Compressibility and fluctuations

Grandcanonical partition function in semiclassical approximation:

$$-k_{\rm B}T\ln Z_{\mu VT} = F - \mu \langle N \rangle = \Omega = -pV, \text{ where } Z_{\mu VT} = \sum_{N=0}^{\infty} \frac{{\rm e}^{\beta \mu N}}{N!h^{3N}} \int {\rm e}^{-\beta E} {\rm d}\vec{r}_1 \dots {\rm d}\vec{p}_N$$

System of N identical particles in the grandcanonical ensemble (μVT) , $\mu =$ parameter

 $= \beta (\langle N^2 \rangle - \langle N \rangle^2) = \beta \langle (N - \langle N \rangle)^2 \rangle = \beta \text{ Var } N$

$$\langle N \rangle = -\left(\frac{\partial \Omega}{\partial \mu}\right)_{V,T} = \frac{\sum_{N=0}^{\infty} N \frac{e^{\beta \mu N}}{\Lambda^{3N} N!} \int e^{-\beta E} d\vec{r}_1 \dots d\vec{p}_N}{\sum_{N=0}^{\infty} \frac{e^{\beta \mu N}}{\Lambda^{3N} N!} \int e^{-\beta E} d\vec{r}_1 \dots d\vec{p}_N} = \frac{\sum_{N=0}^{\infty} N \frac{e^{\beta \mu N}}{N! \Lambda^{3N}} Q_N}{\sum_{N=0}^{\infty} \frac{e^{\beta \mu N}}{\Lambda^{3N} N!} Q_N},$$

$$\left(\frac{\partial \langle N \rangle}{\partial \mu}\right)_{V,T} = \beta \frac{\displaystyle\sum_{N=0}^{\infty} N^2 \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} Q_N \times \displaystyle\sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} Q_N - \displaystyle\sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} Q_N \times \displaystyle\sum_{N=0}^{\infty} N \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} Q_N}{\left(\displaystyle\sum_{N=0}^{\infty} \frac{\mathrm{e}^{\beta \mu N}}{N! \Lambda^{3N}} Q_N\right)^2}$$

$$\left(\frac{\partial \langle N \rangle}{\partial \mu}\right)_{V,T} = \beta \, \text{Var} \, N$$

Grandcanonical potential: $\Omega = F - N\mu = -pV = -\beta \ln Z_{\mu VT}$

 $dF = -SdT - pdV + \mu dN$

Differential: $d\Omega = -pdV - Vdp = -SdT - pdV - Nd\mu \Rightarrow Nd\mu = Vdp [T, N, V]$

Another derivation: $dG = Nd\mu = Vd\rho$ [T, N]

p and μ are intensive variables, hence they depend on $\rho = \langle N \rangle / V$ only:

$$N\left(\frac{\partial \mu}{\partial N}\right)_{T,V} = V\left(\frac{\partial \rho}{\partial N}\right)_{T,V} = \left(\frac{\partial \rho}{\partial (N/V)}\right)_{T} = \frac{1}{N}\left(\frac{\partial \rho}{\partial (1/V)}\right)_{T,N} = \frac{V}{N}\left[-V\left(\frac{\partial \rho}{\partial V}\right)_{T,N}\right] = \frac{1}{\rho\kappa_{T}}$$

Eventually:

$$\frac{\text{Var}N}{\langle N \rangle} = \rho k_{\text{B}} T \kappa_{T}$$

isothermal compressibility:

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial \rho} \right)_{T,N}$$

bulk modulus:

$$B_T = 1/\kappa_T$$

Compressibility and fluctuations

$$\frac{\text{Var}\,N}{\langle N\rangle} = \rho k_{\text{B}} T \kappa_{T}$$

- \bigcirc larger compressibility \Rightarrow larger fluctuations
- Var $N > 0 \Rightarrow \kappa_T > 0$ ($\kappa_T < 0$ for a mechanically unstable system)

typical "finite-size effect" is $\mathcal{O}(1/N)$

Exceptions:

- diffusivity in MD: $\mathcal{O}(1/N^{1/3})$ a particle interacts with its periodic image $\propto 1/N^{1/3}$ apart
- \bigcirc crystals: $\mathcal{O}(\log N/N)$ counting phonons
- \bigcirc plasma, ionic solutions (more terms): $\mathcal{O}(1/N^{3/2})$ Debye–Hückel
- \bigcirc some 2D systems: $\mathcal{O}(\log N/N)$
- critical point critical exponents

RDF in the μVT ensemble and compressibility

$$\rho^{2}g(r) = \frac{\sum_{N=2}^{\infty} N(N-1) \frac{e^{\beta \mu N}}{N! \Lambda^{3N}} \int \exp(-\beta U) d\vec{r}_{3} \dots d\vec{r}_{N}}{\sum_{N=0}^{\infty} \frac{e^{\beta \mu N}}{N! \Lambda^{3N}} \int \exp(-\beta U) d\vec{r}_{1} \dots d\vec{r}_{N}}, \qquad r = |\vec{r}_{1} - \vec{r}_{2}|$$

$$\Rightarrow \textbf{Compressibility equation} \quad 1 + \rho \int [g(r) - 1] \, d\vec{r} = \frac{\text{Var} N}{\langle N \rangle} = \rho k_{\text{B}} T \kappa_T$$
 spherical symmetry:
$$\int d\vec{r} = \int_0^\infty 4\pi r^2 dr$$

spherical symmetry:
$$\int d\vec{r} = \int_0^\infty 4\pi r^2 dr$$

- More fluctuation and correlation quantities can be expressed by similar integrals (Kirkwood–Buff)
- Numerically ill-defined for large r must be cut off
- Tricks to be able to use the NVT ensemble

Exercise 1. Show that $g_{\mu VT}(r) = 1$ for monoatomic ideal gas Hint: for ideal gas $e^{\beta\mu N}/\Lambda^3 = p/k_BT = \langle N \rangle/V = \rho$

Exercise 2. Calculate κ_T from the compressibility equation with the canonical RDF (N = constant)

Simulation in other ensembles

- \bigcirc NVE \rightarrow NVT (MD), measuring: $T \rightarrow E$
- \bigcirc NVT \rightarrow NVE (MC), measuring: $E \rightarrow T$
- \bigcirc NVT \rightarrow NPT (MC, MD), measuring: $P \rightarrow V$
- \bigcirc NVT $\rightarrow \mu$ VT (MC, [MD]), measuring: $\mu \rightarrow N$

In the thermodynamic limit $(N \to \infty)$ equivalent, otherwise errors $\propto 1/N^*$

Corrections: $N = \langle N \rangle_{\mu \text{VT}}$ $\langle X \rangle_{\mu \text{VT}} - \langle X \rangle_{N \text{VT}} \approx \frac{1}{2} \left\langle (N - \langle N \rangle_{\mu \text{VT}})^2 \right\rangle_{\mu \text{VT}} \left(\frac{\partial^2 \langle X \rangle_{\mu \text{VT}}}{\partial N^2} \right)_{V,T}$ $= \frac{k_B T}{2N} \left(\frac{\partial \rho}{\partial \rho} \right)_T \rho^2 \left(\frac{\partial^2 \langle X \rangle}{\partial \rho^2} \right)_{V,T}$

where $\langle \cdot \rangle$ in the last derivative is either $\langle \cdot \rangle_{\mu VT}$ or $\langle \cdot \rangle_{NPT}$

Derivation: Taylor expansion of X(N) okolo $\langle N \rangle$

The corrections become important near the critical point

^{*} not for: nonperiodic b.c., (surface $N^{2/3}$), crystals (ln N/N), diffusivity ($N^{1/3}$)...

MC in the microcanonical ensemble

MC move under constraint E = const = problem

It is possible in the classical mechanics for $E_{pot} + E_{kin} = const$: can be integrated over momenta (not so trivial, though).

