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Metropolis-Hastings MC: Nonsymmetric matrix o + 51/2/3
Qai—j = matrix of the probability distribution of trial displacements

Metropolis: ajj = aj;
What if o # oj—?

i if Mo = mai;
e AN
GAj—i .
A if Moy < M)
Wisj= e AN
1- > W, fori=j
k, k#i

. Aji
Pacc =min {1, —exp(—BAU)}
dij

This extension of the Metropolis algorithm is attributed to W. K. Hastings
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Generalization for continuous models + 5123
@ Instead of k possible direction on a lattice, k random trial configurations are generated
@ The new configuration is drawn with the probability given by
exp[—BU(i — ()] K
pli— (M) =— > ﬁR — Ri=ZeXp[—BU(i—'ltr)] \|/
i =1 —\

N
The configuration weight is: R = l_[R(
i=1
Limiting cases:
@ For k = 1, the configuration weight is R = exp[—B X U(i — ()] = EXP(_'BUthaI) = Boltzmann
probability of a polymer. This is the naive MC integration.
@ For k — oo, the method is close to the previous lattice-based method; i.e., drawing the new
configuration with the Boltzmann probability at every step. (NB: this is not the importance
sampling because the Rosenbluth weights differ.)
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Force bias + 23

gforce bias _ i eXp(ﬁ/\?k -47)
i~ ' exp(BAfic - BP)AAT

Optimum A = 0.5 (between Metropolis and heat-bath)

Similarly:
- torque-bias (rotations)
- virial-bias (volume change)

A =1 & linearization = heat-bath
More tricks ar

@ Global density change (close to the critical point)

@ Tesselation to clusters and cluster moves
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+ 5123
Instead of one trial configuration in the Metropolis method, let us consider k of them (continuous
models: random sample | lattice models: all possible). A trial configurations is drawn from the
probability distribution:

Configurational bias Monte Carlo

exp[—BU(FN]

p(#") =
! Rtr

k
Rir =y exp[—BU(F"]
=1

R
It is accepted with probability min {1, Ri} where
old

k k
Rold = exp[—BU(F'N] + > exp[—BU(F "] Roid =y exp[—BU(F'D)]
(=2 =1

(F"'d'tr = random configuration generated in the same way)

NB: for lattices, it may happen Rqig = Rtr, Which is the heat bath method

Stochastic matrix
exp[—BU(7)]

imsj for Rj > R
@ NPT of hard bodies: molecules — clusters, swell//shrink wrt cluster centers Wi = Rj
. ) = exp[—BU(7)]R;
@ Swapping particles/molecules/groups/clusters giﬁjRiR_ for Rj <R
j i
q q 3/17 q g 8/17
Preferential sampling + o123 | Simulations of molecular systems s12/3
Particles in the more interesting areas are moved more often. @ Small molecules may be rigid (nitrogen, water, methane)
Example: solvent molecules around a solute: ppref(r) 2 1/(1 + r2/a0?) @ Large molecules must be flexible ... except (some) bonds
Version 1: Vibrating (classical) bonds:
@ Choose a solvent molecule, i, at random v & simplicity and consistency of the & technical problems with too stiff springs (short
Y u[0,1) < Pprer(IFi— Fol) (7o = solute) Sesstusy model timestep in v MD, short trial moves in MC)
@ Generate a trial configuration Ffr : x"‘if & code simplicity =) v!bratlonal frequencies (esp. for hydrogens) are .so
R, v \',4" 7y & more realistic description of flexibility high that cannot be treated by classical mechanics
@ Accept it with pacc = min {l, %exp(—tmu)} anyway
(otherwise continue with the old configuration) X @ transfer of energy between the fast vibrations and
slow degrees of freedom is slow (they are decou-
Fi— T led), unless a stochastic thermostat is used
apref(A —»At") —a(A _'Atr)Pprefu i ol) pled)
N @ flexible models are more complicated theoretically
Fixed (constrained) bonds: just opposite
A A 4/17 9/17
Preferential sampling + 123 MC: molecules s12/3
Version 2: Example of a wrong algorithm for a linear molecule with axis (6, ¢):
@ Choose a solvent molecule, i, from the distribution ppref(IFi—TFol), i=1,...,N ofr = 6+ ABup_1,1]
An optimum algorithm with binary search has cost « logN. Easy one: ¢tr = ¢+Apur—1,1]
@ select solvent i randomly
P Example of a correct algorithm for a general body:
@ if not uro,1) < Ppref(IFi—Tol), new selection
@ Perform one MC step using the molecule: @ choose an eAnxiAslrandome:
. X N —any of X, y, 2 in the body frame
@ generate a trial configuration 7; —any of %, y, 2 Cartesian coordinates in 3D space
@ accept it with probability - any random vector
—winls Ppref(|F(Fr—F0|)/5tr exp(_pAl) s i =) @ rotate by angle Aaup-1,1], where up—1,17 is a random number uniformly distributed in [—1, 1]
Pace = " ppref(IFi— Fol)/S P LT [:lppref o Rotation by Aa around 2-axis:
cosAa —sinAa 0
Ppref(I7i— Fol) sinAa cosAa 0
Fpref(A — AT) = (A — AT . R
Both versions are of the same efficiency if well optimized
Pol d Rosenbluth li e terni + oo
olymers and Rosenbluth sampling <123 | Quaternions s12/3
A polymer in an athermal (very good) solvent is modeled by a self-avoiding random walk: Quaternion:

