Compressibility and fluctuations

Grandcanonical partition function in semiclassical approximation:

$$
-k_{\mathrm{B}} T \ln z_{\mu V T}=F-\mu(N)=\Omega=-p V, \text { where } z_{\mu V T}=\sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N!h^{3 N}} \int \mathrm{e}^{-\beta E_{\mathrm{d}}} \ldots \ldots . \mathrm{d} \vec{p}_{N}
$$

System of N identical particles in the grandcanonical ensemble ($\mu V T$), $\mu=$ parameter

$$
\begin{gathered}
\langle N\rangle=-\left(\frac{\partial \Omega}{\partial \mu}\right)_{V, T}=\frac{\sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{\Lambda^{3 N} N!} \int \mathrm{e}^{-\beta E_{\mathrm{d}}} \mathrm{~d} \vec{r}_{1} \ldots \mathrm{~d} \vec{p}_{N}}{\sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{\Lambda^{3 N} N!} \int \mathrm{e}^{-\beta E^{\beta}} \mathrm{d}_{r_{1}} \ldots \mathrm{~d} \vec{p}_{N}}=\frac{\sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{N!\Lambda^{3 N}} Q_{N}}{\sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N!\Lambda^{3 N}} Q_{N}}, \\
\left(\frac{\partial\langle N\rangle}{\partial \mu}\right)_{V, T}=\beta \frac{\sum_{N=0}^{\infty} N^{2} \frac{\mathrm{e}^{\beta \mu N}}{N!\Lambda^{3 N}} Q_{N} \times \sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N!\Lambda^{3 N}} Q_{N}-\sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{N!\Lambda^{3 N}} Q_{N} \times \sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{N!\Lambda^{3 N}} Q_{N}}{\left(\sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N!\Lambda^{3 N}} Q_{N}\right)^{2}}
\end{gathered}
$$

$$
=\beta\left(\left\langle N^{2}\right\rangle-\langle N\rangle^{2}\right)=\beta\left((N-\langle N\rangle)^{2}\right\rangle=\beta \operatorname{Var} N
$$

Compressibility and fluctuations

$$
\left(\frac{\partial(N\rangle}{\partial \mu}\right)_{V, T}=\beta \operatorname{Var} N
$$

Grandcanonical potential: $\Omega=F-N \mu=-p V=-\beta \ln Z_{\mu V T}$
Differential: $\mathrm{d} \Omega=-p \mathrm{~d} V-V \mathrm{~d} p=-\mathrm{Sd} T-p \mathrm{~d} V-N \mathrm{~d} \mu \Rightarrow N \mathrm{~d} \mu=V \mathrm{~d} p[T, N, V]$
Another derivation: $\mathrm{d} G=N \mathrm{~d} \mu=V \mathrm{~d} p[T, N]$
p and μ are intensive variables, hence they depend on $\rho=\langle N\rangle / V$ only:

$$
N\left(\frac{\partial \mu}{\partial N}\right)_{T, V}=V\left(\frac{\partial p}{\partial N}\right)_{T, V}=\left(\frac{\partial p}{\partial(N / V)}\right)_{T}=\frac{1}{N}\left(\frac{\partial p}{\partial(1 / V)}\right)_{T, N}=\frac{V}{N}\left[-V\left(\frac{\partial p}{\partial V}\right)_{T, N}\right]=\frac{1}{\rho K T}
$$

Eventually:
isothermal compressibility:

$$
\frac{\operatorname{Var} N}{\langle N\rangle}=\rho k_{\mathrm{B}} T \kappa_{T}
$$

$$
K_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T, N}
$$

bulk modulus: $B_{T}=1 / K_{T}$

Compressibility and fluctuations

$$
\frac{\operatorname{Var} N}{\langle N\rangle}=\rho k_{B} T K_{T}
$$

- larger compressibility \Rightarrow larger fluctuations
- $\operatorname{Var} N>0 \Rightarrow K_{T}>0 \quad$ ($K T<0$ for a mechanically unstable system)
- $\operatorname{Var} \rho=\frac{\rho^{3} k_{\mathrm{B}} T_{T}}{N} \stackrel{N \rightarrow \infty}{=} 0$ (thermodynamic limit)
typical "finite-size effect" is $\mathcal{O}(1 / N)$

Exceptions:

- diffusivity in MD: $\mathcal{O}\left(1 / N^{1 / 3}\right)$ - a particle interacts with its periodic image $\propto 1 / N^{1 / 3}$ apart
crystals: $\mathcal{O}(\log N / N)$ - counting phonons
O plasma, ionic solutions (more terms): $\mathcal{O}\left(1 / N^{3 / 2}\right)$ - Debye-Hückel
- some 2D systems: $\mathcal{O}(\log N / N)$
- critical point - critical exponents

RDF in the $\mu V T$ ensemble and compressibility

$$
\rho^{2} g(r)=\frac{\sum_{N=2}^{\infty} N(N-1) \frac{\mathrm{e}^{\beta \mu N}}{N!\Lambda^{3 N}} \int \exp (-\beta U) \mathrm{d} \vec{r}_{3} \ldots \mathrm{~d} \vec{r}_{N}}{\sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N!\Lambda^{3 N}} \int \exp (-\beta U) \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}}, \quad r=\left|\vec{r}_{1}-\vec{r}_{2}\right|
$$

\Rightarrow Compressibility equation $1+\rho \int[g(r)-1] \mathrm{d} \vec{r}=\frac{\operatorname{Var} N}{\langle N\rangle}=\rho k_{\mathrm{B}} T \kappa T \quad \begin{aligned} & \text { spherical symmetry: } \\ & \int \mathrm{d} \vec{r}=\int_{0}^{\infty} 4 \pi r^{2} \mathrm{~d} r\end{aligned}$

- More fluctuation and correlation quantities can be expressed by similar integrals (Kirkwood-Buff)
O Numerically ill-defined for large r - must be cut off
- Tricks to be able to use the NVT ensemble

Exercise 1. Show that $g_{\mu V T}(r)=1$ for monoatomic ideal gas
Hint: for ideal gas $\mathrm{e}^{\beta \mu N} / \Lambda^{3}=p / k_{\mathrm{B}} T=\langle N\rangle / V=\rho$
Exercise 2. Calculate K_{T} from the compressibility equation with the canonical RDF ($N=$ constant) uo!̣!̣uy̧əp Kq ə|q!ssəıdmoวu! - $0=1$ »

Simulation in other ensembles

 $5 / 16$$510 / 3$

OVE \rightarrow NVT (MD), measuring: $T \rightarrow E$
NVT \rightarrow NVE (MC), measuring: $E \rightarrow T$
NVT \rightarrow NPT (MC, MD), measuring: $P \rightarrow V$
NVT $\rightarrow \mu \mathrm{VT}$ (MC, [MD]), measuring: $\mu \rightarrow N$
In the thermodynamic limit $(N \rightarrow \infty)$ equivalent, otherwise errors $\propto 1 / N^{*}$

$$
\begin{aligned}
& \text { Corrections: } \\
& \begin{aligned}
\langle X\rangle_{\mu \mathrm{V} T}-\langle X\rangle_{N V T} & \approx \frac{1}{2}\left\langle\left(N-\langle N\rangle_{\mu \mathrm{VT}}\right.\right. \\
& =\frac{k_{\mathrm{B}} T}{2 N}\left(\frac{\partial \rho}{\partial p}\right)_{T} \rho^{2}\left(\frac{\partial^{2}\langle X\rangle}{\partial \rho^{2}}\right)_{T}
\end{aligned}
\end{aligned}
$$

where $\langle\cdot\rangle$ in the last derivative is either $\langle\cdot\rangle_{\mu V T}$ or $\langle\cdot\rangle_{N P T} \quad$ * not for: nonperiodic b.c.. (surface $N^{2 / 3}$), crys Derivation: Taylor expansion of $X(N)$ okolo $\langle N\rangle$ The corrections become important near the critical point

MC in the microcanonical ensemble

MC move under constraint $E=$ const $=$ problem
It is possible in the classical mechanics for $E_{\text {pot }}+E_{\text {kin }}=$ const: can be integrated over momenta not so trivial, though).

Approximate solution - Creutz
Maxwell's demon

$$
E=E_{\max } \quad \rightarrow \quad E \leq E_{\max }
$$

(do not buy a melon in a many-dimensional space)
Creutz demon has a bag with energy: $E_{\text {bag }}=E_{\max }-E \geq 0$
$E_{\text {bag }}$ has the Boltzmann distribution \Rightarrow temperature

Creutz's demon

Credit: Wikipedia (modified)

Creutz - Metropolis comparison

- Choose a particle (lattice site,) to move
- $A^{\operatorname{tr}}:=A^{(k)}+$ random move of the chosen particle
$\Delta U:=U\left(A^{\operatorname{tr}}\right)-U\left(A^{(k)}\right) \equiv U^{\mathrm{tr}}-U^{(k)}$
The configuration is accepted $\left(A^{(k+1)}:=A^{\text {tr }}\right)$ with probability $\min \left\{1, \mathrm{e}^{-\beta \Delta U}\right\}$ otherwise rejected:

