Transport phenomena

Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction ... not convection, turbulence, radiation...

Flux* of mass, charge, momentum, heat,
$\vec{J}=$ amount (of quantity) transported per unit area
(perpendicular to the vector of flux) within time unit
Units: energy/heat flux: $\mathrm{Jm}^{-2} \mathrm{~s}^{-1}=\mathrm{W} \mathrm{m}^{-2}$, current density: A m ${ }^{-2}$

Oause $=$ (generalized, thermodynamic) force
$\overrightarrow{\mathcal{F}}=-$ gradient of a potential
(chemical potential/concentration, electric potential, temperature)

- Small forces-linearity

$$
\vec{J}=\text { const } \cdot \overrightarrow{\mathcal{F}}
$$

In gases we use the kinetic theory: molecules (simplest: hard spheres) fly through space and sometimes collide

* also flux intensity or flux density; then, the total flux is just flux

Diffusion—macroscopic view

First Fick Law: Flux \vec{J}_{i} of compound i (units: $\mathrm{molm}^{-2} \mathrm{~s}^{-1}$)

$$
\vec{J}_{i}=-D_{i} \vec{\nabla} c_{i}
$$

is proportional to the concentration gradient

$$
\vec{\nabla} c_{i}=\operatorname{grad} c_{i}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) c_{i}=\left(\frac{\partial c_{i}}{\partial x}, \frac{\partial c_{i}}{\partial y}, \frac{\partial c_{i}}{\partial z}\right)
$$

For mass
concentration in $\mathrm{kg} \mathrm{m}^{-3}$, the flux is in $\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
$D_{i}=$ diffusion coefficient (diffusivity) of molecules i, unit: $\mathrm{m}^{2} \mathrm{~s}^{-1}$

Diffusion-microscopic view

Flux is given by the mean velocity of molecules \vec{v}_{i} :

$$
\vec{J}_{i}=\vec{v}_{i} c_{i}
$$

Thermodynamic force $=-$ grad of the chemical potential:

$$
\overrightarrow{\mathcal{F}}_{i}=-\vec{\nabla}\left(\frac{\mu_{i}}{N_{\mathrm{A}}}\right)=-\frac{k_{\mathrm{B}} T}{c_{i}} \vec{\nabla} c_{i}
$$

Difference of chemical potentials $=$ reversible work needed to move a particle (mole) from one state to another
where formula $\mu_{i}=\mu_{i}^{\ominus}+R T \ln \left(c_{i} / c^{\text {st }}\right)$ for infinity dillution was used.
Friction force acting against molecule moving by velocity \vec{v}_{i} through a medium is:

$$
\overrightarrow{\mathcal{F}}_{i}^{\mathrm{fr}}=-f_{i} \vec{v}_{i}
$$

where f_{i} is the friction coeficient. Both forces are in equilibrium:

$$
\overrightarrow{\mathcal{F}}_{i}^{\mathrm{fr}}+\mathcal{F}_{i}=0 \quad \text { i.e. } \quad-\overrightarrow{\mathcal{F}}_{i}^{\mathrm{fr}}=f_{i} \vec{v}_{i}=f_{i} \frac{\vec{J}_{i}}{c_{i}}=\mathcal{F}_{i}=-\frac{k_{\mathrm{B}} T}{c_{i}} \vec{\nabla} c_{i}
$$

On comparing with $\vec{J}_{i}=-D_{i} \vec{\nabla} c_{i}$ we get the Einstein equation: $D_{i}=\frac{k_{\mathrm{B}} T}{f_{i}}$
(also Einstein-Smoluchowski equation, example of a more general fluctuation-dissipation theorem)

Second Fick Law

Non-stationary phenomenon (c changes with time). The amount of substance increases within time $\mathrm{d} t$ in volume $\mathrm{d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$:

$$
\begin{aligned}
& \sum_{x, y, z}\left[J_{x}(x)-J_{x}(x+\mathrm{d} x)\right] \mathrm{d} y \mathrm{~d} z \\
& \left.=\sum_{x, y, z}\left[J_{x}(x)-\left\{J_{x}(x)+\frac{\partial J_{x}}{\partial x} \mathrm{~d} x\right\}\right)\right] \mathrm{d} y \mathrm{~d} z \\
& =-\sum_{x, y, z} \frac{\partial J_{x}}{\partial x} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=-\vec{\nabla} \cdot \vec{\jmath} \mathrm{d} V=-\vec{\nabla} \cdot(-D \vec{\nabla} c) \mathrm{d} V \\
& =D \vec{\nabla}^{2} c \mathrm{~d} V=D\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) c \mathrm{~d} V
\end{aligned}
$$

$$
\frac{\partial c_{i}}{\partial t}=D_{i} \nabla^{2} c_{i}
$$

This type of equation is called "equation of heat conduction". It is a parabolic partial differential equation