Approximate solution – Creutz

$$E = E_{\text{max}} \rightarrow E \leq E_{\text{max}}$$

(do not buy a melon in a many-dimensional space)

Creutz demon has a bag with energy: $E_{\text{bag}} = E_{\text{max}} - E \ge 0$

 E_{bag} has the Boltzmann distribution \Rightarrow temperature

Maxwell's demon

Creutz's demon

Credit: Wikipedia (modified)

Creutz - Metropolis comparison

- Choose a particle (lattice site, ...) to move
- \bigcirc $A^{tr} := A^{(k)} + random move of the chosen particle$
- The configuration is accepted $(A^{(k+1)} := A^{tr})$ with probability min $\{1, e^{-\beta \Delta U}\}$ otherwise rejected:

Metropolis	Creutz	Creutz-Metropolis
$u := u_{(0,1)}$		$bag = -k_B T \ln u_{(0,1)}$
IF $u < e^{-\beta \Delta U}$	IF ΔU < bag	IF ΔU < bag
THEN	THEN	THEN
$A^{(k+1)} := A^{tr}$	$A^{(k+1)} := A^{\operatorname{tr}}$; bag $-= \Delta U$	$A^{(k+1)} := A^{\operatorname{tr}}$; bag $-= \Delta U$
ELSE	ELSE	ELSE
$A^{(k+1)} := A^{(k)}$	$A^{(k+1)} := A^{(k)}$	$A^{(k+1)} := A^{(k)}$

in all cases $\langle bag \rangle = k_B T$ (in continuous world: $\langle -\ln u_{(0,1)} \rangle = 1$)

 \bigcirc k := k + 1 and again and again

NPT ensemble in MC

To incorporate volume change, $\langle X \rangle$ must be in the form of an \int of probability density: $\vec{r}_i = V^{1/3} \vec{\xi}_i$

$$\langle X \rangle = \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \left(\int_{V^{N}} X(\vec{r}^{N}, V) \frac{N}{V} \exp\{-\beta [pV + U(\vec{r}^{N})]\} d\vec{r}^{N} \right) dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{0}^{\infty} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} \int_{0}^{\infty} X(V^{1/3} \vec{\xi}^{N}, V) \frac{N}{V} V^{N} \exp\{-\beta [pV + U(V^{1/3} \vec{\xi}^{N})]\} d\vec{\xi}^{N} dV$$

$$= \frac{1}{Q_{\text{NPT}}} \int_{0}^{\infty} X(V^{1/3} \vec{\xi}^{N}) dV dV$$

$$p_{\text{acc}} = \min\{1, (V^{\text{tr}}/V)^{N-1} \exp[-\beta p (V^{\text{tr}} - V)] \exp[-\beta (U^{\text{tr}} - U)]\}$$

Better option: $V^{\text{tr}} = V \exp[u_{(-d,d)}]$ (In V is uniformly sampled), then:

$$p_{\text{acc}} = \min\{1, (V^{\text{tr}}/V)^{N+1-1} \exp[-\beta p(V^{\text{tr}} - V)] \exp[-\beta (U^{\text{tr}} - U)]\}$$

- \bigcirc Usually N one-particle moves (translations:rotations = 1:1) per one volume-change move
- \bigcirc Acceptance ration of volume changes ~ 0.3
- General problem: global change of configuration ⇒ slow convergence ⇒ not good for too large systems

Grandcanonical ensemble in MC

 \bigcirc MC step: change the number of particles by ± 1

$$\vec{r}_i = V^{1/3} \vec{\xi}_i$$

$$\langle X \rangle = \frac{1}{\Xi} \sum_{N=0}^{\infty} \frac{e^{\beta \mu N}}{\Lambda^{3N} N!} \int X(\vec{r}^N, N) \exp[-\beta U_N(\vec{r}^N)] d\vec{r}^N$$

 $d\vec{r}^N$ depends on $N \Rightarrow$ dimensionless coordinates $\vec{r}_i = V^{1/3} \vec{\xi}_i$

$$\langle X \rangle = \frac{1}{\Xi} \sum_{N=0}^{\infty} \int_{1^{3N}} X(V^{1/3} \vec{\xi}^N, N) \frac{e^{\beta \mu N} V^N}{\Lambda^{3N} N!} \exp[-\beta U_N (V^{1/3} \vec{\xi}^N)] d\vec{\xi}^N$$

