Compressibility and fluctuations

Grandcanonical partition function in semiclassical approximation:

$$-k_{\rm B}T\ln Z_{\mu VT} = F - \mu \langle N \rangle = \Omega = -pV, \ \, \text{where} \,\, Z_{\mu VT} = \sum_{N=0}^{\infty} \frac{{\rm e}^{\beta \mu N}}{N! h^{3N}} \int {\rm e}^{-\beta E} {\rm d}\vec{r}_1 \ldots \ldots {\rm d}\vec{p}_N$$

$$\langle N \rangle = -\left(\frac{\partial \Omega}{\partial \mu}\right)_{V,T} = \frac{\displaystyle\sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{\Lambda^{3N} N!} \int \mathrm{e}^{-\beta E} \mathrm{d}\vec{r}_1 \dots \mathrm{d}\vec{p}_N}{\displaystyle\sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{\Lambda^{3N} N!} \int \mathrm{e}^{-\beta E} \mathrm{d}\vec{r}_1 \dots \mathrm{d}\vec{p}_N} = \frac{\displaystyle\sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N} \Omega^N} Q_N}{\displaystyle\sum_{N=0}^{\infty} N! \Lambda^{3N} \Omega^N},$$

$$\left(\frac{\partial \langle N \rangle}{\partial \mu}\right)_{V,T} = \beta \frac{\displaystyle\sum_{N=0}^{\infty} N^2 \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} Q_N \times \sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} Q_N - \sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} Q_N \times \sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} Q_N}{\left(\displaystyle\sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} Q_N\right)^2}$$

$$= \beta \left(\langle N^2 \rangle - \langle N \rangle^2 \right) = \beta \langle (N - \langle N \rangle)^2 \rangle = \beta \operatorname{Var} N$$

MC in the microcanonical ensemble

It is possible in the classical mechanics for $E_{pot} + E_{kin} = const$: can be integrated over momenta (not so trivial, though).

Approximate solution - Creutz

 $E = E_{\text{max}} \rightarrow E \leq E_{\text{max}}$

(do not buy a melon in a many-dimensional space)

Creutz demon has a bag with energy: $E_{\mathrm{bag}} = E_{\mathrm{max}} - E \geq 0$

E_{bag} has the Boltzmann distribution ⇒ temperature

Maxwell's demon

Creutz's demon

Compressibility and fluctuations

$$\left(\frac{\partial(N)}{\partial \mu}\right)_{V,T} = \beta \, \text{Var} \, N$$

 $dF = -SdT - pdV + \mu dN$

Differential: $d\Omega = -p dV - V dp = -S dT - p dV - N d\mu \Rightarrow N d\mu = V dp [T, N, V]$ Another derivation: $dG = Nd\mu = Vdp [T, N]$

p and μ are intensive variables, hence they depend on $\rho = \langle N \rangle / V$ only:

$$N\left(\frac{\partial \mu}{\partial N}\right)_{T,V} = V\left(\frac{\partial \rho}{\partial N}\right)_{T,V} = \left(\frac{\partial \rho}{\partial (N/V)}\right)_{T} = \frac{1}{N}\left(\frac{\partial \rho}{\partial (1/V)}\right)_{T,N} = \frac{V}{N}\left[-V\left(\frac{\partial \rho}{\partial V}\right)_{T,N}\right] = \frac{1}{\rho\kappa_{T}}$$

Eventually

$$\frac{\text{Var}N}{\langle N \rangle} = \rho k_{\text{B}} T \kappa_{7}$$

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T,N}$$
 bulk modulus:

Creutz - Metropolis comparison

- Choose a particle (lattice site, ...) to move
- \bigcirc $A^{tr} := A^{(k)} + random move of the chosen particle$
- igcup The configuration is accepted ($A^{(k+1)} := A^{tr}$) with probability min $\{1, e^{-\beta \Delta U}\}$ otherwise rejected:

Metropolis	Creutz	Creutz-Metropolis
$u := u_{(0,1)}$		$bag = -k_B T \ln u_{(0,1)}$
IF $u < e^{-\beta \Delta U}$	IF ΔU < bag	IF ΔU < bag
THEN	THEN	THEN
$A^{(k+1)} := A^{tr}$	$A^{(k+1)} := A^{\text{tr}}$; bag $-= \Delta U$	$A^{(k+1)} := A^{tr}$; bag $-= \Delta U$
ELSE	ELSE	ELSE
$A^{(k+1)} := A^{(k)}$	$A^{(k+1)} := A^{(k)}$	$A^{(k+1)} := A^{(k)}$

in all cases $\langle bag \rangle = k_B T$ (in continuous world: $\langle -\ln u_{(0,1)} \rangle = 1$)

 \bigcirc k := k + 1 and again and again

Compressibility and fluctuations

$$\frac{\text{Var}N}{\langle N \rangle} = \rho k_{\text{B}} T \kappa_{T}$$

- larger compressibility ⇒ larger fluctuations
- $Var N > 0 \Rightarrow \kappa_T > 0$ ($\kappa_T < 0$ for a mechanically unstable system)
- $Var \rho = \frac{\rho^3 k_B T \kappa_T}{\epsilon} \stackrel{N \to \infty}{=} 0 \text{ (thermodynamic limit)}$

typical "finite-size effect" is $\mathcal{O}(1/N)$

- diffusivity in MD: $\mathcal{O}(1/N^{1/3})$ a particle interacts with its periodic image $\propto 1/N^{1/3}$ apart
- \bigcirc crystals: $\mathcal{O}(\log N/N)$ counting phonons
- igoplus plasma, ionic solutions (more terms): $\mathcal{O}(1/N^{3/2})$ Debye–Hückel
- \bigcirc some 2D systems: $\mathcal{O}(\log N/N)$
- critical point critical exponents

NPT ensemble in MC

To incorporate volume change, $\langle X \rangle$ must be in the form of an \int of probability density: $\vec{r}_i = V^{1/3} \vec{\xi}_i$

$$(X) = \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \left(\int_{V^{N}} X(\vec{r}^{N}, V) \frac{N}{V} \exp\{-\beta[pV + U(\vec{r}^{N})]\} d\vec{r}^{N} \right) dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \frac{1}{Q_{\text{NPT}}} \frac{1}{Q_{\text{NPT}}} \exp\{-\beta[pV + U(V^{1/3} \vec{\xi}^{N})] d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \frac{1}{Q_{\text{NPT}}} \exp[-\beta[pV + U(V^{1/3} \vec{\xi}^{N})] d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \frac{1}{Q_{\text{NPT}}} \exp[-\beta[pV + U(V^{1/3} \vec{\xi}^{N})] d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \frac{1}{Q_{\text{NPT}}} \exp[-\beta[pV + U(V^{1/3} \vec{\xi}^{N})] dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \frac{1}{Q_{\text{NPT}}} \exp[-\beta[pV + U(V^{1/3} \vec{\xi}^{N})] dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \frac{1}{Q_{\text{NPT}}} \exp[-\beta[pV + U(V^{1/3} \vec{\xi}^{N})] dV$$

 $p_{\rm acc} = \min\{1, (V^{\rm tr}/V)^{N-1} \exp[-\beta \rho (V^{\rm tr} - V)] \exp[-\beta (U^{\rm tr} - U)]\}$

Better option: $V^{\text{tr}} = V \exp[u_{(-d,d)}]$ (In V is uniformly sampled), then:

$$p_{\mathsf{acc}} = \min\{1, (V^{\mathsf{tr}}/V)^{N+1-1} \, \exp[-\beta p \, (V^{\mathsf{tr}} - V)] \, \exp[-\beta (U^{\mathsf{tr}} - U)]\}$$