Diffusion and the Brownian motion

Instead of for $c(\vec{r}, t)$, let us solve the 2nd Fick law for the probability of finding a particle, starting from origin at $t=0$. We get the Gaussian distribution with half-width \propto

$$
\begin{aligned}
& \text { 1D: } c(x, t)=(4 \pi D t)^{-1 / 2} \exp \left(-\frac{x^{2}}{4 D t}\right) \\
& \text { 3D: } c(\vec{r}, t)=(4 \pi D t)^{-3 / 2} \exp \left(-\frac{r^{2}}{4 D t}\right)
\end{aligned}
$$

1D: $\left\langle x^{2}\right\rangle=2 D t$
3D: $\left\langle r^{2}\right\rangle=6 D t$

Brownian motion as a random walk

(Smoluchowski, Einstein)
within time Δt, a particle moves randomly

- by Δx with probability $1 / 2$
- by $-\Delta x$ with probability $1 / 2$

$$
\begin{aligned}
& \tau=0 \\
& \tau=\Delta \tau \\
& \tau=2 \Delta \tau \\
& \tau=3 \Delta \tau
\end{aligned}
$$

Using the central limit theorem:
in one step: $\operatorname{Var} x=\left\langle x^{2}\right\rangle=\Delta x^{2}$
in n steps (in time $t=n \Delta t$): $\operatorname{Var} x=n \Delta x^{2}$
\Rightarrow Gaussian normal distribution with $\sigma=\sqrt{n \Delta x^{2}}=\sqrt{t / \Delta t} \Delta x$:

$$
\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-x^{2} / 2 \sigma^{2}}=\frac{1}{\sqrt{2 \pi} t} \frac{\sqrt{\Delta t}}{\Delta x} \exp \left[-\frac{-x^{2}}{2 t} \frac{\Delta t}{\Delta x^{2}}\right]
$$

which is for $2 D=\Delta x^{2} / \Delta t$ the same as $c(x, t)$
NB: $\operatorname{Var} x \stackrel{\text { def. }}{=}\left\langle(x-\langle x\rangle)^{2}\right\rangle$, for $\langle x\rangle=0$, then $\operatorname{Var} x=\left\langle x^{2}\right\rangle$
Example. Calculate Var u, where u is a random number from interval $(-1,1)$

Einstein derivation

Random walk in one variable:
$\phi(\delta x)=$ probability density of a particle traveling by δx in time δt

$$
\int_{-\infty}^{+\infty} \phi(\delta x) \mathrm{d} \delta x=1, \quad \phi(-\delta x)=\phi(+\delta x)
$$

The development of the density (of probability) $\rho(x, t)$ within time δt :

$$
\begin{gathered}
\rho(x, t+\delta t)=\int_{-\infty}^{+\infty} \rho(x+\delta x, t) \phi(\delta x) \mathrm{d} \delta x \\
\rho(x+\delta x, t)=\rho(x, t)+\delta x \frac{\partial \rho}{\partial x}+\frac{\delta x^{2}}{2} \frac{\partial^{2} \rho}{\partial x^{2}}+\cdots
\end{gathered}
$$

On integration (odd terms cancel out, higher-order can be neglected):

$$
\begin{gathered}
\rho(x, t+\delta t) \approx \rho(x, t)+\delta t \frac{\partial \rho}{\partial t}=\rho(x, t)+\frac{\partial^{2} \rho}{\partial x^{2}} \int_{-\infty}^{+\infty} \frac{\delta x^{2}}{2} \phi(\delta x) \mathrm{d} \delta x \\
\frac{\partial \rho}{\partial t}=D \frac{\partial^{2} \rho}{\partial x^{2}}, \quad D=\frac{1}{\delta t} \int_{-\infty}^{+\infty} \frac{\delta x^{2}}{2} \phi(\delta x) \mathrm{d} \delta x \text { (fluctuation/2) }
\end{gathered}
$$