Insert or remove a particle with the same probability 1/2

$$p_{\text{insert particle}} = \min \left\{ 1, \frac{e^{\beta \mu} V}{\Lambda^3 (N+1)} \exp \left\{ -\beta \left[U_{N+1}(\vec{r}^{N+1, \text{zkus}}) - U_N(\vec{r}^N) \right] \right\} \right\}$$

$$p_{\text{remove particle}} = \min \left\{ 1, \frac{N\Lambda^3}{e^{\beta\mu}V} \exp\left\{-\beta \left[U_{N-1}(\vec{r}^{N-1, zkus}) - U_N(\vec{r}^N)\right]\right\} \right\}$$

Problem: insert a large molecule

Solution: gradually

 $e^{\beta\mu} = \Lambda^3 e^{\beta\mu_{res}} \langle N \rangle / V$

Grandcanonical ensemble in MD

 $+\frac{10/16}{s10/3}$

- The same as in MD, but "continuously" problematic
- \bigcirc C μ MD [Perego, Salvalaglio, Parrinello, DOI: 10.1063/1.4917200]
 - \bigcirc Reservoir with molecules, region with a force \Rightarrow change of the (chem.) pot.
 - Applied to crystallization with a constant oversaturation of the solution

Reaction ensemble in MC

 $+\frac{11/16}{s10/3}$

We can easily calculate a chemical equilibrium in an ideal gas phase. But what if the mixture is not ideal? 1) Calculate μ_i , γ_i ... 2) Reaction ensemble

Reaction (reactants:
$$v_i < 0$$
, products: $v_i > 0$): $\sum_{i=1}^k v_i A_i = 0$

Equilibrium:

$$\Delta_{\mathsf{r}}G_{\mathsf{m}} = \sum_{i=1}^{k} \nu_{i}\mu_{i} = 0$$

Generalized partition function of a mixture, $N = \sum_{i=1}^{k} N_i$ (constant N_i):

$$Z(N_1,\ldots,N_k,V,T) = \prod_{i=1}^k \frac{(q_i/\Lambda_i^3)^{N_i}}{N_i!} \times \int \exp[-\beta U(\vec{r}^N)] d\vec{r}^N$$

Balance (extent of reaction = ζ):

$$N_i = N_i^{(0)} + \zeta \nu_i$$

$$Z(N_1^{(0)}, \dots, N_k^{(0)}, V, T) = \sum_{\zeta} \prod_{i=1}^k \frac{(Vq_i/\Lambda_i^3)^{N_i^{(0)} + \zeta \nu_i}}{(N_i^{(0)} + \zeta \nu_i)!} \times \int \exp[-\beta U(V^{1/3} \vec{\xi}^N)] d\vec{\xi}^N$$

Reaction "move" $\zeta^{tr} = \zeta + \Delta \zeta$ accepted with probalility

$$p_{\text{acc}} = \min \left\{ 1, \, K'^{\Delta \zeta} \exp(-\beta \Delta U) \prod_{i=1}^{k} \left[\frac{(N_i^{(0)} + \zeta \nu_i)!}{(N_i^{(0)} + \zeta^{\text{tr}} \nu_i)!} \right] \right\}$$

where

$$\Delta U = U(V^{1/3} \vec{\xi}^N, \zeta^{\text{tr}}) - U(V^{1/3} \vec{\xi}^N, \zeta)$$

$$\bar{\nu} = \sum_{i=1}^{k} \nu_i$$

$$K' = \prod_{i=1}^{k} \left(\frac{Vq_i}{\Lambda_i^3} \right)^{\nu_i} = \left(\frac{Vp}{kT} \right)^{\bar{\nu}} \exp\left(-\frac{\sum \mu_{i,id}}{kT} \right) = \left(\frac{Vp}{kT} \right)^{\bar{\nu}} K$$

where $\Delta_r G_m^{\circ} = N_A \sum \mu_{i,id}$ is the reaction molar Gibbs energy (for p = standard pressure) and K is the equilibrium constant (for the standard state ideal gas at pressure p).

