
Structural quantities
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Correlation functions

radial distribution function (RDF, also pair correlation/distribution function), g(r) = probability
of finding a particle at distance r (from another particle), normalized to ideal gas

structure factor (diffraction → Fourier transform of g(r))

angular correlation function – good for small nonspherical molecules

time autocorrelation functions

Order parameters

Ordering in the z-direction:
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Nematic liquid crystal – the “director” is not known:
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Formulas detecting local order (e.g., tetrahedral around water molecules),
onset of crystallization, etc.



Structure of fluids – correlation functions
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randomly distributed molecules
(ideal gas)

liquid

g(r) = pair correlation function = radial distribution function = probability density of finding a
particle r apart from another particle, normalized so that for randomly distributed particles (ideal
gas) it is 1



Structure of fluids – correlation functions
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How to obtain structure – experiment
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Diffraction (neutrons, X-ray, electrons) ⇒ “structure factor”

inverse Fourier transform ⇒ RDF



How to obtain structure
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Argon, hard spheres, water
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The structure of simple fluid (argon, HS) is or-
ganized by shells.
The structure of water is determined by the
tetrahedral geometry of hydrogen bonds.
After several molecular diameters, the corre-
lations decay to zero.



Running coordination number
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Also “cumulative radial distribution function” ρ = N/V = number density

N(r) = 4πρ
∫ r

0
g(r′)r′2dr′

For rmin = first minimum on the RDF curve, N(rmin) = “coordination number” = averaged number
of molecules in the first shell
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RDF from simulations – simple
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Histogram of the number of particle pairs, N , so that

r ∈ [r − Δr/2, r + Δr/2) alternatively: I = [r, r + Δr)

The volume of the shell
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Mean number of molecules around a selected particle in case of uniformly distributed molecules
(ideal gas, ρ = N/V):

ρΔV

Sum over all particles (1/2 to count each pair just once):
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 =
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Radial distribution function:

g(r) =
〈N〉

N id. gas


=
2〈N〉

NρΔV



SIMOLANT – installation (Windows)
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http://www.vscht.cz/fch/software/simolant
or simolant

Download simolant-win32.zip

Create a folder and unpack SIMOLANT there.
Do not run directly from simolant-win32.zip!

Run simolant.exe

Hint: The calculated data are exported to file simolant.txt with a decimal point. If you like
decimal comma (useful with Czech localization), click , in panel “Measure”.

Hint: If you restart SIMOLANT, the old simolant.txt is renamed to simolant.bak. The export
name simolant can be changed by Menu: File → Protocol name..



Simolant: observe RDF by yourself
[simolant]10/22

s08/3

Set in menu: Boundary conditions → Periodic

Type ‘magic number’ N=209 to input field “cmd:” (slow computer: N=56)

Slide “measurement block” to max, watch ggas(r)

Increase density (slider “ρ”) and observe the
changes in RDF for liquid

Repeat with a lower temperature “T”, combine dif-
ferent ρ and T

Crystal: Set max ρ, cool slowly to T = 0, try
heat/cool if not well crystallized
Hint: “color mode” → Neighbors to visualize crys-
tal defects

You should get the
following RDF →

Apparently r3/ r1 = 2 because r3 is the
second neighbor •••
Similarly, r2/ r1 =

p
3



Radial distribution function in the NVT ensemble + 11/22
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3D (e.g., in periodic b.c.), good for a homogebeous and isotropic liquid:

g(r) ≡ g(r12) =
N(N − 1)

ρ2QNVT

∫

. . .

∫

exp[−βU(~r1, ~r2, . . . , ~rN)] d~r3 . . .d~rN

Equivalently

g(r) =
�
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V〈δ(~r12 − ~r)〉

For a mixture:

gj(r) = V〈δ(~r12 − ~r)〉

Normalization (fluid):

lim
N→∞,r→∞

g(r) = 1

NB: ideal gas at finite N: g(r) = 1 − 1/N (e.g., in periodic b.c.)

Number of particles around one chosen particle (in NVT):
∫

V
ρg(~r)d~r = N − 1



Calculation of RDF in simulations – exact + 12/22
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Histogram of the count of pairs of particles, N, so that r ∈ I

I = [r − Δr/2, r + Δr/2), optionally I = [r, r + Δr)

r = Δr,  = 1, . . . , max
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The formula again:
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Correlation function and thermodynamics + 13/22
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For simple fluid (point particles interacting by a pair spherically symmetric potential):

Residual internal energy:

〈U〉 =
1

QNVT

∫
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j(rj)e−βUd~r1 . . .d~rN
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e−βU4πr212dr12(r12)d~r3 . . .d~rN

〈U〉 =
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2
ρ

∫

(r)g(r)d~r = 2Nπρ
∫

(r)g(r)r2dr

Pressure:
βP

ρ
= 1 −

2π

3
βρ

∫

g(r)′(r)r3dr



Structure factor + 14/22
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α

Distance of atom ~rj from plane ~ν · ~r = 0 is ~ν · ~rj (for | ~ν| = 1).

