm{e}^{\beta_{i}\left(E-F_{i}\right)} \tag{1}
\end{equation*}
$$

We will average $D(E)$ from several simulations at different temperatures
$D(E)$ does not depend on T_{i}, but our calculation does \pm statistical errors.

- At different T_{i} different ranges of E are sampled.
\Rightarrow We compose the total $D(E)$ from all data:

$$
D(E)=\sum_{i} w_{i}(E) h_{i}(E) \mathrm{e}^{\beta_{i}\left(E-F_{i}\right)}, \quad \sum_{i} w_{i}(E)=1
$$

Multiple histogram reweighting III

$+19 / 34$

Determining the weights: minimization of the error $\delta D(E)$ (or some estimate). Using reasonable assumptions, we get

$$
w_{i}(E)=\frac{N_{i} h_{i}(E)}{\sum_{j} N_{j} h_{j}(E)}=\frac{N_{i} \mathrm{e}^{-\beta_{i}\left(E-F_{i}\right)}}{\sum_{j} N_{j} \mathrm{e}^{-\beta_{j}\left(E-F_{j}\right)}}
$$

where N_{i} is the number of measurements at temperature $\beta_{i} . \Rightarrow$

$$
\begin{gathered}
\mathrm{e}^{-\beta_{i} F_{i}}=\int D(E) \mathrm{e}^{-\beta_{i} E} \mathrm{~d} E=\int \sum_{j} w_{j}(E) h_{j}(E) \mathrm{e}^{\beta_{j}\left(E-F_{j}\right)} \mathrm{e}^{-\beta_{i} E} \mathrm{~d} E \\
=\int \frac{\sum_{j} N_{j} \mathrm{e}^{-\beta_{j}\left(E-F_{j}\right)} h_{j}(E) \mathrm{e}^{\beta_{j}\left(E-F_{j}\right)}}{\sum_{j} N_{j} \mathrm{e}^{-\beta_{j}\left(E-F_{j}\right)}} \mathrm{e}^{-\beta_{i} E} \mathrm{~d} E=\int \frac{\sum_{j} N_{j} h_{j}(E) \mathrm{e}^{-\beta_{j} E}}{\sum_{j} N_{j} \mathrm{e}^{-\beta_{j}\left(E-F_{j}\right)}} \mathrm{d} E
\end{gathered}
$$

can be solved by iterations (self-consistent solution).
F_{i} are determined but an additive constant, $D(E)$ but a multiplicative factor

Multiple histogram reweighting IV

Expectation value at temperature β :

$$
\langle X\rangle_{\beta}=\frac{\int X(E) D(E) \mathrm{e}^{-\beta E} \mathrm{~d} E}{\int D(E) \mathrm{e}^{-\beta E} \mathrm{~d} E}=\frac{\int X(E) \frac{\sum_{i} h_{i}(E)}{\sum_{j} N_{j} \mathrm{e}^{-\beta_{j}\left(E-F_{j}\right)}} \mathrm{e}^{-\beta E_{\mathrm{d}}} \mathrm{~d} E}{\int \frac{\sum_{i} h_{i}(E)}{\sum_{j} N_{j} \mathrm{e}^{-\beta_{j}\left(E-F_{j}\right)}} \mathrm{e}^{-\beta E_{\mathrm{d}}} \mathrm{~d}}
$$

- $\int \mathrm{d} E$ is over histograms of width ΔE
if ΔE is very short, all calculated energies are stored and $\int X(E) h_{i}(E) \mathrm{d} E$ is replaced by a sum of E over $h_{i}(E)=1 / N_{i}$
- $\sqrt{\operatorname{Var} E} /\langle E\rangle \approx N^{-1 / 2} \Rightarrow \beta_{i} / \beta_{i+1} \approx 1 \pm N^{-1 / 2}$ (overlapping distributions)

Parallel tempering (replica exchange)

$21 / 34$
$+\quad$ s07/3
k simulations at temperatures $\beta_{1}<\beta_{2} \ldots$ are run in parallel.
Once a while, 2 subsystems β_{i}, β_{j} (normally $|i-j|=1$) are interchanged, the acceptance probability is

$$
\min \left\{1, \frac{\exp \left(-\beta_{i} E_{j}-\beta_{j} E_{i}\right)}{\exp \left(-\beta_{i} E_{i}-\beta_{j} E_{j}\right)}\right\}
$$

Oros: easier barrier crossing, improved ergodicity, faster convergence at low temperatures Cons: correlations between subsystems, difficult error estimation

Conformational flooding, metadynamics, Wang-Landau

507/3
Method suitable for fast barrier crossing (bad ergodicity - "bottleneck"), incl. calculation of the free energy profile (ΔF or ΔG), based on decreasing the energy barrier.

