Metropolis-Hastings MC: Nonsymmetric matrix α

$\alpha_{i \rightarrow j}=$ matrix of the probability distribution of trial displacements
Metropolis: $\alpha_{i \rightarrow j}=\alpha_{j \rightarrow i}$
What if $\alpha_{i \rightarrow j} \neq \alpha_{j \rightarrow i}$?

$$
W_{i \rightarrow j}= \begin{cases}\alpha_{i \rightarrow j} & \text { if } \pi_{j} \alpha_{j \rightarrow i} \geq \pi_{i} \alpha_{i \rightarrow j} \\ \alpha_{i \rightarrow j} \frac{\pi_{j} \alpha_{j \rightarrow i}}{\pi_{i} \alpha_{i \rightarrow j}} & \text { if } \pi_{j} \alpha_{j \rightarrow i}<\pi_{i} \alpha_{i \rightarrow j} \\ 1-\sum_{k, k \neq i} W_{i \rightarrow k} & \text { for } i=j\end{cases}
$$

The configuration weight is: $R=\prod_{i=1}^{N} R_{i}$

$$
p_{\mathrm{acc}}=\min \left\{1, \frac{\alpha_{j \rightarrow i}}{\alpha_{i \rightarrow j}} \exp (-\beta \Delta U)\right\}
$$

This extension of the Metropolis algorithm is attributed to W. K. Hastings

Generalization for continuous models

Instead of k possible direction on a lattice, k random trial configurations are generated

- The new configuration is drawn with the probability given by

$$
p\left(i \rightarrow l^{\mathrm{tr}}\right)=\frac{\exp \left[-\beta U\left(i \rightarrow t^{\mathrm{tr}}\right)\right]}{R_{i}}, \quad R_{i}=\sum_{l=1}^{k} \exp \left[-\beta U\left(i \rightarrow l^{\mathrm{tr}}\right)\right]
$$

Limiting cases:

For $k=1$, the configuration weight is $R=\exp \left[-\beta \sum U\left(i \rightarrow t^{\text {tr }}\right)\right]=\exp \left(-\beta U_{\text {total }}^{\mathrm{tr}}\right)=$ Boltzmann probability of a polymer. This is the naive MC integration.
For $k \rightarrow \infty$, the method is close to the previous lattice-based method; i.e., drawing the new configuration with the Boltzmann probability at every step. (NB: this is not the importance sampling because the Rosenbluth weights differ.)

Configurational bias Monte Carlo

$+\begin{gathered}7 / 20 \\ s 12 / 4\end{gathered}$
Instead of one trial configuration in the Metropolis method, let us consider k of them (continuous models: random sample | lattice models: all possible). A trial configurations is drawn from the probability distribution:

$$
p\left(\vec{r}_{l}^{\mathrm{tr}}\right)=\frac{\exp \left[-\beta U\left(\vec{r}_{l}^{\mathrm{tr}}\right)\right]}{R_{\mathrm{tr}}}, \quad R_{\mathrm{tr}}=\sum_{l=1}^{k} \exp \left[-\beta U\left(\mathrm{r}_{l}^{\mathrm{tr}}\right)\right]
$$

It is accepted with probability $\min \left\{1, \frac{R_{\text {tr }}}{R_{\text {old }}}\right\}$, where

$$
R_{\text {old }}=\exp \left[-\beta U\left(\text { Fold }^{\text {old }}\right)\right]+\sum_{l=2}^{k} \exp \left[-\beta U\left(\left(_{l}^{\text {old }, \text { tr }}\right)\right] \quad R_{\text {old }}=\sum_{l=1}^{k} \exp \left[-\beta U\left(\vec{r}_{l}^{\text {old }}\right)\right]\right.
$$

($r_{l}^{\text {old,tr }}=$ random configuration generated in the same way)
NB: for lattices, it may happen $R_{\text {old }}=R_{\text {tr }}$, which is the heat bath method Stochastic matrix

$$
W_{i \rightarrow j}= \begin{cases}\alpha_{i \rightarrow j} \frac{\exp \left[-\beta U\left(\vec{r}_{j}\right)\right]}{R_{j}} & \text { for } R_{j}>R_{i} \\ \alpha_{i \rightarrow j} \frac{\exp \left[-\beta U\left(\vec{r}_{j}\right)\right]}{R_{j}} \frac{R_{j}}{R_{i}} & \text { for } R_{j}<R_{i}\end{cases}
$$

Simulations of molecular systems

- Small molecules may be rigid (nitrogen, water, methane)
- Large molecules must be flexible ... except (some) bonds

Vibrating (classical) bonds:
\oplus simplicity and consistency of the Θ model
($)$ code simplicity
(1) more realistic description of flexibility
vibrational frequencies (esp. for hydrogens) are so high that cannot be treated by classical mechanics anyway
transfer of energy between the fast vibrations and slow degrees of freedom is slow (they are decoupled), unless a stochastic thermostat is used

