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Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction . . . not
convection, turbulence, radiation. . .

Flux∗ of mass, charge, momentum, heat, . . . . . .
J⃗ = amount (of quantity) transported per unit area
(perpendicular to the vector of flux) within time unit
Units: energy/heat flux: J m−2 s−1 = W m−2,

current density: A m−2

Cause = (generalized, thermodynamic) force
F⃗ = − gradient of a potential
(chemical potential/concentration, electric potential, temperature)

Small forces—linearity

J⃗ = const · F⃗
In gases we use the kinetic theory: molecules (simplest: hard spheres) fly through space and
sometimes collide

∗ also flux intensity or flux density; then, the total flux is just flux

Diffusion—macroscopic view
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First Fick Law: Flux J⃗ of compound  (units: mol m−2 s−1)
For mass
concentration
in kg m−3,
the flux is in
kg m−2 s−1

J⃗ = −D∇⃗c
is proportional to the concentration gradient

∇⃗c = gradc =
�
∂

∂
,
∂

∂y
,
∂

∂z

�
c =

�
∂c
∂

,
∂c
∂y

,
∂c
∂z

�

D = diffusion coefficient (diffusivity) of molecules , unit: m2 s−1

Diffusion—microscopic view
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Flux is given by the mean velocity of molecules ⃗:

J⃗ = ⃗c
Thermodynamic force = −grad
of the chemical potential:

Difference of chemical poten-
tials = reversible work needed
to move a particle (mole) from
one state to anotherF⃗ = −∇⃗

�
μ
NA

�
= −kBT

c
∇⃗c

where formula μ = μ
e
 + RT ln(c/c

st) for infinity dillution was used.

Friction force acting against molecule moving by velocity ⃗ through a medium is:

F⃗ fr
 = −ƒ⃗

where ƒ is the friction coeficient. Both forces are in equilibrium:

F⃗ fr
 + F = 0 i.e. − F⃗ fr

 = ƒ⃗ = ƒ
J⃗
c
= F = −

kBT

c
∇⃗c

On comparing with J⃗ = −D∇⃗c we get the Einstein equation: D =
kBT

ƒ
(also Einstein–Smoluchowski equation, example of a more general fluctuation-dissipation theorem)

Second Fick Law
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Non-stationary phenomenon (c changes with time).
The amount of substance increases within
time dt in volume dV = ddydz:

This type of equation is called
“equation of heat conduction”.
It is a parabolic partial differ-
ential equation

∑
,y,z

[ J() − J( + d)] dydz

=
∑
,y,z

[ J() − {J() +
∂J

∂
d})] dydz

= −
∑
,y,z

∂J

∂
ddydz = −∇⃗ · J⃗dV = −∇⃗ · (−D∇⃗c)dV

= D∇⃗2cdV = D

 
∂2

∂2
+

∂2

∂y2
+

∂2

∂z2

!
cdV

∂c
∂t
= D∇2c

Diffusion and the Brownian motion
[traj/brown.sh] 5/28
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Instead of for c(r⃗, t), let us solve the 2nd Fick law for the prob-
ability of finding a particle, starting from origin at t = 0. We get
the Gaussian distribution with half-width ∝

1D: c(, t) = (4πDt)−1/2 exp
 
− 2

4Dt

!

3D: c(r⃗, t) = (4πDt)−3/2 exp
 
− r2

4Dt

!
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Brownian motion as a random walk
[show/galton.sh]
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(Smoluchowski, Einstein)

within time Δt, a particle moves randomly
– by Δ with probability 1/2
– by −Δ with probability 1/2

Using the central limit theorem:

in one step: Var = 〈2〉 = Δ2

in n steps (in time t = nΔt): Var = nΔ2

⇒ Gaussian normal distribution with σ =
p
nΔ2 =

p
t/ΔtΔ:

1
p
2πσ

e−2/2σ2 =
1
p
2πt

p
Δt

Δ
exp


−−

2

2t

Δt

Δ2




which is for 2D = Δ2/Δt the same as c(, t)

NB: Var
def.
= 〈( − 〈〉)2〉, for 〈〉 = 0, then Var = 〈2〉

Example. Calculate Var, where  is a random number from interval (−1,1) 1/6

Einstein derivation + 7/28
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Random walk in one variable:
ϕ(δ) = probability density of a particle traveling by δ in time δt

∫ +∞

−∞
ϕ(δ)dδ = 1, ϕ(−δ) = ϕ(+δ)

The development of the density (of probability) ρ(, t) within time δt:

ρ(, t + δt) =
∫ +∞

−∞
ρ( + δ, t)ϕ(δ)dδ

ρ( + δ, t) = ρ(, t) + δ
∂ρ

∂
+
δ2

2

∂2ρ

∂2
+ · · ·

On integration (odd terms cancel out, higher-order can be neglected):

ρ(, t + δt) ≈ ρ(, t) + δt∂ρ
∂t
= ρ(, t) +

∂2ρ

∂2

∫ +∞

−∞

δ2

2
ϕ(δ)dδ

∂ρ

∂t
= D

∂2ρ

∂2
, D =

1

δt

∫ +∞

−∞

δ2

2
ϕ(δ)dδ (fluctuation/2)

Langevin equation
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A (colloid) particle in a viscous environment + random hits: ̇ ≡ d/dt
m̈ = ƒ − ƒ̇ + X(t)

ƒ = “normal” (conservative) force – for now ƒ = 0

ƒ = friction coefficient; spheres: ƒ = nπηR (Stokes), n = 4|6 for ideally smooth|rough sphere

X is random force: does not depend on t, , 〈X(t)〉 = 0, 〈X(t)X(t′)〉 = Aδ(t − t′)
Multiply by  and rearrange: d2(12

2)/dt2 = d(̇)/dt

m̈ = −ƒ̇ + X
m

2

d2

dt2
(2) −ṁ2 = − ƒ

2

d

dt
(2) + X

Apply the canonical expectation value and 〈X(t)〉 = 0:

m

2

d2

dt2
〈2〉 − kBT = −

ƒ

2

d

dt
〈2〉

Langevin equation
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m

2

d2

dt2
〈2〉 − kBT = −

ƒ

2

d

dt
〈2〉

This is a linear differential equation for d
dt〈2〉, solvable by the separation of variables

d

dt
〈2〉 = 2kBT

ƒ
+ Ce−ƒt/m t→∞

= 2
kBT

ƒ

after integration

〈2〉 = 2kBT

ƒ
t +

Cm

ƒ
[1 − e−ƒt/m]

At long t (neglecting the initial transient)

〈2〉 = 2Dt, where D =
kBT

ƒ

This is the Einstein–Smoluchowski equation to predict D from ƒ at given T

However, in MD (for a stochastic thermostat) we rather need a formula for X(t).

Fluctuation-dissipation theorem
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Langevin equation for ƒ = 0:

̈ = − ƒ

m
̇ +

1

m
X(t)

where X(t) is the (Gaussian) random force: 〈X(t)〉 = 0, 〈X(t)X(t′)〉 = Aδ(t − t′), A =?
Explicit solution for velocity – initial problem ̇(0) is relaxing exponentially to 0, more impulses
X(t) are integrated:

̇(t) = ̇(0)e−
ƒ
mt +

1

m

∫ t

0
X(t′)e−

ƒ
m(t−t′)dt′

t→∞,history⇒ ̇(0) =
1

m

∫ ∞

0
X(−t)e− ƒ

mtdt

We want T! The expected kinetic energy:

〈ṁ2〉 =m
�
1

m

∫ ∞

0
X(−t)e− ƒ

mtdt · 1
m

∫ ∞

0
X(−t′)e− ƒ

mt
′
dt′

�

=
1

m

∫ ∞

0
dt′

∫ ∞

0
dt Aδ(t − t′)e− ƒ

m(t+t
′) =

1

m

∫ ∞

0
dt Ae−

ƒ
m2t =

A

2ƒ

〈ṁ2〉 = kBT ⇒ A = 2ƒkBT =
2(kBT)2

D



Langevin thermostat and Brownian dynamics
[simolant -N20 -Ptau=1,rho=0.01]11/28
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In the simulation, X(t) is replaced by an impulse Aξ/
p
h every timestep h, where ξ is a random

number with the normalized normal distribution.

As a thermostat: All degrees of freedom are sampled (also the momentum in the periodic b.c.)

Momentum and center of mass not conserved

As Brownian dynamics: kinetic model of implicit solvent

Dissipative particle dynamics (DPD)

Good for coarse-grained models:

Groups of atoms (e.g., 4 H2O, bead in a polymer) are replaced by a superparticle. Its properties
are adjusted (empirically, by a comparison with a full-atom simulation).

Internal motion is approximated by random forces so that (for t → ∞), both the Brownian
motion and hydrodynamic behavior is correct; particularly, the momentum is conserved.