Langevin equation

A (colloid) particle in a viscous environment + random hits:

$$
\dot{x} \equiv \mathrm{~d} x / \mathrm{d} t
$$

$$
m \ddot{x}=f-f \dot{x}+X(t)
$$

$f=$ "normal" (conservative) force - for now $f=0$
$f=$ friction coefficient; spheres: $f=n \pi \eta R$ (Stokes), $n=4 \mid 6$ for ideally smooth|rough sphere
X is random force: does not depend on $t, x,\langle X(t)\rangle=0,\left\langle X(t) X\left(t^{\prime}\right)\right\rangle=A \delta\left(t-t^{\prime}\right)$
Multiply by x and rearrange:

$$
d^{2}\left(\frac{1}{2} x^{2}\right) / d t^{2}=d(\dot{x} x) / d t
$$

$$
\begin{aligned}
m \ddot{x} x & =-f \dot{x} x+X x \\
\frac{m}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}\left(x^{2}\right)-m \dot{x}^{2} & =-\frac{f}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(x^{2}\right)+X x
\end{aligned}
$$

Apply the canonical expectation value and $\langle X(t) x\rangle=0$:

$$
\frac{m}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}\left\langle x^{2}\right\rangle-k_{\mathrm{B}} T=-\frac{f}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\langle x^{2}\right\rangle
$$

$$
\frac{m}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}\left\langle x^{2}\right\rangle-k_{\mathrm{B}} T=-\frac{f}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\langle x^{2}\right\rangle
$$

This is a linear differential equation for $\frac{d}{d t}\left\langle x^{2}\right\rangle$, solvable by the separation of variables

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle x^{2}\right\rangle=\frac{2 k_{\mathrm{B}} T}{f}+C \mathrm{e}^{-f t / m} \stackrel{t \rightarrow \infty}{=} 2 \frac{k_{\mathrm{B}} T}{f}
$$

after integration

$$
\left\langle x^{2}\right\rangle=\frac{2 k_{\mathrm{B}} T}{f} t+\frac{C m}{f}\left[1-\mathrm{e}^{-f t / m}\right]
$$

At long t (neglecting the initial transient)

$$
\left\langle x^{2}\right\rangle=2 D t, \text { where } D=\frac{k_{\mathrm{B}} T}{f}
$$

This is the Einstein-Smoluchowski equation to predict D from f at given T However, in MD (for a stochastic thermostat) we rather need a formula for $X(t)$.

Fluctuation-dissipation theorem

Langevin equation for $f=0$:

$$
\ddot{x}=-\frac{f}{m} \dot{x}+\frac{1}{m} X(t)
$$

where $X(t)$ is the (Gaussian) random force: $\langle X(t)\rangle=0,\left\langle X(t) X\left(t^{\prime}\right)\right\rangle=A \delta\left(t-t^{\prime}\right), A=$?
Explicit solution for velocity - initial problem $\dot{\chi}(0)$ is relaxing exponentially to 0 , more impulses $X(t)$ are integrated:

$$
\dot{x}(t)=\dot{x}(0) \mathrm{e}^{-\frac{f}{m} t}+\frac{1}{m} \int_{0}^{t} X\left(t^{\prime}\right) \mathrm{e}^{-\frac{f}{m}\left(t-t^{\prime}\right)} \mathrm{d} t^{\prime} \stackrel{t \rightarrow \infty, \text { history }}{\Rightarrow} \dot{x}(0)=\frac{1}{m} \int_{0}^{\infty} X(-t) \mathrm{e}^{-\frac{f}{m} t} \mathrm{~d} t
$$

We want T ! The expected kinetic energy:

$$
\begin{gathered}
\left\langle m \dot{x}^{2}\right\rangle=m\left\langle\frac{1}{m} \int_{0}^{\infty} X(-t) \mathrm{e}^{-\frac{f}{m} t} \mathrm{~d} t \cdot \frac{1}{m} \int_{0}^{\infty} X\left(-t^{\prime}\right) \mathrm{e}^{-\frac{f}{m} t^{\prime}} \mathrm{d} t^{\prime}\right\rangle \\
=\frac{1}{m} \int_{0}^{\infty} \mathrm{d} t^{\prime} \int_{0}^{\infty} \mathrm{d} t A \delta\left(t-t^{\prime}\right) \mathrm{e}^{-\frac{f}{m}\left(t+t^{\prime}\right)}=\frac{1}{m} \int_{0}^{\infty} \mathrm{d} t A \mathrm{e}^{-\frac{f}{m} 2 t}=\frac{A}{2 f} \\
\left\langle m \dot{x}^{2}\right\rangle=k_{\mathrm{B}} T \Rightarrow \quad A=2 f k_{\mathrm{B}} T=\frac{2\left(k_{\mathrm{B}} T\right)^{2}}{D}
\end{gathered}
$$

Langevin thermostat and Brownian dynamics

In the simulation, $X(t)$ is replaced by an impulse $A \xi / \sqrt{h}$ every timestep h, where ξ is a random number with the normalized normal distribution.