- Usually N one-particle moves (translations:rotations = 1:1) per one volume-change move
- Acceptance ration of volume changes ~ 0.3
- General problem: global change of configuration ⇒ slow convergence ⇒ not good for too large

RDF in the μVT ensemble and compressibility

$\rho^2 g(r) = \frac{\displaystyle\sum_{N=2}^{\infty} N(N-1) \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} \int \exp(-\beta U) \mathrm{d}\vec{r}_3 \dots \mathrm{d}\vec{r}_N}{\displaystyle\sum_{N=1}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} \int \exp(-\beta U) \mathrm{d}\vec{r}_1 \dots \mathrm{d}\vec{r}_N}, \qquad r = |\vec{r}_1 - \vec{r}_2|$

- ⇒ Compressibility equation $1 + \rho \int [g(r) 1] d\vec{r} = \frac{\text{Var } N}{\langle N \rangle} = \rho k_B T \kappa_T$
- More fluctuation and correlation quantities can be expressed by similar integrals
- Numerically ill-defined for large r must be cut off
- Tricks to be able to use the NVT ensemble

Exercise 1. Show that $g_{\mu VT}(r)=1$ for monoatomic ideal gas Hint: for ideal gas $e^{\beta\mu N}/\Lambda^3=\rho/k_BT=\langle N\rangle/V=\rho$

Exercise 2. Calculate κ_T from the compressibility equation with the canonical RDF (N = constant)

 $\kappa L = 0$ – incombressible by definition

Grandcanonical ensemble in MC

 $\vec{r}_i = V^{1/3} \vec{\xi}_i$

MC step: change the number of particles by ±1

$$\langle X \rangle = \frac{1}{\Xi} \sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{\Lambda^{3N} N!} \int X(\vec{r}^N, N) \exp[-\beta U_N(\vec{r}^N)] d\vec{r}^N$$

$$d\vec{r}^N$$
 depends on $N \Rightarrow$ dimensionless coordinates $\vec{r}_i = V^{1/3} \xi_i$

$$\langle X \rangle = \frac{1}{\Xi} \sum_{N=0}^{\infty} \int_{1^{3N}} X(V^{1/3} \xi^N, N) \frac{e^{\beta \mu N} V^N}{\Lambda^{3N} N!} \exp[-\beta U_N (V^{1/3} \xi^N)] d\xi^N$$

Insert or remove a particle with the same probability 1/2

$$\rho_{\text{insert particle}} = \min \left\{ 1, \frac{\mathrm{e}^{\beta \mu} V}{\Lambda^3 (N+1)} \exp\{-\beta [U_{N+1}(\vec{r}^{N+1, \mathrm{zkus}}) - U_N(\vec{r}^N)]\} \right\}$$

$$\rho_{\text{remove particle}} = \min \left\{ 1, \frac{N \Lambda^3}{e^{\beta \mu_V}} \exp \left\{ -\beta \left[U_{N-1}(\vec{r}^{N-1, \text{zkus}}) - U_N(\vec{r}^N) \right] \right\} \right\}$$

Solution: gradually

Simulation in other ensembles

- \bigcirc NVE \rightarrow NVT (MD), measuring: $T \rightarrow E$
- \bigcirc NVT \rightarrow NVE (MC), measuring: $E \rightarrow T$
- NVT → NPT (MC, MD), measuring: P → V \bigcirc NVT $\rightarrow \mu$ VT (MC. [MD]), measuring: $\mu \rightarrow N$

In the thermodynamic limit $(N \to \infty)$ equivalent, otherwise errors ∝ 1/N*

Corrections:
$$\begin{array}{ccc} N = \langle N \rangle_{\mu VT} \\ \langle X \rangle_{\mu VT} - \langle X \rangle_{NVT} &\approx & \frac{1}{2} \left\langle (N - \langle N \rangle_{\mu VT})^2 \right\rangle_{\mu VT} \left(\frac{\partial^2 \langle X \rangle_{\mu VT}}{\partial N^2} \right)_{V_s} \\ &= & \frac{k_B T}{2} \left(\frac{\partial P}{\partial N} \right) & \frac{\partial^2 \langle P \rangle}{\partial N^2} & \frac{\partial P}{\partial N} \\ \end{array}$$