- flexible models are more complicated theoretically

Fixed (constrained) bonds: just opposite

MC: molecules

Example of a wrong algorithm for a linear molecule with axis (θ, ϕ) :

$$
\theta^{\operatorname{tr}}=\theta+\Delta \theta u_{[-1,1]}
$$

$$
\phi^{\mathrm{tr}}=\phi+\Delta \phi u_{[-1,1]}
$$

Example of a correct algorithm for a general body:

- choose an axis randomly:
- any of $\hat{x}, \hat{y}, \hat{z}$ in the body frame
- any of $\hat{x}, \hat{y}, \hat{z}$ Cartesian coordinates in 3D space
- any random vector

rotate by angle $\Delta \alpha u_{[-1,1]}$, where $u_{[-1,1]}$ is a random number uniformly distributed in $[-1,1]$ Rotation by $\Delta \alpha$ around \hat{z}-axis:

$$
\left(\begin{array}{ccc}
\cos \Delta \alpha & -\sin \Delta \alpha & 0 \\
\sin \Delta \alpha & \cos \Delta \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Quaternions

Quaternion:

$$
\begin{gathered}
q=w+x i+y j+z k \\
i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, i j k=-1(\text { a cykl. }) \\
|q|^{2}=w^{2}+x^{2}+y^{2}+z^{2}
\end{gathered}
$$

Set $\{|q|=1, q \simeq-q\}$ is isomorphic with $S O(3)$ (group of rotations), which can be used in MC, kinematics, and dynamics
Matrix of rotation:

$$
\Omega=\left(\begin{array}{ccc}
w^{2}+x^{2}-y^{2}-z^{2} & 2 x y-2 z w & 2 z x+2 y w \\
2 x y+2 z w & w^{2}-x^{2}+y^{2}-z^{2} & 2 y z-2 x w \\
2 z x-2 y w & 2 y z+2 x w & w^{2}-x^{2}-y^{2}-z^{2}
\end{array}\right)
$$

There are 4 algebras (above \mathbb{R} or a field) with division, which are a vector space with a norm so that $|x y|=|x||y|$: real numbers, complex numbers, quaternions (multiplication is not commutative) and octonions (Cayley algebra, multiplication is not commutative nor associative).
Field is something with operations $+-* /$ with the same structure as \mathbb{R}.
Algebra is a vector space over a field (of "scalars") with ".", where $(x+y) \cdot z=x \cdot z+y \cdot z, z \cdot(x+y)=$ $z \cdot x+z \cdot y,(a x) \cdot(b y)=(a b)(x \cdot y)$ for vectors x, y, z and scalars a, b.

MC: Molecules with internal degrees of freedom

Cartesian coordinates \rightarrow generalized coordinates (Jacobian is needed - difficult)
Cartesian coordinates \rightarrow orthogonal coordinates (Jacobian does not change while moving along one coordinate)

Frozen degrees of freedom (bonds)

Polymers:

standard moves

- crankshaft move
- reptation for linear homopolymers: a tail bead is cut off and moved at the head - one random new position = standard Metropolis - more trial moves = configurational bias MC
- various enhance sampling methods: umbrella sampling, parallel tempering, Wang-Landau
http://www.youtube.com/watch?v=rCTSG-SrShk\&feature=related

Exercise: Conformations of butane

Task: Study the dihedral angle distribution of the dihedral angle in the CHARMM model of butane at an elevated temperature.
Try:

- flexible angles and bonds
- flexible angles, fixed bonds (SHAKE)
- fixed angles and bonds
optionally with the dihedral potential and 1-4 interaction turned off

Howtos:

blend -h99 = angles with atoms heavier than $99 \mathrm{~g} / \mathrm{mol} \rightarrow$ equivalent bonds
cook -u 9999 = bonds with $K<9999 \mathrm{~K} / \AA^{2} / \mathrm{mol}$ will be flexible, other fixed
To turn all 1-4 interactions off one has to edit butane.ble

- table dihedrals: write $K=0$
- table sites erase $*$ in term $* 0$ (interactions 1-4 \rightarrow nothing)

Exercise: Conformations of butane

- unzip ../dihedral.zip

- flexible angles and bonds:
guest@403-a324-01:~/VY\$ blend -o butane butane
guest@403-a324-01:~/VY\$ cookcedih butane dih -s -u9999
- flexible angles, rigid bonds:
guest@403-a324-01:~/VY\$ blend -o butane butane guest@403-a324-01:~/VY\$ cookcedih butane dih -s
fixed angles and bonds:
guest@403-a324-01:~/VY\$ blend -o butane -h99 butane
guest@403-a324-01:~/VY\$ cookcedih butane dih -s

Results

Optimization I

For short-ranged pair potentials (also r-space Ewald):
all pairs $(N<300)$
neighbor list ($N \approx 1000$)

- domain-decomposition algorithms: linked-cell list method

Optimization II

A couple of tricks:

MD: multiple timestep MD
MC: multimoves (near the critical point - critical slowing-down)
MC: identity change, non-Boltzmann sampling, ...

- hybrid MC/MD (not very good)

Programming tricks:

- cache
- nearest neighbors in periodic boundary conditions
tables: pair potential calculated by splines

Parallel code:

usually based on domain decomposition (linked-cell list)

- standard computers 4-32 cores

Graphics Processing Units: thousands of processors, more difficult to program