Reaction step

$$+\frac{13/16}{s10/3}$$

- Random change of the extent of the reaction: with probalility 1/2 " \rightarrow " ($\zeta^{tr} = \zeta + 1$) with probalility 1/2 " \leftarrow " ($\zeta^{tr} = \zeta 1$)
- Random selection of the corresponding number of reactant and product molecules
- Replacement of reactants → products (for $\Delta \zeta = \zeta^{tr} \zeta > 0$) or products → reactants (for $\Delta \zeta < 0$)
- igoplus Calculate the energy change ΔU
- igcup New configuration accepted with probability p_{acc}

Note: Some degrees of freedom are simulated, some not...

Nonspherical molecules:

$$\exp\left[\frac{-\mu_{i,\text{id}}}{kT}\right] = \frac{q_i k_B T}{q_i^{\text{model}} p^{\text{st}}}, \quad q_i^{\text{model}} = \int \exp(-\beta U_{\text{int}}) d(\text{intern.deg.of freedom})$$

Eg., general hard molecule: $q_i^{\text{model}} = 8\pi^2 \Rightarrow K'$ must be divided by product $\prod_{i=1}^k (q_i^{\text{model}})^{\nu_i}$

- Again, gradual insertion may be needed
- Final result = equilibrium composition

Gibbs ensemble

Determine vapor-liquid (fluid-fluid) phase equilibrium:

- 1) MD: slab geometry, bad for low T (water + BuOH, 373 K) \rightarrow
- 2) MC, MD: μ in the liquid, μ gas from the virial EoS
- 3) Gibbs ensemble [A. Panagiotopoulos (1987)]

One-component system:

- $T = \text{const}, V = V_A + V_B = \text{const}, N = N_A + N_B = \text{const}$ \Rightarrow to be satisfied: $p_A = p_B$ and $\mu_A = \mu_B$
- \bigcirc Gibbs phase law: 1 degree of freedom \Rightarrow pressure is determined

Gibbs ensemble: one-component system

$$Q_{\text{NVT}} = \sum_{N_A=0}^{N} \int_0^V \frac{dV_A V_A^{N_A}}{N_A!} \int d\vec{\xi}_A^N e^{-\beta U_A(N_A)} \frac{V_B^{N_B}}{N_B!} \int d\vec{\xi}_B^N e^{-\beta U_B(N_B)}$$

• Volume change $V_A^{\text{tr}} = V_A + \Delta V$ a $V_B^{\text{tr}} = V_B - \Delta V$, acceptance probability:

$$p_{\text{acc}} = \min \left\{ 1, \exp \left[-\beta \Delta U_A - \beta \Delta U_B + N_A \ln \frac{V_A + \Delta V}{V_A} + N_B \ln \frac{V_B - \Delta V}{V_B} \right] \right\}$$

 \bigcirc Particle transfer from box B to box A, acceptance probability:

$$p_{\text{acc}} = \min \left\{ 1, \exp \left[-\beta \Delta U_A - \beta \Delta U_B - \ln \frac{(N_A + 1)V_B}{N_B V_A} \right] \right\}$$

Particle transfer from box A to box B, acceptance probability:

$$p_{\text{acc}} = \min \left\{ 1, \exp \left[-\beta \Delta U_B - \beta \Delta U_A - \ln \frac{(N_B + 1)V_A}{N_A V_B} \right] \right\}$$

Standard MC moves – translations, rotations.

Usually 1 volume change + 1–several article transfers per N single-particle moves.

Gibbs ensemble: mixture

Gibbs phase law for a binary mixture: 2 degrees of freedom T = const, p = const, equilibrium compositions are determined

- Volume changes in both boxes separately (see NPT)
- Particle transfer
- Useful: particle exchange between boxes higher probability