Dissipative particle dynamics (DPD) + 12/28
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Equations of motion

m ¨⃗r =
∑

j ̸=

�
ƒ⃗Cj + ƒ⃗

D
j + ƒ⃗

R
j

�

where ƒ⃗Cj is a Conservative pair force.
Dissipation of velocity in the direction of r̂j (⇒ CoM conserved):

ƒ⃗Dj = −ƒωD(rj) (⃗j · r̂j)r̂j, r̂j =
r⃗j
rj

Random force also acts in the direction of r̂j:

ƒ⃗Rj = σω
R(rj)ξr̂j

The “fluctuation-dissipation theorem” is:

ωD = [ωR]2, σ = 2kBTƒ

ξ = ξ(t) = normalized Gaussian force, 〈ξ(0)ξ(t)〉 = δ(t) [ξ] = s−1/2

ω (or ωj) = short-ranged, e.g., ωR(r) = 1 − r/rcutoff

rcutoff ≈ the typical size of coarse-graining

Kinetic quantities
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We are interested in coefficients of (linear) response to a (small) perturbation:

J⃗compound A = −D∇⃗cA

J⃗heat = −ƒ∇⃗T

η
∂

∂y
= Py

Methods:

EMD (equilibrium molecular dynamics), simulation in equilibrium
e.g., D = limt→∞〈[r(t) − r(0)]2〉/6t
NEMD (non-equilibrium molecular dynamics), simulation under an external force or perturbation

Linear response theory: static perturbation
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a perturbation with energy ΔH, H′ =H+ ΔH added
β =

1

kBTwe measure quantitity B in the canonical ensemble (with perturbation)

〈B〉′ =
∫
Bexp(−βH′)dpdq∫
exp(−βH′)dpdq ≈

∫
B(t)exp(−βH)(1 − βΔH)dpdq∫
exp(−βH)(1 − βΔH)dpdq

=
〈B〉 − β〈BΔH〉
1 − β〈ΔH〉 ≈ (〈B〉 − β〈BΔH〉)(1 + β〈ΔH〉) ≈ 〈B〉 − β(〈ΔHB〉 − 〈ΔH〉〈B〉)

= 〈B〉 − βCov(B,ΔH) 〈B〉=0= −β〈BΔH〉

Example. Classical harmonic oscillator H = K
2

2, perturbation ΔH = g, we measure B = :

〈〉 = −β〈ΔH〉 = −β〈g2〉 = −βg
∫
2 exp(−βK22)d∫
exp(−βK22)d

= −g
K

which is correct, because the potential minimum was actually only shifted:

H′ =
K

2
2 + g =

K

2

�
 +

g

K

�2
+ const

Linear response theory: motivation (Green–Kubo)
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Diffusivity from MSD in 1D (Einstein): MSD = mean squared
deviation/displacement〈2〉 = 2Dt (t→∞)

D =
1

2

d

dt

¬
[(t) − (0)]2

¶
=
1

2

d

dt

¬
[(0) − (−t)]2

¶

= 〈[(0) − (−t)]̇(−t)〉 = 〈[(t) − (0)]̇(0)〉 =
®�∫ t

0
̇(t′)dt′

�
̇(0)

¸

=

®∫ t

0
̇(0)̇(t′)dt′

¸

We are interested in the limit t→∞:
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D =
∫ ∞

0
〈̇(0)̇(t)〉dt

This is a simple example of the Green–Kubo formula

velocity–velocity
correlation func.:

c(t) =
〈̇1(0)̇1(t)〉
〈̇1(0)̇1(0)

Interpretation: The longer a velocity at time t is (positively) correlated with the velocity at time
0, the further the particle travels, and the diffusivity is higher.

Linear response theory: principles
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We work in the Hamiltonian formalism (positions and momenta), using distribution functions (in
q, p).

At time t = 0 an impuls changes the value of the Hamiltonian by ΔH =Ht>0 −Ht<0.

In case of a time-dependent perturbation, we integrate over time.

Example of a result for diffusion (Green–Kubova formula in 3D):

D =
1

3

∫ ∞

0
〈˙⃗r (t) · ˙⃗r (0)〉dt

Another example – viscosity:

η =
V

kBT

∫ ∞

0
<Py(0)Py(t)>dt

where Py are components of the pressure tensor. No corresponding Einstein relation exists!

Linear response theory: time-dependent perturbation
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Hamilton’s equations:

q̇ =
∂H
∂p
≡ p

m
, ṗ = −∂H

∂q
≡ ƒ

Perturbation (impuls) at time t = 0:

q̇ =
p

m
− Apδ(t), ṗ = ƒ + Aqδ(t)

where Ap =
∂A
∂p and Aq =

∂A
∂q for some A = A(q, p).