As a thermostat: All degrees of freedom are sampled (also the momentum in the periodic b.c.)

- Momentum and center of mass not conserved

As Brownian dynamics: kinetic model of implicit solvent

Dissipative particle dynamics (DPD)

Good for coarse-grained models:
Groups of atoms (e.g., $4 \mathrm{H}_{2} \mathrm{O}$, bead in a polymer) are replaced by a superparticle. Its properties are adjusted (empirically, by a comparison with a full-atom simulation).
O Internal motion is approximated by random forces so that (for $t \rightarrow \infty$), both the Brownian motion and hydrodynamic behavior is correct; particularly, the momentum is conserved.

Dissipative particle dynamics (DPD)

Equations of motion

$$
m \ddot{\vec{r}}_{i}=\sum_{j \neq i}\left(\vec{f}_{i j}^{\mathrm{C}}+\vec{f}_{i j}^{\mathrm{D}}+\vec{f}_{i j}^{\mathrm{R}}\right)
$$

where $\vec{f}_{i j}^{C}$ is a Conservative pair force.
Dissipation of velocity in the direction of $\hat{r}_{i j}$ (\Rightarrow CoM conserved):

$$
\vec{f}_{i j}^{\mathrm{D}}=-f \omega^{\mathrm{D}}\left(r_{i j}\right)\left(\vec{v}_{i j} \cdot \hat{r}_{i j}\right) \hat{r}_{i j}, \quad \hat{r}_{i j}=\frac{\vec{r}_{i j}}{r_{i j}}
$$

Random force also acts in the direction of $\hat{r}_{i j}$:

$$
\vec{f}_{i j}^{\mathrm{R}}=\sigma \omega^{\mathrm{R}}\left(r_{i j}\right) \xi \hat{r}_{i j}
$$

The "fluctuation-dissipation theorem" is:

$$
\omega^{\mathrm{D}}=\left[\omega^{\mathrm{R}}\right]^{2}, \quad \sigma=2 k_{\mathrm{B}} T f
$$

$\xi=\xi(t)=$ normalized Gaussian force, $\langle\xi(0) \xi(t)\rangle=\delta(t)$
$\omega\left(\right.$ or $\left.\omega_{i j}\right)=$ short-ranged, e.g., $\omega^{R}(r)=1-r / r_{\text {cutoff }}$
$r_{\text {cutoff }} \approx$ the typical size of coarse-graining

Kinetic quantities

We are interested in coefficients of (linear) response to a (small) perturbation:

$$
\begin{gathered}
J_{\text {compound } A}=-D \vec{\nabla} c_{A} \\
J_{\text {heat }}=-\overrightarrow{f \nabla} T \\
\eta \frac{\partial v_{x}}{\partial y}=P_{x y}
\end{gathered}
$$

Methods:

- EMD (equilibrium molecular dynamics), simulation in equilibrium
e.g., $D_{i}=\lim _{t \rightarrow \infty}\left\langle\left[r_{i}(t)-r_{i}(0)\right]^{2}\right\rangle / 6 t$

NEMD (non-equilibrium molecular dynamics), simulation under an external force or perturbation
a perturbation with energy $\Delta \mathcal{H}, \mathcal{H}^{\prime}=\mathcal{H}+\Delta \mathcal{H}$ added

- we measure quantitity B in the canonical ensemble (with perturbation)

$$
\beta=\frac{1}{k_{\mathrm{B}} T}
$$

$$
\begin{aligned}
\langle B\rangle^{\prime} & =\frac{\int B \exp \left(-\beta \mathcal{H}^{\prime}\right) \mathrm{d} p \mathrm{~d} q}{\int \exp \left(-\beta \mathcal{H}^{\prime}\right) \mathrm{dpd} q} \approx \frac{\int B(t) \exp (-\beta \mathcal{H})(1-\beta \Delta \mathcal{H}) \mathrm{d} p \mathrm{~d} q}{\int \exp (-\beta \mathcal{H})(1-\beta \Delta \mathcal{H}) \mathrm{dpd} q} \\
& =\frac{\langle B\rangle-\beta\langle B \Delta \mathcal{H}\rangle}{1-\beta\langle\Delta \mathcal{H}\rangle} \approx(\langle B\rangle-\beta\langle B \Delta \mathcal{H}\rangle)(1+\beta\langle\Delta \mathcal{H}\rangle) \approx\langle B\rangle-\beta(\langle\Delta \mathcal{H} B\rangle-\langle\Delta \mathcal{H}\rangle\langle B\rangle) \\
& =\langle B\rangle-\beta \operatorname{Cov}(B, \Delta \mathcal{H}) \stackrel{\langle B\rangle=0}{=}-\beta\langle B \Delta \mathcal{H}\rangle
\end{aligned}
$$

