Structural quantities

Correlation functions

O radial distribution function (RDF, also pair correlation/distribution function), $g(r)=$ probability of finding a particle at distance r (from another particle), normalized to ideal gas

- structure factor (diffraction \rightarrow Fourier transform of $g(r)$)
- angular correlation function - good for small nonspherical molecules

O time autocorrelation functions

Order parameters

Ordering in the z-direction: $\left\langle\sum_{i} \cos \theta_{i}\right\rangle: \uparrow$ vs. \downarrow
For symmetric molecules: $\left\langle\sum_{i}\left(\frac{3}{2} \cos ^{2} \theta_{i}-\frac{1}{2}\right)\right\rangle: \uparrow$ vs. \leftrightarrow
Nematic liquid crystal - the "director" is not known
$Q_{\alpha \beta}=\left\langle\sum_{i}\left(\frac{3}{2} \hat{n}_{\alpha, i} \hat{n}_{\beta, i}-\frac{1}{2} \delta_{\alpha \beta}\right)\right\rangle$, eigenvector of the max. eigenvalue $=$ director

Formulas detecting local order (e.g., tetrahedral around water molecules), onset of crystallization, etc.

Structure of fluids - correlation functions

randomly distributed molecules (ideal gas)

liquid
$g(r)=$ pair correlation function $=$ radial distribution function $=$ probability density of finding a particle r apart from another particle, normalized so that for randomly distributed particles (ideal gas) it is 1

Structure of fluids - correlation functions

How to obtain structure - experiment

Diffraction (neutrons, X-ray, electrons) \Rightarrow "structure factor"

- inverse Fourier transform \Rightarrow RDF

How to obtain structure

Argon, hard spheres, water

$$
N(r)=4 \pi \rho \int_{0}^{r} g\left(r^{\prime}\right) r^{\prime 2} \mathrm{~d} r^{\prime}
$$

For $r_{\text {min }}=$ first minimum on the RDF curve, $N\left(r_{\text {min }}\right)=$ "coordination number" $=$ averaged number of molecules in the first shell

RDF from simulations - simple
Histogram of the number of particle pairs, \mathcal{N}_{i}, so that

$$
r \in\left[r_{i}-\Delta r / 2, r_{i}+\Delta r / 2\right) \text { alternatively: } \mathcal{I}_{i}=\left[r_{i}, r_{i}+\Delta r\right)
$$

The volume of the shell

$$
\Delta V_{i}=\frac{4 \pi}{3}\left[\left(r_{i}+\frac{\Delta r}{2}\right)^{3}-\left(r_{i}-\frac{\Delta r}{2}\right)^{3}\right]
$$

Mean number of molecules around a selected particle in case of uniformly distributed molecules (ideal gas, $\rho=N / V$):
$\rho \Delta V_{i}$
Sum over all particles ($1 / 2$ to count each pair just once):

$$
\mathcal{N}_{i}^{\text {id. gas }}=\frac{N}{2} \rho \Delta V_{i}
$$

Radial distribution function:

$$
g\left(r_{i}\right)=\frac{\left\langle\mathcal{N}_{i}\right\rangle}{\mathcal{N}_{i}^{\text {id.gas }}}=\frac{2\left\langle\mathcal{N}_{i}\right\rangle}{N \rho \Delta V_{i}}
$$

SIMOLANT - installation (Windows)

http://www.vscht.cz/fch/software/simolan

or Google simolant

- Download simolant-win32.zip
- Create a folder and unpack SIMOLANT there.

Do not run directly from simolant-win32.zip!

- Run simolant.exe

Hint: The calculated data are exported to file simolant.txt with a decimal point. If you like decimal comma (useful with Czech localization), click II, in panel "Measure".

Hint: If you restart SIMOLANT, the old simolant.txt is renamed to simolant.bak. The export name simolant can be changed by Menu: File \rightarrow Protocol name.