1 1
T 4x3x3x3 P 3x3x2

p

Both polymer should have the same weight!
Remedy: Rosenbluth weight (factor) of a step = number of possible continuations = R;, the weight
of a configuration obtained by the walk is:

—

1
R=—=]|]r;

P =1
Generalization (the continuation is selected « Boltzmann factor):

i

k
Ri= > exp[—BU(i— ]
=1

q=Ww+Xi+yj+2zk
P=2=k?=—1, j=—ji=k, ijk=—1 (acykl.)
Iq1? = w? + x2 + y? + 22

Set {|g| = 1, ~ —q} is isomorphic with SO(3) (group of rotations), which can be used in MC,
kinematics, and dynamics

Matrix of rotation:

w24 x2—y2—z2 2xy —2zw 27X + 2yw
Q= 2xy +2zw w2 —x24y2_ 272 2yz—2xw
27x—2yw 2yz+ 2XwW w2 —x2—y2_ 72

There are 4 algebras (above R or a field) with division, which are a vector space with a norm so
that |xy| = |x|lyl: real numbers, complex numbers, quaternions (multiplication is not commutative)
and octonions (Cayley algebra, multiplication is not commutative nor associative).

Field is something with operations + — */ with the same structure as R.

Algebra is a vector space over a field (of “scalars”) with “-”, where (x+y)-z=x-z+y-z, z-(x+y) =
z-x+z-y, (ax) - (by) = (ab)(x - y) for vectors x, y, z and scalars a, b.
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MC: Molecules with internal degrees of freedom $12/3

@ Cartesian coordinates — generalized coordinates (Jacobian is needed - difficult)

@ Cartesian coordinates — orthogonal coordinates (Jacobian does not change while moving along
one coordinate)

@ Frozen degrees of freedom (bonds)
Polymers:

@ standard moves

@ crankshaft move

@ reptation for linear homopolymers: a tail bead is cut off and moved at the head
- one random new position = standard Metropolis
- more trial moves = configurational bias MC

Sl EERRY

@ various enhance sampling methods:
umbrella sampling, parallel tempering, Wang-Landau

http://www.youtube.com/watch?v=rCTSG-SrShk&feature=related

SHAKE i
General atom-atom bond:

Ft+h) = Frerend(t+ )+ At

i(t+h) = i(t+h)+ M

i Verlet, i mi+ l/m,- ij

PR = Ferer(t+h)—A——?TU

i(t+h) = i(t+h)—A————TF

fi Verlet,j ) 1/mi+ 1/mj if
where 2

/
_ Ivertet, it + M2 = I75(6)I?
2Pverlet,j(t + h) - Fyi(t)

A

@ Based on the Verlet method

@ Center-of-mass is conserved (integral of motion)!

Fij=TFj—Ti rij= 7yl

@ Complex molecules: repeat iteratively until converged
@ Speed up: superrelaxation
@ Velocity version: RATTLE, more variants

@ For m;= oo, 7;=(0, 0, 0), 7 = Fj = Fj = mathematical pendulum
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MD: bonds 512/3 Optimization | + 512,3
Integration of the equations of motion for systems with fixed For short-ranged pair potentials (also r-space Ewald):
bond lengths or angles is not the same as the infinitely-large @ all pairs (N < 300)
force constant limit of the corresponding flexible system. @ neighbor list (N ~ 1000)
What to fix: @ domain-decomposition algorithms: linked-cell list method
@ nothing - short timestep, bad equipartition (convergence of different degrees of freedom) - S e
@ bonds with hydrogen only - longer timestep allowed, better (but not the best) equipartition ....P:O{
GROMACS: special algorithm for H, h =4 ps 9,
@ all bond lengths - larger systematic errors, not good for rigid geometries (fullerene) and heavy
atoms
@ all bond lengths + angles with hydrogens - cheap and less precise, but longer timestep allowed
+ good equipartition
@ all bond lengths + all angles - WRONG except small molecules
Methods:
@ SHAKE (+Verlet)
@ Lagrangian constraint dynamics
A —— f=hon/butleshineyn —— 17/17
Dihedral angle distribution of butane s12/3 Optimization Il + 123

United-atom model (CHARMM19) of butane

A couple of tricks:

@ MD: multiple timestep MD

@ MC: multimoves (near the critical point - critical slowing-down)
@ MC: identity change, non-Boltzmann sampling, ...

@ hybrid MC/MD (not very good)

Programming tricks:

@ cache

@ nearest neighbors in periodic boundary conditions

@ tables: pair potential calculated by splines

Parallel code:

@ usually based on domain decomposition (linked-cell list)
@ standard computers 4-32 cores

@ Graphics Processing Units: thousands of processors, more difficult to program
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Fixed constraints in MD: SHAKE 512/3

Matematical pendulum:

h2,
F(t+h) = ?Verlet(t*'h)*;fc(t)

270y (e~ hy+ n2 DT ;f‘(t)

-
LTI
m

[F(t+ h)|? = |F(D)|? = 12

[Pvertet(t + h) — AF()]2 = 7(t)?
Prertet(t + M) = 2APveriet(t + h) - P(£) +A%7(1)? = F(t)?

5 [Fvertet(t+ 2= 7O _ [Feriet(t + M1 —
2Rvertet(t+h) - 7(t)  2verlet(t + h) - ()