Example. Classical harmonic oscillator $\mathcal{H}=\frac{K}{2} \chi^{2}$, perturbation $\Delta \mathcal{H}=g \chi$, we measure $B=\chi$:

$$
\langle x\rangle=-\beta\langle\Delta \mathcal{H} x\rangle=-\beta\left\langle g x^{2}\right\rangle=-\beta g \frac{\int x^{2} \exp \left(-\beta \frac{K}{2} x^{2}\right) \mathrm{d} x}{\int \exp \left(-\beta \frac{K}{2} x^{2}\right) \mathrm{d} x}=-\frac{g}{K}
$$

which is correct, because the potential minimum was actually only shifted:

$$
\mathcal{H}^{\prime}=\frac{K}{2} x^{2}+g x=\frac{K}{2}\left(x+\frac{g}{K}\right)^{2}+\text { const }
$$

Diffusivity from MSD in 1D (Einstein):
MSD = mean squared

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =2 D t(t \rightarrow \infty) \\
D & =\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\langle[x(t)-x(0)]^{2}\right\rangle=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\langle[x(0)-x(-t)]^{2}\right\rangle
\end{aligned}
$$

$$
=\langle[x(0)-x(-t)] \dot{x}(-t)\rangle=\langle[x(t)-x(0)] \dot{x}(0)\rangle=\left\langle\left[\int_{0}^{t} \dot{x}\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right] \dot{x}(0)\right\rangle
$$

$$
=\left\langle\int_{0}^{t} \dot{x}(0) \dot{x}\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right\rangle
$$

We are interested in the limit $t \rightarrow \infty$:

$$
D=\int_{0}^{\infty}\langle\dot{x}(0) \dot{x}(t)\rangle \mathrm{d} t
$$

This is a simple example of the Green-Kubo formula

Interpretation: The longer a velocity at time t is (positively) correlated with the velocity at time 0 , the further the particle travels, and the diffusivity is higher.

Linear response theory: principles

We work in the Hamiltonian formalism (positions and momenta), using distribution functions (in $q, p)$.

At time $t=0$ an impuls changes the value of the Hamiltonian by $\Delta \mathcal{H}=\mathcal{H}_{t>0}-\mathcal{H}_{t<0}$.
O In case of a time-dependent perturbation, we integrate over time.
Example of a result for diffusion (Green-Kubova formula in 3D):

$$
D=\frac{1}{3} \int_{0}^{\infty}\left\langle\dot{\vec{r}}_{i}(t) \cdot \dot{\vec{r}}_{i}(0)\right\rangle \mathrm{d} t
$$

Another example - viscosity:

$$
\eta=\frac{V}{k_{\mathrm{B}} T} \int_{0}^{\infty}<P_{x y}(0) P_{x y}(t)>\mathrm{d} t
$$

where $P_{x y}$ are components of the pressure tensor. No corresponding Einstein relation exists!

Linear response theory: time-dependent perturbation

Hamilton's equations:

$$
\dot{q}=\frac{\partial \mathcal{H}}{\partial p} \equiv \frac{p}{m}, \quad \dot{p}=-\frac{\partial \mathcal{H}}{\partial q} \equiv f
$$

Perturbation (impuls) at time $t=0$:

$$
\dot{q}=\frac{p}{m}-A_{p} \delta(t), \quad \dot{p}=f+A_{q} \delta(t)
$$

where $A_{p}=\frac{\partial A}{\partial p}$ and $A_{q}=\frac{\partial A}{\partial q}$ for some $A=A(q, p)$.
Example: $A=\mathcal{F}_{1} \chi_{1}$ čili $A_{x_{1}}=\mathcal{F}_{1}, A_{q}=0$ for $q \neq x_{1}$ a $A_{p}=0$.

