
Extended Lagrangian methods in MD: NPT + 1/12
s11/3

A dynamic variable (degree of freedom) is added.
Andersen: ~r = V1/3 ~ξ ~̇r  = V1/3 ~̇ξ

NO: ~̇r 
?
= d~r/dt = d(V1/3 ~ξ)/dt = V̇V−2/3 ~ξ/3 + V1/3 ~̇ξ

Lagrangian L = L( ~ξN, ~̇ξN, V, V̇):
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Extended Lagrangian methods in MD: NPT + 2/12
s11/3

The Hamiltonian of the extended system is preserved:

↙
canonically conjugate momentum p
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∑
q
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− L =
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p2V
MV

+ U(V1/3 ~ξN) + PV

≡ Ekin + Ekin. piston + Epot + PV

Other methods:

generalization (for crystals): Parrinello–Rahman

Berendsen (friction) method (thermostat required because of dissipation)

V̇ = −const× (Pcfg − P)

Constraint dynamics

P = Pcfg( ~ξN, ~̇ξ
N
, V, V̇)

Nosé–Hoover thermostat + 3/12
s11/3

Nosé originally proposed: L =
N∑

=1

m
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s2 ~̇r
′2
 − U(~r′N) +

Ms

2
ṡ2 − ƒ ′kBT ln s

“Rescaling of the kinetic energy by means of velocity, ~̇r = s ~̇r′; the scaling degree of freedom s has
a kinetic as well as potential energy”

Equations of motion (why we write t′: see below)
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Hamiltonian
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Canonically conjugate impulses (momenta):
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Nosé–Hoover thermostat + 4/12
s11/3

Nosé: For ƒ ′ = # of degrees of freedom incl. s we get the canonical distribution od static variables
(but see below. . . )
N particles in a general conservative field: ƒ ′ = 3N + 1
Problems: correct velocity is ~̇r  = s ~̇r

′
 , so if s changes a lot, the integration step should change

accordingly

Hoover: ~̇r  = s ~̇r
′
 is the same as time rescaling, ~̇r  = sd~r/dt′, i.e.:

sdt = dt′ or
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=
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d

dt
this trick brings us back to the physical (unscaled) velocities and momenta:

~r = ~r
′
 , ~̇r  ≡

d~r
dt
= s

d~r
dt′
≡ s ~̇r′ , ~p = ~p

′
 /s , ps = p′s/s

Equations of motion:
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Nosé–Hoover thermostat + 5/12
s11/3

Another trick: substitution ξ = ln s. Then:

~̈r  =
~ƒ
m
− ~̇r ξ̇

ξ̈ =
�
Tkin

T
− 1

�
τ−2

time constant of the thermostat:

τ =

√√√ Ms

ƒkBT

Conserved quantity (not a Hamiltonian because not a function of coordinates and conjugate mo-
menta), can be proven by taking a derivateve:

ENosé–Hoover =
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mṙ
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 + U + ƒkBT


ξ + τ2ξ̇2
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 = const

Hoover showed that these equations give the canonical distribution if ƒ is the number of degrees
of freedom (without ξ or s)
N particles in a general conservative field: ƒ = 3N

Nosé-Hoover Berendsen + 6/12
s11/3
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Nosé–Hoover derivation I + 7/12
s11/3

Problem of time scaling (ṙ = sṙ′, i.e., dt = dt′/s)

〈A〉 =
∫ t1
t0
A(t)dt

∫ t1
t0
dt

=

∫ t1
t0
A(t)dt′/s

∫ t1
t0
dt′/s

=
〈A/s〉′
〈1/s〉′

The expectation value for H = E:

〈A〉 = 〈A/s〉
′

〈1/s〉′ =
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Nosé–Hoover derivation II + 8/12
s11/3

Trick: We will integrate over ~p, not ~p′.

After transformation d ~p′ = s
3d ~p we get:

〈A〉 =

∫
Asƒ−1dp′sd ~p

Ndsd~rNδ
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+ ƒkBT ln s − E
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Where we have donoted

H0( ~pN, ~rN) =
N∑

=1

~p2
2m

+ U(~rN)

and where the number of degrees of freedom is ƒ = 3N.
(If a quantity like the total momentum is conserved, a substitution must be used.)

Nosé–Hoover derivation III + 9/12
s11/3

We will integrate over s first. We shall use the formula:

δ(F(s)) =
∑

s0,F(s0)=0

δ(s − s0)
|F′(s0)|

So we need all roots of the argument of δ(); there is only one:
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After integration:

〈A〉 =
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∫
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Nosé–Hoover derivation IV + 10/12
s11/3

The last integration is over dp′s. Many terms then cancel out:

〈A〉 =

∫
Ad ~pNd~rN exp(−H0/kBT)

∫
d ~pNd~rN exp(−H0/kBT)

, q.e.d



Exercise: thermostats + 11/12
s11/3

Simulate liquid water SPC/E and compare the following thermostats:
– Berendsen
– Nosé-Hoover
– Andersen (for the center of mass)
– Maxwell (for the center of mass)

The cutoff-electrostatics version cookce is recommended (it is faster than Ewald)

The needed files are in /home/guest/termostaty.zip:
guest@403-a324-01:~/VY$ unzip ../termostaty.zip
spce.ble = force field definition of SPC/E
water.def = commented simulation parameters

To start simulation, use the Berensen thermostat and the default method Verlet+Shake:
guest@403-a324-01:~/VY$ cookce spce water -s
thermostat="Berendsen"
init="crystal"
Stop the simulation by pressing ctrl-C at temperature around 500 K

Exercise: thermostats + 12/12
s11/3

Now try various thermostats (-w0 prevents writing the final configuration):
guest@403-a324-01:~/VY$ cookce spce water -s -w0
tau.T=...
thermostat="..."

Nosé–Hoover combined with Verlet+Shake uses a velocity predictor (there are other methods, too)

You may try also the Gear integration combined with the Berendsen and Nosé–Hoover thermostat
(Gear 4th order = option -m4), e.g.:
guest@403-a324-01:~/VY$ cookce spce water -m4 -s -w0
thermostat="Nose-Hoover"

The Gear integration is less accurate with thermostat="Andersen" and "Maxwell" (higher-order
terms are not accurate)

After a few ps run look at the convergence profile of temperatures:
guest@403-a324-01:~/VY$ showcp -p water Tkin
(white = total Tkin, yellow = rotational, cyan = translational)