- (several predecessors)
- Conformational flooding H. Grubmüller (1995)
- Wang-Landau (MC) F. Wang, D.P. Landau (2001)
- Metadynamics (MD) A. Laio, M. Parrinello (2002)

Ormal equivalence C. Junghans, D. Perez, T. Vogel (2014)

Conformational flooding, metadynamics, Wang-Landau

Our system is defined by the potential $U_{0}\left(\vec{r}^{N}\right)$
Collective variable $\lambda=\lambda\left(\vec{r}^{N}\right)$ describes the studied process, e.g.: reaction coordinate, dis tance ligand-receptor (optionally + orientation), etc.
There may be 2 or even more collective variables
We simulate system with potential $U\left(\vec{r}^{N}\right)=U_{0}\left(\vec{r}^{N}\right)+\Delta U(\lambda)$, where $\Delta U=0$ at start
$\Delta U(\lambda)$ is periodically updated:

$$
\Delta U:=\Delta U+\omega \frac{\delta(\lambda)}{h(\lambda)}, \quad \lambda=\lambda\left(\vec{r}^{N}\right)
$$

$\delta=$ aproximation of δ-function (MC: histogram bin, better and MD: Gauss)
$\omega=$ small enough relaxation parameter, $\omega \ll k_{\mathrm{B}} T$
$h(\lambda)=$ density of Cartesian points on hypersurface λ; e.g., $h(\lambda)=4 \pi \lambda^{2}$ for $\lambda=r_{12}$
\Rightarrow the probability of visiting the same λ again decreases

Conformational flooding, metadynamics, Wang-Landau

Free energy profile along λ

strictly, updating should be turned off in the final run (MC: microreversibility violation, MD heating)

- then, the residual almost-uniform $p(\lambda)$ is determined and:

$$
F(\lambda)=\text { const }-\Delta U(\lambda)-k_{\mathrm{B}} T \ln [p(\lambda) / h(\lambda)]
$$

- in practice, with small enough ω and continued updating, we can assume $p(\lambda) / h(\lambda)=$ const † so that (in the sampled region of λ)

$$
F(\lambda)=\text { const }-\Delta U(\lambda)
$$

Free energy of a well-define "basin" of states (e.g., a bond state) is:

$$
F=-k_{\mathrm{B}} T \ln \int_{\lambda_{1}}^{\lambda_{2}} \mathrm{e}^{-F(\lambda) / k_{B} T} h(\lambda) \mathrm{d} \lambda
$$

integration over region for more collective variables
symbols const are different

Conformational flooding, metadynamics, Wang-Landau: Case study ${ }_{507 / 3}^{25 / 34}$

3D system, interaction energy:
online simulation is for $T=1 \mathrm{~K}$ and $\mathrm{T}=2 \mathrm{~K}$, type r to reread $\frac{U_{0}(x, y, z)}{k_{\mathrm{B}} \mathrm{K}}=\phi(x)\left(y^{2}+z^{2}+1\right)$, where $\phi(x)=[(x+1)(x+2)(x-2)(x-4)+21] \mathrm{e}^{(x+1.5)^{2} / 3}$

The barrier is $E^{*} / k_{\mathrm{B}}=1910 \mathrm{~K}, \mathrm{e}^{-E^{*} / k_{\mathrm{B}} 1 \mathrm{~K}}=10^{-929}$

- Collective variable $\lambda=x$

Histogram: triangular $\delta(\lambda)$, grid $=1 / 100$
On purpose short MC step in $x(\approx$ MD)
Initial $\omega=0.25 k_{\mathrm{B}} T$, decrease to finish
fine + stop $(\omega \equiv a<0)$: aaaV in the plot window
graphs shown:

- running: $\Delta U-F_{\text {exact, }}$ where
$F_{\text {exact }}(\lambda)=\phi(\lambda)+k_{B} T \ln (\phi(\lambda))$
- final: ΔU and $\phi(x)=U_{0}(x, 0,0)$
$-F$ and $F_{\text {exact }}$ comparison
Note: in real systems, the second term will be a result of many degrees of freedom, not just $2(y, z)$

Conformational flooding, metadynamics, Wang-Landau: Case study ${ }_{507 / 3}$
The final graph shows $F(x)+\Delta U(x)$ (two independent simulations $T=1 \mathrm{~K}$, different start)

$1 /$ grid	$\Delta F / k_{B} T$
50	$37.85(8)$
100	$40.52(5)$
200	$40.98(5)$
400	$41.08(3)$
exact*	41.13

where ΔF is the difference between the right and left basins.

* see Maple

Widom particle insertion method I

Open system

$$
\begin{gathered}
\mathrm{d} F=-S \mathrm{~d} T-p \mathrm{~d} V+\mu \mathrm{d} N \\
\beta \mu=\left(\frac{\partial(\beta F)}{\partial N}\right)_{V, T}=-\left(\frac{\partial \ln Z_{N}}{\partial N}\right)_{V, T} \\
\beta \mu_{\text {res }}=\left(\frac{\partial\left(\beta F_{\mathrm{res}}\right)}{\partial N}\right)_{V, T}=-\left(\frac{\partial \ln \left(Q_{N} / V^{N}\right)}{\partial N}\right)_{V, T} \approx-\left(\ln \frac{Q_{N+1}}{V^{N+1}}-\ln \frac{Q_{N}}{V^{N}}\right) \\
\exp \left(-\beta \mu_{\text {res }}\right)=\frac{1}{V} \frac{Q_{N+1}}{Q_{N}}
\end{gathered}
$$

Or for the full chemical potential:

$$
\mathrm{e}^{-\beta \mu}=\frac{z_{N+1}}{z_{N}}=\frac{Q_{N+1} /\left[(N+1)!\Lambda^{3(N+1)}\right]}{Q_{N /}\left[N!\Lambda^{3 N}\right]}=\frac{1}{(N+1) \Lambda^{3}} \frac{Q_{N+1}}{Q_{N}} \approx \frac{1}{N \Lambda^{3}} \frac{Q_{N+1}}{Q_{N}}
$$

then by subtracting $\mu^{\text {id }}=k_{\mathrm{B}} T \ln \left(\frac{N \Lambda^{3}}{V}\right)$ we get the same $\mu_{\text {res }}=\mu-\mu^{\text {id }}$

Widom particle insertion method II

$$
\begin{gathered}
\exp \left(-\beta \mu_{\mathrm{res}}\right)=\frac{1}{V} \frac{Q_{N+1}}{Q_{N}} \\
N \rightarrow N+1 \quad U_{N+1}=U_{N}+\Psi(N) \\
\frac{1}{V} \frac{Q_{N+1}}{Q_{N}}=\frac{1}{V Q_{N}} \int \exp \left(-\beta U_{N}-\beta \psi\right) \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N+1}=\frac{1}{V} \int\left\langle\mathrm{e}^{-\beta \psi}\right\rangle_{N} \mathrm{~d} \vec{r}_{N+1} \\
\exp \left(-\beta \mu_{\text {res }}\right)=\frac{1}{V} \int\left\langle\mathrm{e}^{-\beta \psi}\right\rangle_{N} \mathrm{~d} \vec{r}_{N+1}=\left\langle\left\langle\mathrm{e}^{-\beta \psi}\right\rangle_{N}\right\rangle_{\text {random } \vec{r}_{N+1}}
\end{gathered}
$$

where $\frac{1}{V} \int X \mathrm{~d} \vec{r}_{N+1}=\langle X\rangle_{\text {random }} \vec{r}_{N+1}=$ mean value of X over positions of the $(N+1)$-th particle in volume V, calculated by MC integration (inserting a particle at rancom place)
($N+1$)-th particle does not influence the system - it is virtual (fictitious, ghost)
Problem: dense systems, large solutes
Remedy: gradual insertion (thermodynamic integration or by finite steps)
Similar: solute insertion \Rightarrow solubility, Henry constant