Radial distribution function in the NVT ensemble
 3D (e.g., in periodic b.c.), good for a homogebeous and isotropic liquid:
 $$
g(r) \equiv g\left(r_{12}\right)=\frac{N(N-1)}{\rho^{2} Q_{N V T}} \int \ldots \int \exp \left[-\beta U\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)\right] \mathrm{d} \vec{r}_{3} \ldots \mathrm{~d} \vec{r}_{N}
$$

Equivalently

$$
g(r)=\left(1-\frac{1}{N}\right) V\left\langle\delta\left(\vec{r}_{12}-\vec{r}\right)\right\rangle
$$

For a mixture:

$$
g_{i j}(r)=V\left\langle\delta\left(\vec{r}_{12}-\vec{r}\right)\right\rangle
$$

Normalization (fluid):

$$
\lim _{N \rightarrow \infty, r \rightarrow \infty} g(r)=1
$$

NB: ideal gas at finite $N: g(r)=1-1 / N$ (e.g., in periodic b.c.)
Number of particles around one chosen particle (in NVT):

$$
\int_{V} \rho g(\vec{r}) \mathrm{d} \vec{r}=N-1
$$

Calculation of RDF in simulations - exact

Histogram of the count of pairs of particles, \mathcal{N}_{i}, so that $r \in \mathcal{I}_{i}$

$$
\begin{gathered}
\mathcal{I}_{i}=\left[r_{i}-\Delta r / 2, r_{i}+\Delta r / 2\right), \text { optionally } \mathcal{I}_{i}=\left[r_{i}, r_{i}+\Delta r\right) \\
r_{i}=i \Delta r, i=1, \ldots, i_{\max }
\end{gathered}
$$

$$
\left\langle\mathcal{N}_{i}\right\rangle=\frac{1}{Q N V T} \sum_{j<k} \int_{r_{j k} \in \mathcal{I}_{i}} \exp \left[-\beta U\left(\vec{r}^{N}\right)\right] \mathrm{d} \vec{r}^{N}
$$

$$
=\frac{1}{Q_{N V T}}\binom{N}{2} V \int_{r_{12} \in \mathcal{I}_{i}}\left\{\int \exp \left[-\beta U\left(\vec{r}^{N}\right)\right] \mathrm{d} \vec{r}_{3} \ldots \mathrm{~d} \vec{r}_{N}\right\} \mathrm{d} \vec{r}_{12}
$$

$$
=\frac{N}{2} \rho \int_{\mathcal{I}_{i}} g(r) \mathrm{d} \vec{r}
$$

$$
\approx \frac{N^{2}}{2 V} g\left(r_{i}\right) \Delta V_{i}
$$

The formula again:

$$
g\left(r_{i}\right)=\frac{2\left\langle\mathcal{N}_{i}\right\rangle}{N \rho \Delta V_{i}}
$$

Correlation function and thermodynamics

For simple fluid (point particles interacting by a pair spherically symmetric potential):
Residual internal energy:

$$
\begin{gathered}
\langle U\rangle=\frac{1}{Q_{N V T}} \int \sum_{i<j} u_{i j}\left(r_{i j}\right) \mathrm{e}^{-\beta U^{\mathrm{d}} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}} \\
\langle U\rangle=\binom{N}{2} \frac{V}{Q_{\mathrm{NVT}}} \int \mathrm{e}^{-\beta U_{4}} \pi r_{12}^{2} \mathrm{~d} r_{12} u\left(r_{12}\right) \mathrm{d} \vec{r}_{3} \ldots \mathrm{~d} \vec{r}_{N} \\
\langle U\rangle=\frac{N}{2} \rho \int u(r) g(r) \mathrm{d} \vec{r}=2 N \pi \rho \int u(r) g(r) r^{2} \mathrm{~d} r
\end{gathered}
$$

Pressure:

$$
\frac{\beta P}{\rho}=1-\frac{2 \pi}{3} \beta \rho \int g(r) u^{\prime}(r) r^{3} \mathrm{~d} r
$$

Structure factor

$14 / 22$

Distance of atom \vec{r}_{j} from plane $\vec{\nu} \cdot \vec{r}=0$ is $\vec{\nu} \cdot \vec{r}_{j}($ for $|\vec{v}|=1)$.