$$
\dot{p}_{1, x}=f_{1, x}+\mathcal{F}_{1} \delta(t)
$$

A has unit energyxtime ($\dot{A}(0)$ is energy jump), \mathcal{F}_{1} has unit force \times time $=$ momentum.
Stepwise change of the total energy by:

$$
\begin{aligned}
\mathcal{H}_{t>0}-\mathcal{H}_{t<0} & =\mathcal{H}\left(q-A_{p}, p+A_{q}\right)-\mathcal{H}(q, p) \\
& =\sum\left(-\frac{\partial \mathcal{H}}{\partial q} A_{p}+\frac{\partial \mathcal{H}}{\partial p} A_{q}\right)=\sum\left(\dot{p} \cdot A_{p}+\dot{q} \cdot A_{q}\right) \equiv \dot{A}(0)
\end{aligned}
$$

Example: $\mathcal{H}_{t>0}-\mathcal{H}_{t<0}=\mathcal{F}_{1} \dot{\chi}_{1}(0) \begin{cases}>0 & \text { for a hit in the direction of particle flight, } \\ <0 & \text { for a hit against the direction of particle flight }\end{cases}$

A perturbation (leading to a jump in \mathcal{H}) will be turned off (using a δ-impuls) at $t=0$. The system is canonical for $t<0$, but I will measure (run simulation) using a non-perturbed state $\mathcal{H}=\mathcal{H}_{t>0}$.

Let us measure quantity $B,\langle B\rangle=0$. The response:

$$
\langle B(t)\rangle_{A \delta(t)}=\frac{\int B(t) \exp \left[-\beta \mathcal{H}_{t>0}+\beta \dot{A}(0)\right] \mathrm{d} p \mathrm{~d} q}{\int \exp \left[-\beta \mathcal{H}_{t>0}+\beta \dot{A}(0)\right] \mathrm{d} p \mathrm{~d} q}
$$

By expanding for small $\beta \dot{A}(0)$ we get

$$
\langle B(t)\rangle_{A \delta(t)}=\beta\langle\dot{A}(0) B(t)\rangle_{t>0}
$$

where the expectation value right is over the final system with energy $\mathcal{H}_{t>0}$ (canonical unperturbed)

Example: $B=\dot{\chi}_{1}\left(s \mathcal{H}_{t>0}-\mathcal{H}_{t<0}=\mathcal{F}_{1} \dot{X}_{1}(0)\right.$):

$$
\left\langle\dot{x}_{1}(t)\right\rangle_{A \delta(t)}=\mathcal{F}_{1} \beta\left\langle\dot{x}_{1}(0) \dot{x}_{1}(t)\right\rangle
$$

velocity relaxation folowing a hit \propto
time correlation function velocity-velocity

Linear response theory: Green-Kubo

Long-time perturbation: $A(t)=$ constant for $t>0$. Limit $t \rightarrow \infty$:

$$
\langle B\rangle_{A}=\beta \int_{0}^{\infty}\langle\dot{A}(0) B(t)\rangle \mathrm{d} t
$$

E.g., system in an electric field: dipolar relaxation/electric conductivity (heats up!)

Example:

$$
\begin{array}{r}
\qquad \dot{p}_{1, x}=f_{1, x}+\mathcal{F}_{1} \Rightarrow\left\langle\dot{x}_{1}\right\rangle_{A}=\mathcal{F}_{1} \beta \int_{0}^{\infty}\left\langle\dot{x}_{1}(0) \dot{x}_{1}(t)\right\rangle \\
\text { Einstein-Smoluchowski : } \beta D_{i}=\frac{v_{i}}{\mathcal{F}} i \Rightarrow D_{1}=\int_{0}^{\infty}\left\langle\dot{x}_{1}(0) \dot{x}_{1}(t)\right\rangle \mathrm{d} t
\end{array}
$$

For $\mathcal{F}_{1}=E_{\chi} q_{1}$ we get the ionic mobility

$$
u_{1}=\frac{\left\langle\dot{x}_{1}\right\rangle}{E_{x}}=\frac{q_{1} D_{1}}{k_{\mathrm{B}} T}
$$

and after multiplicating by a charge per mole we get the Nernst-Einstein equation for the limiting molar conductivity

$$
\Lambda_{1}^{\infty}=\frac{\left\langle\dot{x} q_{1} N_{A}\right\rangle}{E_{X}}=\frac{q_{1}^{2} D_{1}}{R T}
$$