Derivation: Taylor expansion of X(N) okolo $\langle N \rangle$

The corrections become important near the critical point

Region Region * not for: nonperiodic b.c., (surface $N^{2/3}$), crystals (ln N/N), diffusivity ($N^{1/3}$)...

Grandcanonical ensemble in MD

- The same as in MD, but "continuously" problematic
- CμMD [Perego, Salvalaglio, Parrinello, DOI: 10.1063/1.4917200]
 - Reservoir with molecules, region with a force ⇒ change of the (chem.) pot.
 - Applied to crystallization with a constant oversaturation of the solution

Reaction ensemble in MC

+ ^{11/16}
_{510/3}

• We can easily calculate a chemical equilibrium in an ideal gas phase. But what if the mixture is not ideal? 1) Calculate μ_i , γ_i ... 2) Reaction ensemble

Reaction (reactants: $v_i < 0$, products: $v_i > 0$): $\sum v_i A_i = 0$

Equilibrium:

$$\Delta_{\mathsf{r}}G_{\mathsf{m}} = \sum_{i=1}^{k} \nu_{i}\mu_{i} =$$

Generalized partition function of a mixture, $N = \sum_{i=1}^{k} N_i$ (constant N_i):

$$Z(N_1, \dots, N_k, V, T) = \prod_{i=1}^k \frac{(q_i/\Lambda_i^3)^{N_i}}{N_i!} \times \int \exp[-\beta U(\vec{r}^N)] d\vec{r}^N$$

Balance (extent of reaction = ζ):

$$N_i = N_i^{(0)} + \zeta v_i$$

$$Z(N_1^{(0)},\dots,N_k^{(0)},V,T) = \sum_{\zeta} \prod_{i=1}^k \frac{(Vq_i/\Lambda_j^3)^{N_i^{(0)} + \zeta \nu_i}}{(N_i^{(0)} + \zeta \nu_i)!} \times \int \exp[-\beta U(V^{1/3}\xi^N)] \mathrm{d}\xi^N$$

Reaction ensemble in MC

Reaction "move" $\zeta^{tr} = \zeta + \Delta \zeta$ accepted with probability

$$\rho_{\mathsf{acc}} = \min \left\{ 1, \, \mathsf{K}'^{\Delta\zeta} \exp(-\beta \Delta U) \prod_{i=1}^k \left[\frac{(\mathsf{N}_i^{(0)} + \zeta \nu_i)!}{(\mathsf{N}_i^{(0)} + \zeta^{\mathsf{tr}} \nu_i)!} \right] \right\}$$

where

$$\Delta U = U(V^{1/3} \xi^N, \zeta^{\text{tr}}) - U(V^{1/3} \xi^N, \zeta)$$

$$\bar{\nu} = \sum_{i=1}^{k} \nu_i$$

$$K' = \prod_{i=1}^{k} \left(\frac{Vq_i}{\Lambda_i^3} \right)^{V_i} = \left(\frac{Vp}{kT} \right)^{\bar{V}} \exp\left(-\frac{\sum \mu_{i,id}}{kT} \right) = \left(\frac{Vp}{kT} \right)^{\bar{V}} K$$

where $\Delta_{\rm r}G_{\rm m}^{\rm o}=N_{\rm A}\sum\mu_{i,i{\rm d}}$ is the reaction molar Gibbs energy (for p= standard pressure) and ${\it K}$ is the equilibrium constant (for the standard state ideal gas at pressure p).