- Distance from wave source (wave plane of eq. $\vec{v} \cdot \vec{r}=$ const) via atom r_{j} to the detector ($\vec{v}^{\prime} \cdot \vec{r}=$ const) is $\vec{v} \cdot \vec{r}_{j}-\vec{v}^{\prime} \cdot \vec{r}_{j}+$ const
Wave vector $\vec{k}_{\mathrm{inc}}=k_{\mathrm{inc}} \vec{v}, k_{\mathrm{inc}}=2 \pi / \lambda$
- Formally the incident wave is (but phase)

$$
\exp \left[i\left(k_{\mathrm{inc}} \vec{v}-k_{\mathrm{inc}} \vec{v}^{\prime}\right) \cdot \vec{r}_{j}\right]=\exp \left[i \vec{k} \cdot \vec{r}_{j}\right]
$$

where

$$
\vec{k}=k_{\mathrm{inc}} \vec{v}-k_{\mathrm{inc}} \vec{v}^{\prime}, \quad k=|\vec{k}|=2 \sin (\alpha / 2) k_{\mathrm{inc}} \approx \alpha k_{\mathrm{inc}}
$$

Structure factor

Waves scattered by all atoms interfere:

$$
\left.K=\sum_{j=1}^{N} \exp \left[i\left(k_{\mathrm{inc}} \vec{v}-k_{\mathrm{inc}} \vec{v}^{\prime}\right) \cdot \vec{r}_{j}\right]=\sum_{j=1}^{N} \exp \left[i \vec{k} \cdot \vec{r}_{j}\right], \quad \text { signal }\left.\propto\langle | K\right|^{2}\right\rangle
$$

Definition of the structure factor (pure compound):

$$
\left.S(\vec{k})=\left.\left\langle\frac{1}{N}\right| \sum_{j=1}^{N} \exp \left(-i \vec{k} \cdot \vec{r}_{j}\right)\right|^{2}\right\rangle
$$

It is a function of vector \vec{k}, we may imagine it in the periodic b.c. in a cube of edge L :

$$
\vec{k}=\frac{2 \pi \vec{n}}{L}, \vec{n} \in \mathbb{Z}^{3}
$$

Similarly, a 3D RDF is (not exactly isotropic even for a liquid)

$$
g\left(\vec{r}_{12}\right)=\frac{N(N-1)}{\rho^{2} Q_{N V T}} \int_{L^{3}} \ldots \int_{L^{3}} \exp \left[-\beta U\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)\right] \mathrm{d} \vec{r}_{3} \ldots \mathrm{~d} \vec{r}_{N}
$$

Structure factor and RDF

$+\begin{aligned} & 16 / 22 \\ & 508 / 3\end{aligned}$
In a periodic box $V=L^{3} ; \vec{k}=2 \pi \vec{n} / L$:

$$
\begin{aligned}
S(\vec{k}) & \left.=\left.\left\langle\frac{1}{N}\right| \sum_{j=1}^{N} \exp \left(-i \vec{k} \cdot \vec{r}_{j}\right)\right|^{2}\right\rangle \\
& =\left\langle\frac{1}{N} \sum_{j=1}^{N} \sum_{l=1}^{N} \exp \left(-i \vec{k} \cdot \vec{r}_{j}\right) \exp \left(i \vec{k} \cdot \vec{r}_{l}\right)\right\rangle \\
& =1+\frac{1}{N}\left\langle\sum_{j<l}^{N}\left[\exp \left(-i \vec{k} \cdot \vec{r}_{j l}\right)+\exp \left(i \vec{k} \cdot \vec{r}_{j l}\right)\right]\right\rangle \\
& =1+\rho \int_{L^{3}} g(\vec{r}) \cos (\vec{k} \cdot \vec{r}) \mathrm{d} \vec{r}
\end{aligned}
$$

The integral diverges as $V \rightarrow \infty \Rightarrow$ we subtract $0=\int_{V} \cos (\vec{k} \cdot \vec{r}) \mathrm{d} \vec{r}, \vec{k}=2 \pi \vec{n} / L$
(other method: convergence factor $\left.\exp \left(-\alpha k^{2}\right), \lim _{\alpha \rightarrow 0}\right)$

$$
S(\vec{k})=1+\rho \int_{V}[g(\vec{r})-1] \cos (\vec{k} \cdot \vec{r}) \mathrm{d} \vec{r} \stackrel{V \rightarrow \infty}{=} 1+\rho \int[g(\vec{r})-1] \cos (\vec{k} \cdot \vec{r}) \mathrm{d} \vec{r}
$$

Structure factor and RDF

Since $g(\vec{r})=g(-\vec{r})$, we have

$$
S(\vec{k})-1=\rho \int[g(\vec{r})-1] \cos (\vec{k} \cdot \vec{r}) \mathrm{d} \vec{r}=\rho \int[g(\vec{r})-1] \mathrm{e}^{-i \vec{k} \cdot \vec{r}} \mathrm{~d} \vec{r}
$$

and the 3D inverse Fourier transform is

$$
g(\vec{k})-1=\frac{1}{8 \pi^{3} \rho} \int[S(\vec{k})-1] \mathrm{e}^{i \vec{k} \cdot \vec{r}} \mathrm{~d} \vec{k}
$$