Example: A = F11 čili A1 = F1, Aq = 0 for q ̸= 1 a Ap = 0. A has unit energy×time
(Ȧ(0) is energy jump),
F1 has unit force×time
= momentum.

ṗ1, = ƒ1, + F1δ(t)

Stepwise change of the total energy by:

Ht>0 −Ht<0 = H(q − Ap, p + Aq) −H(q, p)

=
∑�
−∂H
∂q

Ap +
∂H
∂p

Aq

�
=
∑�

ṗ · Ap + q̇ · Aq
� ≡ Ȧ(0)

Example: Ht>0 −Ht<0 = F1̇1(0)
§

>0 for a hit in the direction of particle flight,
<0 for a hit against the direction of particle flight

Linear response theory
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A perturbation (leading to a jump in H) will be turned off (using a δ-impuls) at t = 0. The system
is canonical for t < 0, but I will measure (run simulation) using a non-perturbed state H =Ht>0.

Let us measure quantity B, 〈B〉 = 0. The response:

〈B(t)〉Aδ(t) =
∫
B(t)exp[−βHt>0 + βȦ(0)]dpdq∫
exp[−βHt>0 + βȦ(0)]dpdq

By expanding for small βȦ(0) we get

〈B(t)〉Aδ(t) = β〈Ȧ(0)B(t)〉t>0
where the expectation value right is over the final system
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with energy Ht>0 (canonical unperturbed)

Example: B = ̇1 (s Ht>0 −Ht<0 = F1̇1(0)):

〈̇1(t)〉Aδ(t) = F1β〈̇1(0)̇1(t)〉
velocity relaxation folowing a hit
∝
time correlation function velocity–velocity

Linear response theory: Green–Kubo + 19/28
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Long-time perturbation: A(t) = constant for t > 0. Limit t→∞:

〈B〉A = β
∫ ∞

0
〈Ȧ(0)B(t)〉dt

E.g., system in an electric field: dipolar relaxation/electric conductivity (heats up!)

Example:

ṗ1, = ƒ1, + F1 ⇒ 〈̇1〉A = F1β
∫ ∞

0
〈̇1(0)̇1(t)〉

Einstein–Smoluchowski : βD =

F  ⇒ D1 =

∫ ∞

0
〈̇1(0)̇1(t)〉dt

For F1 = Eq1 we get the ionic mobility

1 =
〈̇1〉
E

=
q1D1

kBT
and after multiplicating by a charge per mole we get the Nernst–Einstein equation for the limiting
molar conductivity

Λ∞1 =
〈̇q1NA〉

E
=
q21D1

RT

Green–Kubo → Einstein + 20/28
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Einstein:
κ =

∫ ∞

0
〈Ẋ(0)Ẋ(t)〉dt

∫ t

0
〈Ẋ(0)Ẋ(t′)〉dt′ = [〈Ẋ(0)X(t′)〉]t0

interchange t→ −t (NB: Ẋ(0)→ −Ẋ(0)) and shift by t ⇒
∫ t

0
〈Ẋ(0)Ẋ(t′)〉dt′ = 1

2

d

dt
〈[X(t) − X(0)]2〉

In the limit t→∞ then

2tκ = 〈[X(t) − X(0)]2〉
E.g., for the diffusion:

cf. NEMD: apply force to a parti-
cle while cooling, D = kBT〈〉/F,
calculate limit F→ 0

Green–Kubo D =
1

3

∫ ∞

0
〈˙⃗r (t) · ˙⃗r (0)〉dt

Einstein 2tD =
1

3
〈|r⃗(t) − r⃗(0)|2〉



Conductivity
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NEMD (non-equilibrium molecular dynamics), electric field E is turned on (in periodic b.c.). The
current density os measured:

j⃗ = κE⃗

Cooling is needed (thermostat) and extrapolation E⃗→ 0

Green–Kubo:

κ =
V

kBT

∫ ∞

0
〈j⃗(t) · j⃗(0)〉

Einstein

κ = lim
t→∞

d

dt

1

6kBTV

*(∑



q[ r⃗(t) − r⃗(0)]
)2+

NB: No Einstein relation for viscosity is known

Using the Einstein formula + 22/28
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Conductivity of molten NaCl using EMD:
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Kohlrausch Na+ + Cl-

Not so easy: corrections + 23/28
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Pure liquid in 3D:

D = DPBC +
2.873kBT

6πηL

DPBC − D
D

= −2.873R
L

∝ O(N−1/3)

where R = kBT/6πηD

pure fluid: determine viscosity and include corrections

generally: calculate for several L and extrapolate

B. Dünweg and K. Kremer, J. Chem. Phys., 1993, 99, 6093–6997;
I.-C. Yeh and G. Hummer, J. Phys. Chem. B, 2004, 108, 15873–15879.

