
Metropolis–Hastings MC: Nonsymmetric matrix α + 1/17
s12/3

α→j = matrix of the probability distribution of trial displacements

Metropolis: α→j = αj→
What if α→j ̸= αj→?

W→j =





α→j if πjαj→ ≥ πα→j

α→j
πjαj→
πα→j

if πjαj→ < πα→j

1 −
∑

k, k ̸=
W→k for  = j

pacc =min

¨
1,

αj→
α→j

exp(−βΔU)
«

This extension of the Metropolis algorithm is attributed to W. K. Hastings

Force bias + 2/17
s12/3

αforce bias
→j = α→j

exp(βλƒ⃗k · Δr⃗)∫
exp(βλƒ⃗k · Δr⃗)dΔr⃗

Optimum λ = 0.5 (between Metropolis and heat-bath)

Similarly:
– torque-bias (rotations)
– virial-bias (volume change)

λ = 1 & linearization ⇒ heat-bath

More tricks +

Global density change (close to the critical point)

Tesselation to clusters and cluster moves

NPT of hard bodies: molecules → clusters, swell//shrink wrt cluster centers

Swapping particles/molecules/groups/clusters

Preferential sampling + 3/17
s12/3

Particles in the more interesting areas are moved more often.

Example: solvent molecules around a solute: ppref(r)
e.g.
= 1/(1 + r2/σ2)

Version 1:

Choose a solvent molecule, , at random

If [0,1) < ppref(|r⃗ − r⃗0|) (r⃗0 = solute)

Generate a trial configuration r⃗tr

Accept it with pacc =min
�
1,

ppref(|r⃗tr − r⃗0|)
ppref(|r⃗− r⃗0|) exp(−βΔU)

�

(otherwise continue with the old configuration)

αpref(A→ Atr) = α(A→ Atr)
ppref(|r⃗ − r⃗0|)

N

Preferential sampling + 4/17
s12/3

Version 2:

Choose a solvent molecule, , from the distribution ppref(|r⃗ − r⃗0|),  = 1, . . . , N
An optimum algorithm with binary search has cost ∝ logN. Easy one:

select solvent  randomly

if not [0,1) < ppref(|r⃗ − r⃗0|), new selection

Perform one MC step using the molecule:

generate a trial configuration r⃗tr
accept it with probability

pacc =min

(
1,

ppref(|r⃗tr − r⃗0|)/Str

ppref(|r⃗ − r⃗0|)/S
exp(−βΔU)
)
, S =

N∑

=1
ppref(|r⃗ − r⃗0|)

αpref(A→ Atr) = α(A→ Atr)
ppref(|r⃗ − r⃗0|)

S
Both versions are of the same efficiency if well optimized

Polymers and Rosenbluth sampling
5/17
s12/3

A polymer in an athermal (very good) solvent is modeled by a self-avoiding random walk:

p =
1

4 × 3 × 3 × 3 p =
1

4 × 3 × 3 × 2

Both polymer should have the same weight!
Remedy: Rosenbluth weight (factor) of a step = number of possible continuations = R, the weight
of a configuration obtained by the walk is:

R =
1

p
=

N∏

=1
R

Generalization (the continuation is selected ∝ Boltzmann factor):

R =
k∑

=1
exp[−βU(→ )]

Generalization for continuous models + 6/17
s12/3

Instead of k possible direction on a lattice, k random trial configurations are generated

The new configuration is drawn with the probability given by

p(→ tr) =
exp[−βU(→ tr)]

R
, R =

k∑

=1
exp[−βU(→ tr)]

The configuration weight is: R =
N∏

=1
R

Limiting cases:

For k = 1, the configuration weight is R = exp[−β∑U( → tr)] = exp(−βUtr
total) = Boltzmann

probability of a polymer. This is the naive MC integration.

For k → ∞, the method is close to the previous lattice-based method; i.e., drawing the new
configuration with the Boltzmann probability at every step. (NB: this is not the importance
sampling because the Rosenbluth weights differ.)