Metropolis	Creutz	Creutz-Metropolis
$u:=u_{(0,1)}$		bag $=-k_{B} T \ln u_{(0,1)}$
IF $u<\mathrm{e}^{-\beta \Delta U}$	IF $\Delta U<$ bag	IF $\Delta U<$ bag
THEN	THEN	THEN
$\quad A^{(k+1)}:=A^{\operatorname{tr}}$	$A^{(k+1)}:=A^{\operatorname{tr}} ;$ bag $-=\Delta U$	$A^{(k+1)}:=A^{\text {tr }} ;$ bag $-=\Delta U$
ELSE	ELSE	ELSE
$A^{(k+1)}:=A^{(k)}$	$A^{(k+1)}:=A^{(k)}$	$A^{(k+1)}:=A^{(k)}$

in all cases \langle bag $\rangle=k_{\mathrm{B}} T$ (in continuous world: $\left\langle-\ln u_{(0,1)}\right\rangle=1$)
$k:=k+1$ and again and again

NPT ensemble in MC

To incorporate volume change, $\langle X\rangle$ must be in the form of an \int of probability density: $\vec{r}_{i}=V^{1 / 3} \vec{\xi}_{i}$

$$
\begin{aligned}
\langle X\rangle & =\frac{1}{Q_{N P T}} \int_{0}^{\infty}\left(\int_{V^{N}} X\left(\vec{r}^{N}, V\right) \frac{N}{V} \exp \left\{-\beta\left[p V+U\left(\vec{r}^{N}\right)\right]\right\} \mathrm{d} \vec{r}^{N}\right) \mathrm{d} V \\
& =\frac{1}{Q_{N P T}} \int_{0}^{\infty} \int_{1^{3 N}} X\left(V^{1 / 3} \vec{\xi}^{N}, V\right) \frac{N}{V} V^{N} \exp \left\{-\beta\left[p V+U\left(V^{1 / 3} \vec{\xi}^{N}\right)\right]\right\} \mathrm{d} \vec{\xi}^{N} \mathrm{~d} V
\end{aligned}
$$

$p_{\mathrm{acc}}=\min \left\{1,\left(V^{\mathrm{tr}} / V\right)^{N-1} \exp \left[-\beta p\left(V^{\mathrm{tr}}-V\right)\right] \exp \left[-\beta\left(U^{\mathrm{tr}}-U\right)\right]\right\}$
Better option: $V^{\operatorname{tr}}=V \exp \left[u_{(-d, d)}\right]$ ($\ln V$ is uniformly sampled), then:

$$
p_{\mathrm{acc}}=\min \left\{1,\left(V^{\operatorname{tr}} / V\right)^{N+1-1} \exp \left[-\beta p\left(V^{\operatorname{tr}}-V\right)\right] \exp \left[-\beta\left(U^{\operatorname{tr}}-U\right)\right]\right\}
$$

Usually N one-particle moves (translations:rotations $=1: 1$) per one volume-change move
Acceptance ration of volume changes ~ 0.3
General problem: global change of configuration \Rightarrow slow convergence \Rightarrow not good for too large systems

Grandcanonical ensemble in MC

MC step: change the number of particles by ± 1

$$
\langle X\rangle=\frac{1}{\Xi} \sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{\Lambda^{3 N_{N!}}} \int X\left(\vec{r}^{N}, N\right) \exp \left[-\beta U_{N}\left(\vec{r}^{N}\right)\right] \mathrm{d} \vec{r}^{N}
$$

$\mathrm{d} \vec{r}^{N}$ depends on $N \Rightarrow$ dimensionless coordinates $\vec{r}_{i}=V^{1 / 3} \vec{\xi}_{i}$

$$
\langle X\rangle=\frac{1}{\Xi} \sum_{N=0}^{\infty} \int_{1^{3 N}} x\left(V^{1 / 3} \vec{\xi}^{N}, N\right) \frac{\mathrm{e}^{\beta \mu N} V^{N}}{\Lambda^{3 N} N!} \exp \left[-\beta U_{N}\left(V^{1 / 3} \vec{\xi}^{N}\right)\right] \mathrm{d} \vec{\xi}^{N}
$$