Reaction step

 $+\frac{13/16}{510/3}$

- igoplus Random change of the extent of the reaction: with probalility 1/2 " \rightarrow " ($\zeta^{tr} = \zeta + 1$) with probalility 1/2 " \leftarrow " $(\zeta^{\text{tr}} = \zeta - 1)$
- Random selection of the corresponding number of reactant and product molecules
- Replacement of reactants → products (for $\Delta \zeta = \zeta^{tr} \zeta > 0$) or products → reactants (for $\Delta \zeta < 0$)
- \bigcirc Calculate the energy change ΔU
- New configuration accepted with probability pace

Note: Some degrees of freedom are simulated, some not...

Nonspherical molecules:

$$\exp \left[\frac{-\mu_{i,\mathrm{id}}}{kT} \right] = \frac{q_i k_\mathrm{B} T}{q_i^{\mathrm{model}} p^{\mathrm{st}}}, \quad q_i^{\mathrm{model}} = \int \exp(-\beta U_{\mathrm{int}}) \mathrm{d}(\mathrm{intern.deg.of\ freedom})$$

Eg., general hard molecule: $q_i^{\text{model}} = 8\pi^2 \Rightarrow K'$ must be divided by product $\prod_{i=1}^k (q_i^{\text{model}})^{\nu_i}$

- Again, gradual insertion may be needed
- Final result = equilibrium composition

Gibbs ensemble

Determine vapor-liquid (fluid-fluid) phase equilibrium:

1) MD: slab geometry, bad for low T (water + BuOH, 373 K) 2) MC, MD: μ in the liquid, μ gas from the virial EoS

3) Gibbs ensemble [A. Panagiotopoulos (1987)] One-component system:

В

periodic box

periodic box

- \bigcirc T = const, V = $V_A + V_B$ = const, N = $N_A + N_B$ = const \Rightarrow to be satisfied: $p_A = p_B$ and $\mu_A = \mu_B$
- Gibbs phase law: 1 degree of freedom ⇒ pressure is determined

Gibbs ensemble: one-component system

15/16 s10/3

$$Q_{\text{NVT}} = \sum_{N_A=-0}^{N} \int_0^V \frac{dV_A V_A^{N_A}}{N_A!} \int d\xi_A^N e^{-\beta U_A(N_A)} \frac{V_B^{N_B}}{N_B!} \int d\xi_B^N e^{-\beta U_B(N_B)}$$

• Volume change $V_A^{\text{tr}} = V_A + \Delta V$ a $V_B^{\text{tr}} = V_B - \Delta V$, acceptance probability:

$$p_{\mathrm{acc}} = \min \left\{ 1, \exp \left[-\beta \Delta U_A - \beta \Delta U_B + N_A \ln \frac{V_A + \Delta V}{V_A} + N_B \ln \frac{V_B - \Delta V}{V_B} \right] \right\}$$

igoplus Particle transfer from box B to box A, acceptance probability

$$\rho_{\rm acc} = \min \left\{ 1, \exp \biggl[-\beta \Delta U_A - \beta \Delta U_B - \ln \frac{(N_A + 1)V_B}{N_B V_A} \biggr] \right\}$$

Particle transfer from box A to box B, acceptance probability:

$$\rho_{\rm acc} = \min \left\{ 1, \exp \biggl[-\beta \Delta U_B - \beta \Delta U_A - \ln \frac{(N_B+1)V_A}{N_A V_B} \biggr] \right\}$$

Standard MC moves – translations, rotations.

Usually 1 volume change + 1–several article transfers per N single-particle moves.

Gibbs ensemble: mixture

16/16 s10/3

Gibbs phase law for a binary mixture: 2 degrees of freedom

T = const, p = const, equilibrium com-

positions are determined

Volume changes in both boxes separately (see NPT)

Particle transfer

Useful: particle exchange between boxes - higher probability

 $\rho\sigma^3$

х 0.2 500 1000 MC cycles credit: Martin Strnad †