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Compressibility and fluctuations 51/0/3 MC in the microcanonical ensemble 51/0/3
Grandcanonical partition function in semiclassical approximation: MC move under constraint E = const = problem
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System of N identical particles in the grandcanonical ensemble (uVT), u = parameter Approximate solution - Creutz Maxwell’s demon
0 N 00 N = -
SN eﬁ: fe—ﬁfdfl...dﬁ,\, > NLHNON E'= Emax E < Emax S LB. f s
W= (an) = N3NNI _ =0 NIA3 (do not buy a melon in a many-dimensional space) ot @\ o = .
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N=0 N=0 Epag has the Boltzmann distribution = temperature Creutz’s demon
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Compressibility and fluctuations <103 | Creutz - Metropolis comparison s10/3
) @ Choose a particle (lattice site, ...) to move
( ou )VT =pVvarN @ At := A 4 random move of the chosen particle
= try_ (k)y = ytr — yk)
Grandcanonical potential: Q=F—Nu=—pV=-8InZ,y1 dF = —-SdT—pdV+udN © U= UAN - VA =UT U
Differential: dQ = pdV/— Vdp = —SdT—pdV— Ndy = Ndu=Vdp [T,N,V] @ The configuration is accepted (A(K+1) := Atr) with probability min{1, e=FAV}
Another derivation: dG =Ndu=Vdp [T, N] otherwise rejected:
p and u are intensive variables, hence they depend on p = (N)/V only: Metropolis Creutz Creutz-Metropolis
1 v 1 u:=1u(o,1) bag =—kgT Inu(o,1)
N(a_“) =V(a_p) =(a_p) =_("_p) =_[_v("_”) ]=_ Fu<e B | |F AU < bag IF AU < bag
oaNJry oNJry  \a(/V) )T~ N\a(U/V) )ty N oV)rn] ekt THEN THEN THEN
. (k+1) .= ptr (k+1) .= ptr . = (k+1) .= ptr . -
Eventually: isothermal compressibility: A =A A =AY bag au A =AY bag Ay
VarN 170V ELSE ELSE ELSE
iy = PReTT s ("_) AKFD) . a0 | A+ .= A AKFD) = AGK)
V\ep/Tn
bulk modulus: ! in all cases (bag) = kgT (in continuous world: (—Inu,1)) = 1)
@ k:=k+ 1 and again and again
Br =1/KkT 9 9
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Compressibility and fluctuations <10/3 NPT ensemble in MC s10/3
varN To incorporate volume change, (X) must be in the form of an f of probability density: 7= Vv1/3§;
—— = pkpTKT 1 © N
) x = O—f ( f X, V)7 exp{~BLpV + U1} df”)dv
NPT Jo vN
@ larger compressibility = larger fluctuations 1 . N
@ VarN > 0= k1 >0 (k7 <0 for a mechanically unstable system) = ﬁjo j BNX(V1/3ENr V)V VNexp{—BlpV + U(VY/3EN)]} dENdV
03KBTKT Noco . ) ! o N/V, ~1: exact ideal gas
@ Varp= o =20 (thermodynamic limit) Microreversible volume change: V' =V + u(_q,q), then Bp, const: O(1/N) error
=min{1, (V''/V)"~1 exp[—Bp (V' — V)] exp[—B(UT — )]}
typical “finite-size effect” is O(1/N) Pace pL=6p pL=p
Exceptions: Better option: V' = Vexplu(—d,q)] (InV is uniformly sampled), then:
@ diffusivity in MD: O(1/N1/3) - a particle interacts with its periodic image o 1/N/3 apart Pace = min{1, (VI/V)N+1=1 exp[—Bp (VT — V)] exp[—BUT — U)]}
@ crystals: O(log N/N) - counting phonons @ Usually N one-particle moves (translations:rotations = 1:1) per one volume-change move
@ plasma, ionic solutions (more terms): O(1/N3/2) - Debye-Hiickel @ Acceptance ration of volume changes ~ 0.3
@ some 2D systems: O(log N/N) @ General problem: global change of configuration = slow convergence = not good for too large
@ critical point - critical exponents systems
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RDF in the uVT ensemble and compressibility s10/3 | Grandcanonical ensemble in MC s10/3
i NV=1) eBuN BUYFs. . @ MC step: change the number of particles by +1 i = V1/3g;
—1)——== | exp(— ..
5 = niasw | P 3. QN o 1 & eBuN y I
Plon ="y . r=in-r )=z ZOWJ X(PY, Ny expl—pUN(T™)]d
—wj exp(—BU)dFy ... diy N= ~
N=o N!A dPN depends on N = dimensionless coordinates 7; = V1/3&;

P . VarN : . 1 > _ eBUNyN _ _

= Compressibility equation 1+ pj[g(r)— 1]dF = —— = pkgTKT spherlcaolosymgnetry. xX)== Z X(VY/3EN, N)Texp[—ﬁUN(V1/3EN)] dEN
(N) [dr=[5° 4nr?dr 22 ) N3NNI

@ More fluctuation and correlation quantities can be expressed by similar integrals
(Kirkwood-Buff)

@ Numerically ill-defined for large r - must be cut off
@ Tricks to be able to use the NVT ensemble

Exercise 1. Show that g,v7(r) = 1 for monoatomic ideal gas
Hint: for ideal gas ePHN/A3 = p/kgT = (N)/V =p

Exercise 2. Calculate k7 from the compressibility equation with the canonical RDF (N = constant)
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@ Insert or remove a particle with the same probability 1/2

Pinsert particle = Min {1 exp{—B[Un41(FVF12kus) — UN(#V)]}}

"A3(N+1)