Configurational bias Monte Carlo + 7/17
s12/3

Instead of one trial configuration in the Metropolis method, let us consider k of them (continuous
models: random sample | lattice models: all possible). A trial configurations is drawn from the
probability distribution:

p(r⃗tr) =
exp[−βU(r⃗tr)]

Rtr
, Rtr =

k∑

=1
exp[−βU(r⃗tr)]

It is accepted with probability min
�
1,

Rtr

Rold

�
, where

Rold = exp[−βU(r⃗old)] +
k∑

=2
exp[−βU(r⃗old,tr

)] Rold =
k∑

=1
exp[−βU(r⃗old

)]

(r⃗old,tr
 = random configuration generated in the same way)

NB: for lattices, it may happen Rold = Rtr, which is the heat bath method

Stochastic matrix

W→j =





α→j
exp[−βU(r⃗j)]

Rj
for Rj > R

α→j
exp[−βU(r⃗j)]

Rj

Rj
R

for Rj < R

Simulations of molecular systems
8/17
s12/3

Small molecules may be rigid (nitrogen, water, methane)

Large molecules must be flexible . . . except (some) bonds

Vibrating (classical) bonds:

simplicity and consistency of the
model

code simplicity

more realistic description of flexibility

technical problems with too stiff springs (short
timestep in v MD, short trial moves in MC)

vibrational frequencies (esp. for hydrogens) are so
high that cannot be treated by classical mechanics
anyway

transfer of energy between the fast vibrations and
slow degrees of freedom is slow (they are decou-
pled), unless a stochastic thermostat is used

flexible models are more complicated theoretically

Fixed (constrained) bonds: just opposite

MC: molecules
9/17
s12/3

Example of a wrong algorithm for a linear molecule with axis (θ, ϕ):

θtr = θ + Δθ[−1,1]
ϕtr = ϕ + Δϕ[−1,1]

Example of a correct algorithm for a general body:

choose an axis randomly:
– any of ̂, ŷ, ẑ in the body frame
– any of ̂, ŷ, ẑ Cartesian coordinates in 3D space
– any random vector

rotate by angle Δα[−1,1], where [−1,1] is a random number uniformly distributed in [−1,1]
Rotation by Δα around ẑ-axis:



cosΔα − sinΔα 0

sinΔα cosΔα 0

0 0 1




Quaternions + 10/17
s12/3

Quaternion:
q = +  + yj + zk

2 = j2 = k2 = −1, j = −j = k, jk = −1 (a cykl.)

|q|2 =2 + 2 + y2 + z2

Set {|q| = 1, q ≃ −q} is isomorphic with SO(3) (group of rotations), which can be used in MC,
kinematics, and dynamics

Matrix of rotation:

Ω =



2 + 2 − y2 − z2 2y − 2z 2z + 2y

2y + 2z 2 − 2 + y2 − z2 2yz − 2
2z − 2y 2yz + 2 2 − 2 − y2 − z2




There are 4 algebras (above R or a field) with division, which are a vector space with a norm so
that |y| = |||y|: real numbers, complex numbers, quaternions (multiplication is not commutative)
and octonions (Cayley algebra, multiplication is not commutative nor associative).
Field is something with operations + − ∗/ with the same structure as R.
Algebra is a vector space over a field (of “scalars”) with “·”, where (+ y) ·z =  ·z+ y ·z, z · (+ y) =
z ·  + z · y, () · (by) = (b)( · y) for vectors , y, z and scalars , b.

MC: Molecules with internal degrees of freedom
[start /home/jiri/vyuka/liberec/video/ReptationChenille.webm]11/17

s12/3

Cartesian coordinates → generalized coordinates (Jacobian is needed – difficult)

Cartesian coordinates→ orthogonal coordinates (Jacobian does not change while moving along
one coordinate)

Frozen degrees of freedom (bonds)

Polymers:

standard moves

crankshaft move

reptation for linear homopolymers: a tail bead is cut off and moved at the head
– one random new position = standard Metropolis
– more trial moves = configurational bias MC

various enhance sampling methods:
umbrella sampling, parallel tempering, Wang–Landau

http://www.youtube.com/watch?v=rCTSG-SrShk&feature=related

MD: bonds
12/17
s12/3

Integration of the equations of motion for systems with fixed
bond lengths or angles is not the same as the infinitely-large

force constant limit of the corresponding flexible system.

