System size and potential range
Size of the simulated sample depends on:
correlation length (property of the system)
range of the potential (technical aspect)
Simulation time depends on:
correlation time (property of the system)

Ewald summation II
Oops! The infinite sum does not converge absolutely

$$
U=\lim _{s \rightarrow 0} \sum_{\vec{n}}^{\prime} \exp \left(-s \vec{n}^{2}\right) \sum_{1 \leq j \leq l \leq N} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{j} q_{l}}{\left|\vec{r}_{j}-\vec{r}_{l}+\vec{n} L\right|}
$$

Tricks used in the derivation:

$$
\frac{1}{r}=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \exp \left(-t^{2} r^{2}\right) \mathrm{d} t=\frac{2}{\sqrt{\pi}} \int_{0}^{\alpha} \exp \left(-t^{2} r^{2}\right) \mathrm{d} t+\frac{2}{\sqrt{\pi}} \int_{\alpha}^{\infty} \exp \left(-t^{2} r^{2}\right) \mathrm{d} t
$$

- timestep and code efficiency (technical aspect: wall time)
liquid: hundreds of molecules, $10-100 \mathrm{ps}$, ionic liquids: > 10 ns
biomolecules: $10^{4}-10^{6}$, ns (structure), $\mu \mathrm{s}$ (complex phenomena, bindung), ms (protein folding) nanostructures, crystals (defects): billions, ns
problem: correlation times of many complex phenomena are long
Pair potential treatment:
number of operations needed for 1 MD step or 1 attempted move of every particle
loop over all pairs (nearest-image): $\sim N^{2}$
- short-range potential, optimum algorithm: $\sim N^{1}$

Short-range forces

 s09/3- Potential cutoff

$$
u_{\text {simul }}(r)= \begin{cases}u(r) & \text { for } r \leq r_{\mathrm{c}} \\ 0 & \text { for } r>r_{\mathrm{c}}\end{cases}
$$

Usually $r_{\mathrm{c}}<L / 2$ ($L=$ box size, in the periodic b.c.)
MD: continuous forces, or at least cut-and-shift potential:

$$
u_{\text {simul }}(r)= \begin{cases}u(r)-u\left(r_{\mathrm{c}}\right) & \text { pro } r \leq r_{\mathrm{c}}, \\ 0 & \text { pro } r>r_{\mathrm{c}},\end{cases}
$$

\Rightarrow discontinuity (jump) in forces.
Better: smooth (depends on the integrator order)

Nearest image boundary conditions

Smooth cutoff

Cutoff corrections

Correction of energy of a selected atom (assuming: $g(r)=1$ for $r>r_{\mathrm{C}}$):

$$
\Delta U=\int_{r_{\mathrm{c}}}^{\infty} u(r) \rho 4 \pi r^{2} \mathrm{~d} r \quad \text { for the whole box : } N \Delta U / 2
$$

Dispersion forces: $u(r) \propto r^{-6}, \Delta U \propto r_{c}^{-3}$; for $r_{\mathrm{C}}=L / 2$ we get error $\propto 1 / N$
Typical values $r_{\mathrm{c}}: 2.5$ to $4 \mathrm{LJ} \sigma \approx 8$ to $15 \AA$
Coulomb problem: dipole-dipole: r^{-3}, charge-charge: $r^{-1}-\Delta U$ diverges!

Methods:

cut-and-shift, must be done smoothly - cheap, inaccurate, time $\sim N$
ions: OK for $r_{\mathrm{c}} \gg$ Debye screening length, dipoles: bad correlations

Ewald summation - golden standard
standard Ewald: computer time $\propto N^{3 / 2}$
particle-mesh (FFT): computer time $\propto N \log N$
O tree-code (Greengard-Rokhlin)

For dipolar systems only:

reaction field: dielectric response beyond cutoff, computer time $\propto N$
a similar method for cutoff corrections exists for Lennard-Jones

Ewald summation I

Periodic boundary conditions surrounded "at infinity" by a dielectric or metal ($\varepsilon^{\prime}=\infty$, tin-foil)

- sum of all periodic images:

$$
U=\sum_{\vec{n}}^{\prime} \sum_{1 \leq j \leq l \leq N} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{j} q_{l}}{\left|\vec{r}_{j}-\vec{r}_{l}+\vec{n} L\right|}
$$

Summation trick

point charges screened by Gaussian
charge distribution of opposite sign
the screened charge interaction is short-ranged
Gaussians are summed in the k-space

Reaction field II

Energy of dipole $\vec{\mu}_{i}$ with a dielectric outside an r_{C}-sphere:

$$
-\frac{1}{4 \pi \varepsilon_{0}} \vec{\mu}_{i} \cdot \frac{\varepsilon_{r}^{\prime}-1}{2 \varepsilon_{r}^{\prime}+1} \frac{1}{r_{\mathrm{c}}^{3}} \vec{M}_{i}^{\prime}
$$

where

$$
\vec{M}_{i}^{\prime}=\sum_{j, r_{i j}<r_{c}} \vec{\mu}_{j}, \quad \vec{\mu}_{i}=\sum_{a \in\{i\}} q_{i, a} \vec{r}_{i, a}, \quad \sum_{a \in\{i\}} q_{i, a}=0
$$

Trick:

$$
\begin{aligned}
-\vec{\mu}_{i} \cdot \vec{\mu}_{j}= & -\sum_{a \in\{i\}} q_{i, a} \vec{r}_{i, a} \cdot \sum_{b \in\{j\}} q_{j, b} \vec{r}_{j, b}+0+0 \\
= & -\sum_{a \in\{i\}} q_{i, a} \vec{r}_{i, a} \cdot \sum_{b \in\{j\}} q_{j, b} \vec{r}_{j, b} \\
& +\frac{1}{2} \sum_{a \in\{i\}} q_{i, a} \cdot \sum_{b \in\{j\}} q_{j, b}\left|\vec{r}_{j, b}\right|^{2}+\frac{1}{2} \sum_{a \in\{i\}} q_{i, a}\left|\vec{r}_{i, a}\right|^{2} \cdot \sum_{b \in\{j\}} q_{j, b} \\
= & \frac{1}{2} \sum_{a \in\{i\}} \sum_{b \in\{j\}} q_{i, a} q_{j, b}\left|\vec{r}_{i, a}-\vec{r}_{j, b}\right|^{2}
\end{aligned}
$$