- Insert or remove a particle with the same probability $1 / 2$

$$
\begin{gathered}
p_{\text {insert particle }}=\min \left\{1, \frac{\mathrm{e}^{\beta \mu} V}{\Lambda^{3}(N+1)} \exp \left\{-\beta\left[U_{N+1}\left(\vec{r}^{N+1, \text { zkus }}\right)-U_{N}\left(\vec{r}^{N}\right)\right]\right\}\right\} \\
p_{\text {remove particle }}=\min \left\{1, \frac{N \Lambda^{3}}{\mathrm{e}^{\beta \mu} V} \exp \left\{-\beta\left[U_{N-1}\left(\vec{r}^{N-1, \text { zkus }}\right)-U_{N}\left(\vec{r}^{N}\right)\right]\right\}\right\}
\end{gathered}
$$

Problem: insert a large molecule
$\mathrm{e}^{\beta \mu}=\Lambda^{3} \mathrm{e}^{\beta \mu_{\text {res }}}\langle N\rangle / V$
Solution: gradually

Grandcanonical ensemble in MD

- The same as in MD, but "continuously" - problematic
- C μ MD [Perego, Salvalaglio, Parrinello, DOI: 10.1063/1.4917200]

Reservoir with molecules, region with a force \Rightarrow change of the (chem.) pot

- Applied to crystallization with a constant oversaturation of the solution

Reaction ensemble in MC

We can easily calculate a chemical equilibrium in an ideal gas phase.
But what if the mixture is not ideal? 1) Calculate $\mu_{i}, \gamma_{i} \ldots$ 2) Reaction ensemble
Reaction (reactants: $\nu_{i}<0$, products: $\nu_{i}>0$): $\sum_{i=1}^{k} \nu_{i} A_{i}=0$
Equilibrium:

$$
\Delta_{\mathrm{r}} G_{\mathrm{m}}=\sum_{i=1}^{k} \nu_{i} \mu_{i}=0
$$

Generalized partition function of a mixture, $N=\sum_{i=1}^{k} N_{i}$ (constant N_{i}):

$$
\begin{aligned}
& \qquad Z\left(N_{1}, \ldots, N_{k}, V, T\right)=\prod_{i=1}^{k} \frac{\left(q_{i} / \Lambda_{i}^{3}\right)^{N_{i}}}{N_{i}!} \times \int \exp \left[-\beta U\left(\vec{r}^{N}\right)\right] \mathrm{d} \vec{r}^{N} \\
& \text { Balance (extent of reaction }=\zeta): \quad N_{i}=N_{i}^{(0)}+\zeta \nu_{i} \\
& Z\left(N_{1}^{(0)}, \ldots, N_{k}^{(0)}, V, T\right)=\sum_{\zeta} \prod_{i=1}^{k} \frac{\left(V q_{i} / \Lambda_{i}^{3}\right)^{N_{i}^{(0)}+\zeta \nu_{i}}}{\left(N_{i}^{(0)}+\zeta \nu_{i}\right)!} \times \int \exp \left[-\beta U\left(V^{1 / 3} \vec{\xi}^{N}\right)\right] \mathrm{d} \vec{\xi}^{N}
\end{aligned}
$$

Reaction ensemble in MC

Reaction "move" $\zeta^{\text {tr }}=\zeta+\Delta \zeta$ accepted with probalility

$$
p_{\mathrm{acc}}=\min \left\{1, K^{\prime \Delta \zeta} \exp (-\beta \Delta U) \prod_{i=1}^{k}\left[\frac{\left(N_{i}^{(0)}+\zeta \nu_{i}\right)!}{\left(N_{i}^{(0)}+\zeta^{\operatorname{tr}} \nu_{i}\right)!}\right]\right\}
$$

where

$$
\begin{gathered}
\Delta U=U\left(V^{1 / 3} \vec{\xi}^{N}, \zeta^{\mathrm{tr}}\right)-U\left(V^{1 / 3} \vec{\xi}^{N}, \zeta\right) \\
\bar{\nu}=\sum_{i=1}^{k} \nu_{i} \\
K^{\prime}=\prod_{i=1}^{k}\left(\frac{V q_{i}}{\Lambda_{i}^{3}}\right)^{\nu_{i}}=\left(\frac{V p}{k T}\right)^{\bar{v}} \exp \left(-\frac{\sum \mu_{i, \text { id }}}{k T}\right)=\left(\frac{V p}{k T}\right)^{\bar{v}} K
\end{gathered}
$$

where $\Delta_{\mathrm{r}} G_{\mathrm{m}}^{\circ}=N_{\mathrm{A}} \sum \mu_{i, \text { id }}$ is the reaction molar Gibbs energy (for $p=$ standard pressure) and K is the equilibrium constant (for the standard state ideal gas at pressure p).

