Compressibility and fluctuations

Grandcanonical partition function in semiclassical approximation:
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Compressibility and fluctuations s10/3
o(N)
(—) = VarN
oL Jy,T
Grandcanonical potential: Q=Ff—-Nu=—pV =—-InZ, vyt dF = -SdT—pdV+udN

Differential: dQ=—-pdV—Vdp=—-SdT—pdV—Ndu = Ndu=Vdp [T,N, V]
Another derivation: dG=Ndu=Vdp [T, N]

p and u are intensive variables, hence they depend on p = (N)/V only:
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Eventually:

Isothermal compressibility:
VarN 1 /9V
m = pkgTKT KT = —— (a—)
( ) V\op T.N
bulk modulus:

BT =1/KkT



Compressibility and fluctuations 531/3/63

Var N
(N)

= okgTKT

@ larger compressibility = larger fluctuations

@ VarN>0=«k7>0 (k7 <0 fora mechanically unstable system)

o3kBTKT N—co

@ Varp = 0 (thermodynamic limit)

typical “finite-size effect” is O(1/N)
Exceptions:
@ diffusivity in MD: O(1/N1/3) - a particle interacts with its periodic image o« 1/N1/3 apart
@ crystals: O(logN/N) - counting phonons
@ plasma, ionic solutions (more terms): O(1/N3/2) - Debye-Hiickel
@ some 2D systems: O(logN/N)

@ critical point - critical exponents
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RDF in the uVT ensemble and compressibility $10/3
00 e,8,uN
Zz N(N — 1)/\/!/\3/\/ f exp(—BU)dFs... dfy
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VR ST spherical symmetry:
(N) fdi"=f§° Amrédr
@ More fluctuation and correlation quantities can be expressed by similar integrals
(Kirkwood-Buff)

= Compressibility equation 1 + pf[g(r) —1]dr =

@ Numerically ill-defined for large r - must be cut off
@ Tricks to be able to use the NVT ensemble

Exercise 1. Show that g,y7(r) =1 for monoatomic ideal gas
Hint: for ideal gas ePHN/A3 = p/kgT = (N)/V =p

Exercise 2. Calculate k7 from the compressibility equation with the canonical RDF (N = constant)
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Simulation in other ensembles

s10/3

@ NVE — NVT (MD), measuring: T — E T :

@ NVT — NVE (MC), measuring: E — T 3t ]

@ NVT — NPT (MC, MD), measuring: P — V Ko

@ NVT — uVT (MC, [MD]), measuring: g — N of XNy :
X

In the thermodynamic limit (N — o0) equivalent,
otherwise errors o< 1/N*

Corrections: N = (N)uvT
1, < (22Xt
(X)uvt — XInvT = §<(N—(N)uVT) >IJVT( SN2 )VT
kgT (dp 5 BZ(X) | N
T 2N (GP)T'O ( 32 )T

where () in the last derivative is either (- or (- * not for: nonperiodic b.c., (surface N%/3), crys-
() (JuvT or {-InpT tals (In N/N), diffusivity (N1/3). ..

Derivation: Taylor expansion of X(N) okolo (N)

The corrections become important near the critical point
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MC in the microcanonical ensemble s10/3

MC move under constraint E = const = problem

It is possible in the classical mechanics for Epot + Ekjn = const: can be integrated over momenta
(not so trivial, though).

Approximate solution - Creutz Maxwell’s demon
E = Emax —  E < Emax A B A B
] | & ® - ® |, °
(do not buy a melon in a many-dimensional space) ol w\ o o - 4
[ ]
Creutz demon has a bag with energy: Ehag = Emax—E =0 o |°°¢ * e
Ephag has the Boltzmann distribution = temperature Creutz’'s demon
° “— @
L g * ® ? ™
o * 8

Credit: Wikipedia (modified)




Creutz - Metropolis comparison

@ Choose a particle (lattice site, ...) to move

@ AU := AK) 4 random move of the chosen particle
@ LU = Ut — UKy = ytr — yk)

@ The configuration is accepted (A(k+1) .= At") with probability min{1, e FAU}
otherwise rejected:

Metropolis Creutz Creutz-Metropolis
u:=uc,1) bag =—kgl'Inu(p,1)
IF u < e—FAU IF AU < bag IF AU < bag
THEN THEN THEN

Alk+1) .= At Ak+1) .= At . pag—= AU | AKFL) .= Al hag—= AU
ELSE ELSE ELSE

Alk+1) .— a(k) Alk+1) .— A(K) Alk+1) .— (k)

in all cases (bag) = kgT (in continuous world: (—Inu,1)) = 1)

@ k :=k+ 1 and again and again

[simolant] 7/16
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NPT ensemble in MC s10/3

To incorporate volume change, (X) must be in the form of an f of probability density: F; = V1/35i

1 [ N
(X) = ( XN, V)—exp{—B[pV + U(FN)]}dFN)dV
ONPT Jo VN V
1 (% . N . .
= —— J X(VY3EN vy—vNexp{—BL[pV + U(VY/3EN)]} dENdV
ONpT Jo J13N 4

_ _ N/V, —1: exact ideal gas
Microreversible volume change: V! =V + ui_g ¢), then 8p, const: O(1/N) error

Pacc = min{1, (V'/V)N=1 exp[—Bp (V' — V)] exp[—B(UY — U)]}

Better option: V' = Vexplu—qg,q)] (InV is uniformly sampled), then:

pacc = min{1, (V/V)N+1=1 exp[—Bp (VI — V)] exp[—B(UY — U)]}

@ Usually N one-particle moves (translations:rotations = 1:1) per one volume-change move

@ Acceptance ration of volume changes ~ 0.3

@ General problem: global change of configuration = slow convergence = not good for too large
systems
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Grandcanonical ensemble in MC s10/3

@ MC step: change the number of particles by £1 v1/3g.