Example

[cd ../maple; xmaple simul07+18+Widom.mw] $29 / 34$

We have simulated $N=500 \mathrm{Ar}$ atoms (Lennard-Jones: $\sigma=3.405 \AA, \epsilon / k_{\mathrm{B}}=119.8 \mathrm{~K}$) in a box of volume $V=15.791 \mathrm{~nm}^{3}$ at temperature $T=150 \mathrm{~K}$. By the Widom method, we found that

$$
\exp \left(-\mu_{\mathrm{res}} / k_{\mathrm{B}} T\right)=0.749(3)
$$

Calculate μ°, the chemical potential of Ar with respect to the standard state of ideal gas at pressure $p^{\text {st }}=1$ bar and temperature T.
Hints: $\mu_{\text {res }}=\mu-\mu^{\text {id }}(T, V)(N$ particles in volume $V)$
$\mu^{\circ}=\mu-\mu^{\text {id }}\left(T, V^{\text {id }}\right)\left(V^{\text {id }}=\right.$ volume of ideal gas of N particles at $\left.T, p^{\text {st }}\right)$

$$
\begin{aligned}
& \mu^{\circ}=\mu_{\text {res }}+\mu^{\text {id }}(T, V)-\mu^{\text {id }}\left(T, V^{\text {id }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon^{\text {mu }} \text { 乌sع0t }={ }_{75} d / \perp^{8}>N=p_{p 1} \wedge
\end{aligned}
$$

The value in parentheses is the estimated standard uncertainty in the unit of the least significant digit.

Henry constant

Gas (2) dissolved in liquid (1), mole fraction in liquid $x_{2}=N_{2} /\left(N_{1}+N_{2}\right), x_{2} \ll 1$. One form of the Henry law for partial pressure p_{2} of (2) in equilibrium with solution:

$$
p_{2}=K_{\mathrm{H}} x_{2}
$$

By virtual insertion of one molecule ($N_{2}=1$) of gas (2) to pure liquid (1), we get the residual chemical potential of (2) at $x_{2}=1 /\left(N_{1}+1\right) \approx 1 / N_{1}$,

$$
\mu_{\text {res }, 2}=\mu_{2}\left(x_{2}\right)-\mu_{2}^{\mathrm{id}}(V)
$$ In equilibrium

$\left.\mu_{2}\left(x_{2}\right) \stackrel{\text { eql. }}{=} \mu^{\text {id }}\left(V_{2}\right)=k_{\mathrm{B}} T \ln \frac{\Lambda_{2}^{3}}{V_{2}}\right\} \mu_{\text {res }, 2}=k_{\mathrm{B}} T \ln \frac{N_{2} \Lambda^{3}}{V_{2}}-k_{\mathrm{B}} T \ln \frac{N_{2} \Lambda^{3}}{V}=k_{\mathrm{B}} T \ln \frac{V}{V_{2}}$
where V_{2} is the volume corresponding to pressure p_{2} (don't forget that $N_{2}=1$),

$$
v_{2}=\frac{1 k_{\mathrm{B}} T}{p_{2}}=\frac{k_{\mathrm{B}} T}{x_{2} K_{\mathrm{H}}}=\frac{k_{\mathrm{B}} T N_{1}}{K_{\mathrm{H}}}
$$

where $\rho_{1}=N_{1} / V=$ number density of liquid (1). Finally,

$$
K_{\mathrm{H}}=\frac{\rho_{1} k_{\mathrm{B}} T}{\mathrm{e}^{-\beta \mu_{\mathrm{res}, 2}}}=\frac{\rho_{1} k_{\mathrm{B}} T}{\left\langle\left\langle\mathrm{e}^{-\beta \Psi}\right\rangle_{N_{1}}\right\rangle_{\text {random insertion of (2) }}}
$$

Reversible work by integrating the mean force

From thermodynamics:

$$
\Delta G=W_{\text {other than pressure-volume }}[p, T]
$$

$$
\Delta \mu_{i}=-\int_{\vec{r}_{i}(1)}^{\vec{r}_{i}(2)}\left\langle\vec{f}_{i}\right\rangle \cdot \mathrm{d} \vec{r}_{i}
$$

where $\vec{f}_{i}=-\partial U / \partial \vec{r}_{i}$ is the force acting on particle i Molecules: the force applies to the center of mass or other reference point.