Reaction step +| $13 / 16$ |
| :--- |
| $s 10 / 3$ |

Random change of the extent of the reaction: with probalility $1 / 2$ " \rightarrow " $\left(\zeta^{\text {tr }}=\zeta+1\right)$ with probalility $1 / 2 " \leftarrow "\left(\zeta^{\mathrm{tr}}=\zeta-1\right)$

- Random selection of the corresponding number of reactant and product molecules

Replacement of reactants \rightarrow products (for $\Delta \zeta=\zeta^{\operatorname{tr}}-\zeta>0$) or products \rightarrow reactants (for $\Delta \zeta<0$)

- Calculate the energy change ΔU
- New configuration accepted with probability $p_{\text {acc }}$

Note: Some degrees of freedom are simulated, some not...
Nonspherical molecules:

$$
\exp \left[\frac{-\mu_{i, \mathrm{id}}}{k T}\right]=\frac{q_{i} k_{\mathrm{B}} T}{q_{i}^{\text {model }} p^{\text {st }}}, q_{i}^{\text {model }}=\int \exp \left(-\beta U_{\mathrm{int}}\right) \mathrm{d}(\text { intern.deg.of freedom })
$$

Eg., general hard molecule: $q_{i}^{\text {model }}=8 \pi^{2} \Rightarrow K^{\prime}$ must be divided by product $\prod_{i=1}^{k}\left(q_{i}^{\text {model }}\right)^{v_{i}}$

- Again, gradual insertion may be needed
- Final result = equilibrium composition

Gibbs ensemble

Determine vapor-liquid (fluid-fluid) phase equilibrium

1) MD: slab geometry, bad for low T (water + BuOH, 373 K) \rightarrow
2) $\mathrm{MC}, \mathrm{MD}: \mu$ in the liquid, μ gas from the virial EoS
3) Gibbs ensemble [A. Panagiotopoulos (1987)]

One-component system:

$T=$ const, $V=V_{A}+V_{B}=$ const, $N=N_{A}+N_{B}=$ const
\Rightarrow to be satisfied: $p_{A}=p_{B}$ and $\mu_{A}=\mu_{B}$
Gibbs phase law: 1 degree of freedom \Rightarrow pressure is determined

Gibbs ensemble: one-component system

$$
Q_{N V T}=\sum_{N_{A}=0}^{N} \int_{0}^{V} \frac{\mathrm{~d} V_{A} V_{A}^{N_{A}}}{N_{A}!} \int \mathrm{d} \vec{\xi}_{A}^{N} \mathrm{e}^{-\beta U_{A}\left(N_{A}\right)} \frac{V_{B}^{N_{B}}}{N_{B}!} \int \mathrm{d} \vec{\xi}_{B}^{N} \mathrm{e}^{-\beta U_{B}\left(N_{B}\right)}
$$

- Volume change $V_{A}^{\operatorname{tr}}=V_{A}+\Delta V$ a $V_{B}^{\operatorname{tr}}=V_{B}-\Delta V$, acceptance probability:

$$
p_{\mathrm{acc}}=\min \left\{1, \exp \left[-\beta \Delta U_{A}-\beta \Delta U_{B}+N_{A} \ln \frac{V_{A}+\Delta V}{V_{A}}+N_{B} \ln \frac{V_{B}-\Delta V}{V_{B}}\right]\right\}
$$

- Particle transfer from box B to box A, acceptance probability:

$$
p_{\mathrm{acc}}=\min \left\{1, \exp \left[-\beta \Delta U_{A}-\beta \Delta U_{B}-\ln \frac{\left(N_{A}+1\right) V_{B}}{N_{B} V_{A}}\right]\right\}
$$

Particle transfer from box A to box B, acceptance probability:

$$
p_{\mathrm{acc}}=\min \left\{1, \exp \left[-\beta \Delta U_{B}-\beta \Delta U_{A}-\ln \frac{\left(N_{B}+1\right) V_{A}}{N_{A} V_{B}}\right]\right\}
$$

Standard MC moves - translations, rotations.
Usually 1 volume change +1 -several article transfers per N single-particle moves.

Gibbs ensemble: mixture

Gibbs phase law for a binary mixture: 2 degrees of freedom
$\tau=$ const, $p=$ const, equilibrium compositions are determined

O Volume changes in both boxes separately (see NPT)

- Particle transfer

Useful: particle exchange between boxes - higher probability