Once again using $S(\vec{k})=S(-\vec{k})$:

$$
g(\vec{k})-1=\frac{1}{8 \pi^{3} \rho} \int[S(\vec{k})-1] \cos (\vec{k} \cdot \vec{r}) \mathrm{d} \vec{k}
$$

The $k \rightarrow 0$ limit:
$N V T: S(0)=0$
$\mu V T: \quad S(0)=1+\rho \int[g(\vec{r})-1] \mathrm{d} \vec{r}=k_{\mathrm{B}} T\left(\frac{\partial \rho}{\partial p}\right)_{T} \quad$ (compressibility equation)

Isotropic structure factor

Let's choose $\vec{k}=(0,0, k)$ and spherical coordinates (ϕ, θ, r), then $\vec{k} \cdot \vec{r}=k r \cos \theta$ and (g and S are odd functions)

$$
\begin{aligned}
S(k)-1 & =\rho \int[g(\vec{r})-1] \cos (\vec{k} \cdot \vec{r}) \mathrm{d} \vec{r} \quad \text { (subst. } z=\cos \theta \text {) } \\
& =\rho \int_{0}^{\infty} r^{2} \mathrm{~d} r \int_{0}^{2 \pi} \mathrm{~d} \phi \int_{-1}^{1}[g(r)-1] \cos (k r z) \mathrm{d} z \\
& =\frac{4 \pi \rho}{k} \int_{0}^{\infty} r[g(r)-1] \sin (k r) \mathrm{d} r
\end{aligned}
$$

In the same way we can evaluate the inverse Fourier transform

$$
\begin{aligned}
g(\vec{k})-1 & =\frac{1}{8 \pi^{3} \rho} \int[S(\vec{k})-1] \cos (\vec{k} \cdot \vec{r}) \mathrm{d} \vec{k} \\
& =\frac{1}{2 \pi^{2} r \rho} \int_{0}^{\infty} k[S(k)-1] \sin (k r) \mathrm{d} k
\end{aligned}
$$

$S(k)$ from simulations

$S(\vec{k})$ in simulations can be calculated directly by the same code as the k-space part of the Ewald summation. If needed, we may sphericalize it:

$$
S(k)=\sum_{k=|\vec{k}|} S(\vec{k}) / \sum_{k=|\vec{k}|} 1
$$

$S(k)$ can be obtained by the inverse Fourier transform of $g(r)$. The RDF $g(r)$ must have a long range and/or it has to be filled (by 1) for long distances.
If one wishes, 3D $S(\vec{k})$ can be obtained by the inverse Fourier transform from RDF $g(\vec{r})$ and vice versa

- Simulation-based $S(k)$ for a mixture (where individual site-site RDFs need not be available) allows for a direct comparison with the experiment
S(k) and $S(\vec{k})$ may detect unwanted crystallization of a supercooled system

Structure factor

— liquid - - glass $(T=0)$
—crystal - - crystallite (both cooled to $T=0$)

Structure factor for multiatomic systems	$+_{508 / 3}^{21 / 22}$	Reverse Monte Carlo	$\begin{aligned} & 22 / 22 \\ & 508 / 3 \end{aligned}$
Structure factor for a "mixture" of atoms ($b_{j}=$ coherent scattering length) $\begin{gathered} S(k)=1+N \frac{\left.\left.\langle \| Q(\vec{k})\right\|^{2}\right\rangle-\sum_{j} b_{j}^{2}}{\left(\sum_{j} b_{j}\right)^{2}} \\ Q(\vec{k})=\sum_{j} b_{j} \exp \left[-2 \pi i \vec{k} \cdot \vec{r}_{j} / L\right] \\ S=\sum_{I} \sum_{J} w_{I J} S_{I J}, \quad w_{I J}=\frac{N_{I} b_{I} N_{j} b_{j}}{\left(\sum_{I} N_{I} b_{I}\right)^{2}} \end{gathered}$		Input: experimental RDF Output: $u(r)$ so that the RDF is best reproduced Not unique - other conditions on $u(r)$ needed	