Distance from wave source (wave plane of eq. ~ν · ~r = const) via atom rj to the detector (~ν′ · ~r =
const) is ~ν · ~rj − ~ν′ · ~rj + const

Wave vector ~kinc = kinc ~ν, kinc = 2π/λ

Formally the incident wave is (but phase)

exp[ (kinc ~ν − kinc ~ν
′) · ~rj] = exp[  ~k · ~rj]

where

~k = kinc ~ν − kinc ~ν
′, k = | ~k| = 2sin(α/2)kinc ≈ αkinc



Structure factor + 15/22
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Waves scattered by all atoms interfere:

K =
N
∑

j=1
exp[ (kinc ~ν − kinc ~ν

′) · ~rj] =
N
∑

j=1
exp[  ~k · ~rj], signal ∝ 〈|K |2〉

Definition of the structure factor (pure compound):
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It is a function of vector ~k, we may imagine it in the periodic b.c. in a cube of edge L:

~k =
2π ~n

L
, ~n ∈ Z3

Similarly, a 3D RDF is (not exactly isotropic even for a liquid)

g(~r12) =
N(N − 1)

ρ2QNVT

∫

L3
. . .

∫

L3
exp[−βU(~r1, ~r2, . . . , ~rN)] d~r3 . . .d~rN



Structure factor and RDF + 16/22
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In a periodic box V = L3; ~k = 2π ~n/L:

S( ~k) =

*
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exp(− ~k · ~rj) + exp( ~k · ~rj)
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= 1 + ρ
∫

L3
g(~r) cos( ~k · ~r)d~r

The integral diverges as V →∞ ⇒ we subtract 0 =
∫

V cos( ~k · ~r)d~r, ~k = 2π ~n/L
(other method: convergence factor exp(−αk2), limα→0)

S( ~k) = 1 + ρ
∫

V
[g(~r) − 1] cos( ~k · ~r)d~r V→∞

= 1 + ρ
∫

[g(~r) − 1] cos( ~k · ~r)d~r



Structure factor and RDF + 17/22
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Since g(~r) = g(−~r), we have

S( ~k) − 1 = ρ
∫

[g(~r) − 1] cos( ~k · ~r)d~r = ρ
∫

[g(~r) − 1]e− ~k·~rd~r

and the 3D inverse Fourier transform is

g( ~k) − 1 =
1

8π3ρ

∫

[S( ~k) − 1]e ~k·~rd ~k

Once again using S( ~k) = S(− ~k):

g( ~k) − 1 =
1

8π3ρ

∫

[S( ~k) − 1] cos( ~k · ~r)d ~k

The k→ 0 limit:

NVT : S(0) = 0

μVT : S(0) = 1 + ρ
∫

[g(~r) − 1]d~r = kBT

�

∂ρ

∂p

�

T
(compressibility equation)



Isotropic structure factor
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Let’s choose ~k = (0,0, k) and spherical coordinates (ϕ, θ, r), then ~k · ~r = kr cosθ and (g and S are
odd functions)

S(k) − 1 = ρ

∫

[g(~r) − 1] cos( ~k · ~r)d~r (subst. z = cosθ)

= ρ

∫ ∞

0
r2dr

∫ 2π

0
dϕ

∫ 1

−1
[g(r) − 1] cos(krz)dz

=
4πρ

k

∫ ∞

0
r[g(r) − 1] sin(kr)dr

In the same way we can evaluate the inverse Fourier transform

g( ~k) − 1 =
1

8π3ρ

∫

[S( ~k) − 1] cos( ~k · ~r)d ~k

=
1

2π2rρ

∫ ∞

0
k[S(k) − 1] sin(kr)dk



S(k) from simulations + 19/22
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S( ~k) in simulations can be calculated directly by the same code as the k-space part of the Ewald
summation. If needed, we may sphericalize it:

S(k) =
∑

k=| ~k|

S( ~k)/
∑

k=| ~k|

1

S(k) can be obtained by the inverse Fourier transform of g(r). The RDF g(r) must have a long
range and/or it has to be filled (by 1) for long distances.

If one wishes, 3D S( ~k) can be obtained by the inverse Fourier transform from RDF g(~r) and vice
versa

Simulation-based S(k) for a mixture (where individual site-site RDFs need not be available)
allows for a direct comparison with the experiment

S(k) and S( ~k) may detect unwanted crystallization of a supercooled system
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Structure factor for multiatomic systems + 21/22
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Structure factor for a “mixture” of atoms (bj = coherent scattering length)

S(k) = 1 + N
〈|Q( ~k)|2〉 −

∑

j b
2
j

�

∑

j bj
�2

Q( ~k) =
∑

j

bj exp[−2π ~k · ~rj/L]

S =
∑



∑

J

JSJ, J =
NbNJbJ

(
∑

 Nb)2

N = number of atoms of type  (
∑

 Nb =
∑

j bj)



Reverse Monte Carlo + 22/22
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Input: experimental RDF

Output: (r) so that the RDF is best reproduced

Not unique – other conditions on (r) needed