Green-Kubo \rightarrow Einstein

Einstein:

$$
\begin{gathered}
k=\int_{0}^{\infty}\langle\dot{X}(0) \dot{X}(t)\rangle \mathrm{d} t \\
\int_{0}^{t}\left\langle\dot{X}(0) \dot{X}\left(t^{\prime}\right)\right\rangle \mathrm{d} t^{\prime}=\left[\left\langle\dot{X}(0) X\left(t^{\prime}\right)\right\rangle\right]_{0}^{t}
\end{gathered}
$$

interchange $t \rightarrow-t($ NB: $\dot{X}(0) \rightarrow-\dot{X}(0))$ and shift by $t \Rightarrow$

$$
\int_{0}^{t}\left\langle\dot{x}(0) \dot{X}\left(t^{\prime}\right)\right\rangle \mathrm{d} t^{\prime}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\langle[x(t)-x(0)]^{2}\right\rangle
$$

In the limit $t \rightarrow \infty$ then

$$
2 t \kappa=\left\langle[X(t)-X(0)]^{2}\right\rangle
$$

E.g., for the diffusion:

Green-Kubo $D=\frac{1}{3} \int_{0}^{\infty}\left\langle\dot{\vec{r}}_{i}(t) \cdot \dot{\vec{r}}_{i}(0)\right\rangle \mathrm{d} t$
cf. NEMD: apply force to a particle while cooling, $D_{i}=k_{\mathrm{B}} T\left\langle v_{i}\right\rangle / \mathcal{F}_{i}$, calculate limit $\mathcal{F}_{i} \rightarrow 0$
Einstein $\left.2 t D=\frac{1}{3}\langle | \vec{r}_{i}(t)-\left.\vec{r}_{i}(0)\right|^{2}\right\rangle$

Conductivity

O NEMD (non-equilibrium molecular dynamics), electric field E is turned on (in periodic b.c.). The current density os measured:

$$
\vec{j}=\kappa \vec{E}
$$

Cooling is needed (thermostat) and extrapolation $\vec{E} \rightarrow 0$

- Green-Kubo:

$$
\kappa=\frac{v}{k_{\mathrm{B}} T} \int_{0}^{\infty}\langle\vec{j}(t) \cdot \vec{j}(0)\rangle
$$

O Einstein

$$
\kappa=\lim _{t \rightarrow \infty} \frac{\mathrm{~d}}{\mathrm{~d} t} \frac{1}{6 k_{\mathrm{B}} T V}\left\langle\left\{\sum_{i} q_{i}\left[\vec{r}_{i}(t)-\vec{r}_{i}(0)\right]\right\}^{2}\right\rangle
$$

NB: No Einstein relation for viscosity is known

Using the Einstein formula

Conductivity of molten NaCl using EMD:

Not so easy: corrections

Pure liquid in 3D:

$$
\begin{gathered}
D=D_{\mathrm{PBC}}+\frac{2.873 k_{\mathrm{B}} T}{6 \pi \eta L} \\
\frac{D_{\mathrm{PBC}}-D}{D}=-\frac{2.873 R}{L} \propto \mathcal{O}\left(N^{-1 / 3}\right)
\end{gathered}
$$

where $R=k_{\mathrm{B}} T / 6 \pi \eta D$
pure fluid: determine viscosity and include corrections
generally: calculate for several L and extrapolate
B. Dünweg and K. Kremer, J. Chem. Phys., 1993, 99, 6093-6997;
I.-C. Yeh and G. Hummer, J. Phys. Chem. B, 2004, 108, 15873-15879.

Not so easy：corrections

Ar
ヘ＾

EvdW＝－0．2380684 kcal／mol，RvdW＝1．910992 AA
$\mathrm{T}=143.76$（ $\mathrm{T} *=1.2$ ）
rho＝1344．2582 kg／m3（rho＊＝0．8）
viscosity（Green－Kubo）：eta＝0．00017543 Pa．s D is in $1 \mathrm{e}-9 \mathrm{~m}$＾2／s
Dcorr $=$ Dsim $+2.837 * \mathrm{k} * \mathrm{~T} /(6 * \mathrm{pi} * \mathrm{eta}$ LL）
$==================================$
N method tau／ps Dsim stderr Dcorr

250	B	0.2	4.217	0.019	4.954
250	B	1	4.229	0.022	4.966
250	N	0.2	4.210	0.021	4.947
250	N	1	4.220	0.022	4.957
2000	B	0.2	4.560	0.012	4.928
2000	B	1	4.567	0.011	4.935
2000	N	0.2	4.568	0.013	4.936
2000	N	1	4.578	0.010	4.947