Problem: hysteresis

Mean force and its potential

Let us define the single-particle density as (also denoted as n_{1})

$$
\rho_{1}\left(\vec{r}_{1}\right)=\frac{N}{Q_{N}} \int \mathrm{e}^{-\beta U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)} \mathrm{d} \vec{r}_{2} \ldots \mathrm{~d} \vec{r}_{N}
$$

$-\rho_{1}\left(\vec{r}_{1}\right) \mathrm{d} \vec{r}_{1}$ is the probability of finding a particle (any one) in $\mathrm{d} \vec{r}_{1}$

- extension to mixtures: $N / Q_{N} \rightarrow N_{\text {species }} / Q_{N}$

The potential of mean force is defined by

$$
\bar{U}_{1}\left(\vec{r}_{1}\right)=-k_{\mathrm{B}} T \ln \left[V \rho_{1}\left(\vec{r}_{1}\right)\right]
$$

The corresponding force is

$$
\bar{f}_{i}=-\left(\frac{\partial \bar{U}_{1}}{\partial \vec{r}_{1}}\right)=k_{\mathrm{B}} T \frac{\partial \rho_{1} / \partial \vec{r}_{1}}{\rho_{1}}=\left\langle-\left(\frac{\partial U}{\partial \vec{r}_{1}}\right)\right\rangle_{\vec{r}_{2}, \ldots, \vec{r}_{N}}=\left\langle\vec{f}_{1}\right\rangle_{\vec{r}_{2}, \ldots, \vec{r}_{N}}
$$

i.e,. it is indeed the mean force on particle 1 held at fixed position \vec{r}_{1}.

Note: Similarly, for a 2-particle distribution, which for a pair of particles in an isotropic fluid is $g(r)$, one defines the potential of mean force as:

$$
\bar{U}_{2}(r)=-k_{\mathrm{B}} T \ln [g(r)]
$$

Interfacial (surface) energy of solids

Cleaving [Davidchack, Laird: JCP 118, 7651 (2003)]: Thermodynamic integration over a gradually growing "knife" (e.g., Gaussian potential) inserted between crystalographic planes.
Molding [Espinosa, Vega, Sanz: JCP 141, 134709 (2014)]: Thermodynamic integration over a gradually growing "mold" (potential wells) to keep a crystal growing in a part of the system.

- General problem of both methods: hysteresis

Gibbs energy of crystals

Einstein crystal ${ }^{\S}$ at given T as a reference, integration over a coupling parameter [Frenkel, Ladd: JCP 813188 (1984), Frenkel, Mulder: Mol. Phys. 55, 1171 (1985)].

- Classical method: harmonic vibrations as a reference, thermodynamic integration of the difference $0 \rightarrow T$ [Kolafa JCTC 15, 68 (2019) and references therein]
${ }^{5}$ independent harmonic oscillators, here treated classically

Local density/concentration method

Let a solute i be a subject of external potential $U_{i}^{\text {ext }}(\vec{r})$ (e.g., "gravity"). In equilibrium:

$$
\mu_{i}(\vec{r})+U_{i}^{\mathrm{ext}}(\vec{r})=\text { const }
$$

or

$$
\mu_{i}\left(\vec{r}_{1}\right)-\mu_{i}\left(\vec{r}_{2}\right)=-\left[U_{i}^{\mathrm{ext}}\left(\vec{r}_{1}\right)-U_{i}^{\mathrm{ext}}\left(\vec{r}_{2}\right)\right]
$$

We determine the concentration or density at \vec{r}_{1} and know the chemical potential (with respect to a certain reference)

Example:

- reference $=$ infinite dilution approximation $(\gamma=1)$ in the region of small concentration
- the activity coefficient γ in the region of high concentration can be calculated