3

N
Premove particle = Min {1, <y P LBLUN— (P ) uN(rW)]}}

Problem: insert a large molecule ePH = p3ePHres(N)/V

Solution: gradually
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Simulation in other ensembles 510/3

@ NVE — NVT (MD), measuring: T — E T T T T
@ NVT — NVE (MC), measuring: E— T 3F B
@ NVT — NPT (MC, MD), measuring: P — V

@ NVT — uVT (MC, [MD]), measuring: 4 — N »

<Xouvr

<Xonyt

o ’ N
In the thermodynamic limit (N — o0) equivalent, X <Nt

otherwise errors o 1/N*

Corrections: N = (N)pvt

/ 2
1 a“(X)uvr
(V= (V)uvm?) w( :
2 “ N VT 60 80 100 120

kBT(ap) 5 (3%(X) N
~ 2n \ap Tp w2 );

Xuvt— Xdnvr =

where (-) in the last derivative is either (- or (-
& vt or (et tals (In/N), diffusivity (N13). ..

Derivation: Taylor expansion of X(N) okolo (N)

The corrections become important near the critical point

* not for: nonperiodic b.c., (surface N3), crys-
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Grandcanonical ensemble in MD
@ The same as in MD, but “continuously” — problematic
@ CuMD [Perego, Salvalaglio, Parrinello, DOI: 10.1063/1.4917200]
@ Reservoir with molecules, region with a force = change of the (chem.) pot.

@ Applied to crystallization with a constant oversaturation of the solution
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Reaction ensemble in MC + 516/3 Gibbs ensemble 513/3
@ We can easily calculate a chemical equilibrium in an ideal gas phase. Determine vapor-liquid (fluid-fluid) phase equilibrium:
But what if the mixture is not ideal? 1) Calculate i 2) Reaction ensemble 1) MD: slab geometry, bad for low T (water + BuOH, 373 K) - ‘
: Hie Y- 2) MC, MD: y in the liquid, g gas from the virial EoS f /|
Kk 3) Gibbs ensemble [A. Panagiotopoulos (1987)] \ {
Reaction (reactants: v; < 0, products: v; > 0): Z ViAi=0 ‘ ‘
= One-component system: ° ’ /
K \
Equilibrium: ArGm = Z Vil =0 —  periodic box
=1
Generalized partition function of a mixture, N = Zi.;l N; (constant N;):
ke (qyA)i
T _gu(PNy1gPN
Z(N1,..., Nk, V, T) = E N " fexp[ BU(T)]dF — periodic box
Balance (extent of reaction = {): N;= Nfo) +qv;
k (Vq_/A?,)NEO)+¢V[ @ T =const, V.=Vj + Vg = const, N = Na + Ng = const
Z(N(lo) ..... N(ko), V,T)= Zﬂ 7‘(0)‘ x j exp[—BU(VY/3EN)dEN = to be satisfied: pa = pg and ua = ug
Zi=1 (N; +Qv)! @ Gibbs phase law: 1 degree of freedom = pressure is determined
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Reaction ensemble in MC + S1o/3 Gibbs ensemble: one-component system 510/3
Reaction “move” ¢ = ¢ + A accepted with probalilit N v Na Ng
¢h =gt hcaccen P Y owr= > MJ dENeBUANA) VLJ dENe-BUSNs)
k[ v+ vy Na=oJo  Na! Ne!
Pacc = min{ 1, K"AS exp(—BAU) ]_l (‘0)7
=1 [ (v + 3! @ Volume change VX =Va+ AV a VY =Vg— AV, acceptance probability:
where . {l [ BAUA— BAUS + Nal Va+ AV Nel VB—AV]}
3 El =miny L exp|—fAUA— B+Naln———+NgIn———
AU = U(V1/3EN, (U)_ U(V1/3EN, Q) Pacc p Va Va
k @ Particle transfer from box B to box A, acceptance probability:
v=> v . (Na+1)Vg
i=1 Pacc =min{ 1, exp|—BAUs—BAUB—IN———
NgVa
k Vi v v
Vaqi V Li V
K' = l_[ Yai) - _ (_p) exp _Z“"'d = (_p) K @ Particle transfer from box A to box B, acceptance probability:
A kT kT kT
=100 ) (Ng +1)Va
where ArG‘r‘n = Na Y Miid is the reaction molar Gibbs energy (for p = standard pressure) and K is Pacc =miny 1, exp| —BAUg — BAUA—IN NaVg
the equilibrium constant (for the standard state ideal gas at pressure p).
@ Standard MC moves - translations, rotations.
Usually 1 volume change + 1-several article transfers per N single-particle moves.
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Reaction step + 103 Gibbs ensemble: mixture 51073

@ Random change of the extent of the reaction: with probalility 1/2 “—" (¢t = ¢+1) with probalility
12 <" ({"=¢—1)

@ Random selection of the corresponding number of reactant and product molecules

@ Replacement of reactants — products (for A = —Z > 0) or products — reactants (for AZ < 0)
@ Calculate the energy change AU

@ New configuration accepted with probability pacc

Note: Some degrees of freedom are simulated, some not...

Nonspherical molecules:

kT
= L gmodel = { exp(—BUin)d(intern.deg.of freedom)
qrrvode\p51 L N
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Eg., general hard molecule: qlmode\ =8m? = K’ must be divided by product ]_[le(q[mde‘)‘/‘

@ Again, gradual insertion may be needed

@ Final result = equilibrium composition

Gibbs phase law for a binary mixture:

2 degrees of freedom

T = const, p = const, equilibrium com-
positions are determined X

@ Volume changes in both boxes sep-
arately (see NPT)

@ Particle transfer

@ Useful: particle exchange between
boxes - higher probability pGS
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MC cycles

credit: Martin Strnad t