Not so easy: corrections + 24/28
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Ar
^^
EvdW=-0.2380684 kcal/mol, RvdW=1.910992 AA
T=143.76 (T*=1.2)
rho=1344.2582 kg/m3 (rho*=0.8)

viscosity (Green-Kubo): eta=0.00017543 Pa.s
D is in 1e-9 m^2/s
Dcorr = Dsim + 2.837*k*T / (6*pi*eta*L)
==================================
N method tau/ps Dsim stderr Dcorr
----------------------------------
250 B 0.2 4.217 0.019 4.954
250 B 1 4.229 0.022 4.966
250 N 0.2 4.210 0.021 4.947
250 N 1 4.220 0.022 4.957
2000 B 0.2 4.560 0.012 4.928
2000 B 1 4.567 0.011 4.935
2000 N 0.2 4.568 0.013 4.936
2000 N 1 4.578 0.010 4.947
==================================
2000: L=46.21296 AA
250: L=23.10648 AA
N=Nose+Gear
B=Berendsen(+Shake)

SPCE water
^^^^^^^^^^
T=298.15 K

===================================
N method tau/ps Dsim stderr Dcorr
-----------------------------------
250 B 1 2.30 0.06 2.84
250 B 1 2.26 0.07 2.80
2000 B 1 2.49 0.10 2.76
2000 B 1 2.56 0.09 2.83
==================================

viscosity (N=250): 0.00058(6) Pa.s
L=19.575161 AA (N=250)

NB: later results, N=300
viscosity=0.00073(4) Pa.s
Dsim=2.390(8), D=2.80(2) [1e-9 m^2/s]

[J. Malohlava (University of Ostrava) and J. Kolafa
(2010), unpublished results.]

NEMD
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NEMD = Non-equilibrium molecular dynamics

as a real experiment (turn on a field, gradient of temperature, . . . )

problem: linearity (extrapolation to zero perturbation)

problem: cooling needed

viscosity:
– SLODD (Lees-Edwards)
– transfer of momentum
– cos-modulated force

A A A A

A A A A

A A A A

B B B B

B B B B

B B B B

C C C C

C C C C

C C C C

D D D D

D D D D

D D D D

E E E E

E E E E

E E E E -

-

EMD viscosity
[pol4d/Ptxy.sh]26/28
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Green–Kubo:

ηb =
V

kT

∫ ∞

0
〈Pb(t)Pb(0)〉dt,  ̸= b

ηb = ηb

Curiously, also diagonal elements can be used*:

η =
3

4

V

kT

∫ ∞

0
〈P′(t)P′(0)〉dt, P′ = P −

1

3

∑

b=,y,z
Pbb

It is not so accurate. Recommended mixing:

η =
3

5
ηoff +

2

5
ηtrless, ηoff =

1

3

∑

b=y,yz,z
ηb, ηtrless =

1

3

∑

η.

: more accurate than NEMD

: Pb needed (sometimes problematic or not available)

*Daivis P.J., Evans D.J.: Comparison of constant pressure and constant volume nonequilibrium simulations of sheared
model decane, J. Chem. Phys. 100, 541 (1993)

NEMD viscosity
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elongated box (e.g., L : Ly : Lz = 1 : 1 : 3)
laminar flow:
pressure-induced in a pipe: Poiseuille
drag-induced: Couettemodulated force

ƒ⃗ =mCƒ cos
�
2πz
Lz

�
n⃗, n⃗ = (1,0,0) nebo

(1,1,0)
p
2

correction so that total force = 0

Navier–Stokes equations for the Poiseuille flow of incompressible fluid:

η∇2⃗ + ƒ⃗ = 0, (1)

ƒ⃗ = ρCƒ

�
cos

2πz

Lz

�
n⃗

where ρ =
∑
m/V. Solution:

⃗ =
CƒρL2z
4π2η

cos
�
2πz

Lz

�
n⃗

Thus, η is calculated from the velocity profile,
∫ Lz
0 ⃗(z) · n⃗ cos

�
2πz
Lz

�
dz

NEMD viscosity
[pol4d/shear.sh]28/28
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Dissipation of energy:

dE

dt
=
1

2

∫
η(∇)2dV =

V

η

�
CƒρLz

4π

�2
.

one can also determine η from the dissipation (less accurate)

one can estimate how the cooling constant of a thermostat (e.g., Berendsen)

extrapolation Cƒ → 0 needed

less accurate than Green–Kubo

pressure tensor not needed
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