What to fix:

nothing – short timestep, bad equipartition (convergence of different degrees of freedom)

bonds with hydrogen only – longer timestep allowed, better (but not the best) equipartition
GROMACS: special algorithm for H, h = 4 ps

all bond lengths – larger systematic errors, not good for rigid geometries (fullerene) and heavy
atoms

all bond lengths + angles with hydrogens – cheap and less precise, but longer timestep allowed
+ good equipartition

all bond lengths + all angles – WRONG except small molecules

Methods:

SHAKE (+Verlet)

Lagrangian constraint dynamics

Dihedral angle distribution of butane
[show/but1.sh]13/17

s12/3

United-atom model (CHARMM19) of butane

0 90 180 270 360

φ/o

0

0.1

0.2

0.3

n
o
rm

a
liz

e
d
 d

ih
e
d
ra

l
a
n
g
le

 d
is

tr
ib

u
ti
o
n

flexible angles, rigid bonds

flexible angles+bonds

rigid angles+bonds

1

2 3

4

φ

Fixed constraints in MD: SHAKE
14/17
s12/3

Matematical pendulum:

r⃗(
t
−
h
)

r⃗(t) r⃗
Verlet (t +

h)
r⃗(t +

h)

λr⃗(t)

r⃗(t + h) = r⃗Verlet(t + h) − h2

m
ƒ⃗c(t)

= 2r⃗(t) − r⃗(t − h) + h2
ƒ⃗ (t) − ƒ⃗c(t)

m

h2ƒ⃗c(t)

m
= λr⃗(t)

|r⃗(t + h)|2 = |r⃗(t)|2 = 2

[r⃗Verlet(t + h) − λr⃗(t)]2 = r⃗(t)2

r⃗Verlet(t + h)2 − 2λr⃗Verlet(t + h) · r⃗(t) +λ2r⃗(t)2 = r⃗(t)2

λ ≈ |r⃗Verlet(t + h)|2 − |r⃗(t)|2
2r⃗Verlet(t + h) · r⃗(t) =

|r⃗Verlet(t + h)|2 − 2
2r⃗Verlet(t + h) · r⃗(t)

SHAKE
15/17
s12/3

General atom–atom bond:

r⃗(t + h) = r⃗Verlet,(t + h) + λ
1/m

1/m + 1/mj
r⃗j

r⃗j(t + h) = r⃗Verlet,j(t + h) − λ 1/mj

1/m + 1/mj
r⃗j

where
↙
2

λ =
|r⃗Verlet,j(t + h)|2 − |r⃗j(t)|2
2r⃗Verlet,j(t + h) · r⃗j(t)

Based on the Verlet method r⃗j = r⃗j− r⃗, rj = |r⃗j|
Center-of-mass is conserved (integral of motion)!

Complex molecules: repeat iteratively until converged

Speed up: superrelaxation

Velocity version: RATTLE, more variants

For m =∞, r⃗ = (0,0,0), r⃗ = r⃗j = r⃗j ⇒ mathematical pendulum

Optimization I + 16/17
s12/3

For short-ranged pair potentials (also r-space Ewald):

all pairs (N < 300)

neighbor list (N ≈ 1000)

domain-decomposition algorithms: linked-cell list method

Optimization II + 17/17
s12/3

A couple of tricks:

MD: multiple timestep MD

MC: multimoves (near the critical point – critical slowing-down)

MC: identity change, non-Boltzmann sampling, . . .

hybrid MC/MD (not very good)

Programming tricks:

cache

nearest neighbors in periodic boundary conditions

tables: pair potential calculated by splines

Parallel code:

usually based on domain decomposition (linked-cell list)

standard computers 4–32 cores

Graphics Processing Units: thousands of processors, more difficult to program