＝－＝ー＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
2000：L＝46．21296 AA
250：L＝23．10648 AA
$\mathrm{N}=$ Nose＋Gear
$B=$ Berendsen（＋Shake）

SPCE water
ヘヘヘヘヘヘヘヘヘヘ
T＝298．15 K

N me	hod	au	Dsim	std	Dcorr
250	B	1	2.30	0.06	2.84
250	B	1	2.26	0.07	2.80
2000	B	1	2.49	0.10	2.76
2000	B	1	2.56	0.09	2.83

```
viscosity (N=250): 0.00058(6) Pa.s
L=19.575161 AA (N=250)
```

NB：later results，N＝300
viscosity＝0．00073（4）Pa．s
Dsim＝2．390（8），$D=2.80(2)$［1e－9 m＾2／s］
［J．Malohlava（University of Ostrava）and J．Kolafa （2010），unpublished results．］

NEMD

NEMD $=$ Non-equilibrium molecular dynamics

- as a real experiment (turn on a field, gradient of temperature, ...)
problem: linearity (extrapolation to zero perturbation)
problem: cooling needed
viscosity:
- SLODD (Lees-Edwards)
- transfer of momentum
- cos-modulated force

EMD viscosity

Green-Kubo:

$$
\eta_{a b}=\frac{V}{k T} \int_{0}^{\infty}\left\langle P_{a b}(t) P_{a b}(0)\right\rangle \mathrm{d} t, a \neq b
$$

$\eta_{a b}=\eta_{b a}$
Curiously, also diagonal elements can be used*:

$$
\eta_{a a}=\frac{3}{4} \frac{V}{k T} \int_{0}^{\infty}\left\langle P_{a a}^{\prime}(t) P_{a a}^{\prime}(0)\right\rangle \mathrm{d} t, \quad P_{a a}^{\prime}=P_{a a}-\frac{1}{3} \sum_{b=x, y, z} P_{b b}
$$

It is not so accurate. Recommended mixing:

$$
\eta=\frac{3}{5} \eta_{\text {off }}+\frac{2}{5} \eta_{\text {trless }}, \quad \eta_{\text {off }}=\frac{1}{3} \sum_{a b=x y, y z, z x} \eta_{a b}, \quad \eta_{\text {trless }}=\frac{1}{3} \sum_{a} \eta_{a \alpha} .
$$

\oplus : more accurate than NEMD

- : $P_{a b}$ needed (sometimes problematic or not available)
*Daivis P.J., Evans D.J.: Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane, J. Chem. Phys. 100, 541 (1993)

NEMD viscosity
elongated box (e.g., $L_{x}: L_{y}: L_{z}=1: 1: 3$)
modulated force
laminar flow:
pressure-induced in a pipe: Poiseuille drag-induced: Couette

$$
\vec{f}_{i}=m_{i} C_{f} \cos \left(\frac{2 \pi z_{i}}{L_{z}}\right) \vec{n}, \vec{n}=(1,0,0) \text { nebo } \frac{(1,1,0)}{\sqrt{2}}
$$

correction so that total force $=0$
Navier-Stokes equations for the Poiseuille flow of incompressible fluid:

$$
\begin{gathered}
\eta \nabla^{2} \vec{v}+\vec{f}=0 \\
\vec{f}=\rho C_{f}\left(\cos \frac{2 \pi z}{L_{z}}\right) \vec{n}
\end{gathered}
$$

where $\rho=\sum_{i} m_{i} / V$. Solution:

$$
\vec{v}=\frac{C_{f} \rho L_{z}^{2}}{4 \pi^{2} \eta} \cos \left(\frac{2 \pi z}{L_{z}}\right) \vec{n}
$$

Thus, η is calculated from the velocity profile, $\int_{0}^{L_{z}} \vec{v}(z) \cdot \vec{n} \cos \left(\frac{2 \pi z}{L_{z}}\right) \mathrm{d} z$

NEMD viscosity

Dissipation of energy:

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\frac{1}{2} \int \eta(\nabla v)^{2} \mathrm{~d} V=\frac{V}{\eta}\left(\frac{C_{f} \rho L_{z}}{4 \pi}\right)^{2}
$$

One can also determine η from the dissipation (less accurate)
one can estimate how the cooling constant of a thermostat (e.g., Berendsen)
extrapolation $C_{f} \rightarrow 0$ needed

- less accurate than Green-Kubo
\oplus pressure tensor not needed