1 X, efuN

X =z 2, A3NN!

N=0
dPV depends on N = dimensionless coordinates 7; = V1/3E;

1 & _ ePuNyN
X)== >, J X(3EN N)
':'N=O 13N

Jni

M
|

~—
—
el

J XV N) exp[—BUNTN)1dPN

Sy SPl—BUN(V2EN)] dEY

@ Insert or remove a particle with the same probability 1/2

eBHy

Pinsert particle = Min {1: I\ eXp{—ﬁ[UN+1(FN+ 1,zkus) — UN(FN)] }}

3
. — mi 1 NA —GIuU =N—1,zkusy __ U =[\/
Premove particle = MiN 4 1, NV, exp{—F[Un-1(T ) n()]}

Problem: insert a large molecule ePH = N\3ePBHres(N)/V
Solution: gradually
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Grandcanonical ensemble in MD * 103

@ The same as in MD, but “continuously” — problematic
@ CuMD [Perego, Salvalaglio, Parrinello, DOI: 10.1063/1.4917200]
@ Reservoir with molecules, region with a force = change of the (chem.) pot.

@ Applied to crystallization with a constant oversaturation of the solution
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Reaction ensemble in MC

@ We can easily calculate a chemical equilibrium in an ideal gas phase.

But what if the mixture is not ideal? 1) Calculate u;, y;... 2) Reaction ensemble
k
Reaction (reactants: v; < 0, products: v; > 0): Z VAi=0
(=1
Equilibrium: ArGm= Y vili=0
(=1

Generalized partition function of a mixture, N = Z{;l N; (constant N;):

kK (qi/ NN
Z(N1, NV, D = ] ChN‘. g J exp[—BU(N)1dPN
i=1 i
Balance (extent of reaction = ): N; = (0) + v
(0) ,
(Vq[//\3)N +CVl

zin®, .. N vy =>TT]

Ziel (N + gvp

X J exp[—BU(VY/3EN)]dEN
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_ _ 12/16
Reaction ensemble in MC * 103

Reaction “move” ¢ = ¢ + AC accepted with probalility

(VD + vy

Pacc = min{ 1, K’2¢ exp(—BAU) l_[
i=1 _(Nfo) + Gyl |

where

AU = U(V1/3EN, Ctr) _ U(Vl/BEN, C)

k
V==§;Lq
=1

k Vi 1% 1%
Vaq; vV X vV
Kl:l_[ vai =(_p) exp _Zut,ld =(_P) K
/\? kT kT kKT

(=1
where ArG‘r’n = Na D, Ui iqd is the reaction molar Gibbs energy (for p = standard pressure) and K is
the equilibrium constant (for the standard state ideal gas at pressure p).
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Reaction step + 103

@ Random change of the extent of the reaction: with probalility 1/2 “—" (¢'" = Z+1) with probalility
1/2 u(_n (Ctr= C_ 1)

@ Random selection of the corresponding number of reactant and product molecules

@ Replacement of reactants — products (for A =" — ¢ > 0) or products — reactants (for AZ < 0)
@ Calculate the energy change AU

@ New configuration accepted with probability pacc

Note: Some degrees of freedom are simulated, some not...

Nonspherical molecules:

exp[ T mode q, —fexp(—,BUint)d(intern.deg.of freedom)

—Hz,id] __QiksT model
q; o e pst

Eg., general hard molecule: gM°9%€! = 872 = K’ must be divided by product [TX . (gMm°9¢!yvi
[ (=171

@ Again, gradual insertion may be needed

@ Final result = equilibrium composition



Gibbs ensemble

Determine vapor-liquid (fluid-fluid) phase equilibrium:

1) MD: slab geometry, bad for low T (water + BuOH, 373 K) —
2) MC, MD: u in the liquid, u gas from the virial EoS

3) Gibbs ensemble [A. Panagiotopoulos (1987)]

One-component system:
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@ 7T =const, V=V + Vg=const, N=Na+ Ng = const
= to be satisfied: pg = pg and ua = ug

@ Gibbs phase law: 1 degree of freedom = pressure is determined
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https://doi.org/10.1080/00268978700101491

Gibbs ensemble: one-component system

N vV dVAVNA . VNB )
ONvVT = Z f v 'A Jdggle—ﬁUA(NA)%f dggle—ﬁUB(NB)
Na=0+0 A B-

@ Volume change VE\" =Va+ AV a Vg = Vg — AV, acceptance probability:

. Va+ AV Vg— AV
Pacc=mini1l,exp|—BAUa— BAUB + Naln + NglIn
Va Ve
@ Particle transfer from box B to box A, acceptance probability:
. (Na+ 1)VB
Pacc =mMins 1, exp|—BAU4— BAUB—In
NgVa
@ Particle transfer from box A to box B, acceptance probability:
. (N + 1)Va
Pacc =mMin{ 1, exp|—BAUg— BAUA— In
NaVBg

@ Standard MC moves - translations, rotations.

Usually 1 volume change + 1-several article transfers per N single-particle moves.

15/16
s10/3



Gibbs ensemble: mixture

Gibbs phase law for a binary mixture:
2 degrees of freedom

T = const, p = const, equilibrium com-
positions are determined

@ Volume changes in both boxes sep-
arately (see NPT)

@ Particle transfer

@ Useful: particle exchange between
boxes — higher probability
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MC cycles

s10/3
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