## Pressure of ideal gas from the kinetic theory I

Molecule $=$ point mass
$N$ molecules of masses $m_{i}, i=1, . ., N$, in a cube of edge $L$
Velocity of molecule $i$ is $\vec{v}_{i}=\left(v_{i, x}, v_{i, y}, v_{i, z}\right)$
After elastic reflection: $v_{i, x} \rightarrow-v_{i, x}$
A molecule hits the same wall again after time $t=2 L / v_{i, x}$
Force $=$ change of momentum in a time unit
Momentum $\vec{P}=m \vec{v}$
Change of momentum $=\Delta P_{x}=2 m_{i} v_{i, x}$
Averaged force caused by impacts of one molecule:

$$
F_{i, x}=\frac{\Delta P_{x}}{t}=\frac{2 m_{i} v_{i, x}}{2 L / v_{i, x}}=\frac{m_{i} v_{i, x}^{2}}{L}
$$

Pressure $=$ force of all $N$ molecules, divided by the area

$$
p=\frac{\sum_{i=1}^{N} F_{i, x}}{L^{2}}=\frac{\sum_{i=1}^{N} m_{i} v_{i, x}^{2}}{L^{3}}
$$

Kinetic energy of one molecule

$$
\frac{1}{2} m_{i}\left|\vec{v}_{i}\right|^{2} \equiv \frac{1}{2} m_{i} v_{i}^{2}=\frac{1}{2} m_{i}\left(v_{i, x}^{2}+v_{i, y}^{2}+v_{i, z}^{2}\right)
$$

## Pressure of ideal gas from the kinetic theory II

Kinetic energy of gas = internal energy (monoatomic gas)

$$
\Rightarrow
$$

$$
\begin{gathered}
E_{\mathrm{kin}}=\frac{1}{2} \sum_{i=1}^{N} m_{i} v_{i}^{2}=\frac{3}{2} \sum_{i=1}^{N} m_{i} v_{i, x}^{2} \\
p=\frac{\sum_{i=1}^{N} m_{i} v_{i, x}^{2}}{L^{3}}=\frac{2}{3} \frac{E_{\mathrm{kin}}}{V}
\end{gathered}
$$

In other words

$$
p V=\frac{2}{3} E_{\mathrm{kin}} \stackrel{!}{=} n R T
$$

Temperature is a measure of kinetic energy
Assumptions:
Pressure is a result of averaged impacts of molecules
We used the classical mechanics
Quantum effects at low $T: p<n R T / V$ for bosons, $p>n R T / V$ for fermions

## Consequences

Equation of state:

$$
N=n N_{\mathrm{A}}
$$

$$
p V=n R T=N k_{\mathrm{B}} T
$$

also "thermal equation of state"

## Energy

$$
U \equiv E_{\mathrm{kin}}=\frac{3 n}{2} R T=\frac{3 N}{2} k_{\mathrm{B}} T
$$

"caloric equation of state" / "internal energy" where the Boltzmann constant is

$$
k_{\mathrm{B}}=\frac{R}{N_{\mathrm{A}}}
$$

$$
\begin{aligned}
& \text { Defined since May 5, 2019: } \\
& k_{\mathrm{B}}=R / N_{\mathrm{A}}=1.380649 \times 10^{-23} \mathrm{~J}^{-1} \\
& N_{\mathrm{A}}=6.02214076 \times 10^{23} \mathrm{~mol}^{-1} \\
& \text { hence exactly } \\
& R=8.31446261815324 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

## Overview of classical thermodynamics



## Equipartition principle

Expression $E_{\text {kin }}$ is composed of $f=3 N$ terms of the form $\frac{1}{2} m_{i} v_{i, k}^{2}$, where $k \in\{x, y, z\}$.

$$
p V=N k_{\mathrm{B}} T=\frac{f}{3} k_{\mathrm{B}} T=\frac{2}{3} E_{\mathrm{kin}}
$$

$f=$ number of mechanical degrees of freedom.
Average energy contribution per one degree of freedom:

$$
\frac{E_{\text {kin }}}{f}=\frac{1}{2} k_{\mathrm{B}} T
$$

## Generalization: any quadratic function in the Hamiltonian

Heat capacity in molar units $\left(N=N_{\mathrm{A}}, f=3 N_{\mathrm{A}}\right)$ :

$$
C_{V \mathrm{~m}}=\left(\frac{\partial U_{\mathrm{m}}}{\partial T}\right)_{V}=\left(\frac{\partial E_{\mathrm{kin}, \mathrm{~m}}}{\partial T}\right)_{V}=\frac{\frac{1}{2} f k_{\mathrm{B}} T}{N_{\mathrm{A}} T}=\frac{3}{2} R
$$

Extension:
Linear molecules: +2 rotations, $C_{V m}=\frac{5}{2} R$ (but: hydrogen)
Nonlinear molecules: +3 rotations, $C_{V m}=3 R$
(Vibrations classically: +2 for each (incl. Enot $)$ - imprecise!)

## Equipartition principle - example

Calculate $C_{p m}$ for nitrogen and water vapor.
$\mathrm{N}_{2}: C_{V \mathrm{~m}}=\frac{5}{2} R, C_{p \mathrm{~m}}=C_{V \mathrm{~m}}+R=3.5 R=29.10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2} \mathrm{O}: C_{V m}=\frac{6}{2} R, C_{p m}=C_{V m}+R=4 R=33.26 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Experiment: $\mathrm{N}_{2}(300 \mathrm{~K}): 29.12 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~K}): 35.22 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Isobaric heat capacity of water vapor $\rightarrow \rightarrow \rightarrow$


## Microstate, macrostate, ensemble, trajectory

microstate (state, configuration) = instantaneous "snapshot" at given time quantum description: state $=$ eigenstate (wave function $\psi$ ) classical description: state $=$ positions and velocities* of all particles

$$
\text { at given time, } \psi=\left(\vec{r}_{1}, \ldots, \vec{r}_{N}, \vec{v}_{1} \ldots, \vec{v}_{N}\right)
$$

macrostate $=$ averaged action of all microstates

- ensemble $=$ set of all microstates with known probabilities $\boldsymbol{\pi}(\psi)$trajectory $=$ record of a time development of a microstate

*in fact, momenta - more later. There are $\infty$ states, hence we work with their probability density $\rho(\psi) \equiv$ $\rho\left(\vec{r}_{1}, \ldots, \vec{r}_{N}, \vec{p}_{1}, \ldots, \vec{p}_{N}\right)$.


## Microcanonical ensemble and ergodic hypothesis

Microcanonical ensemble = ensemble of microstates in an isolated system (which has developed in time for a long time)
Also denoted as NVE ( $N=$ const, $V=$ const, $E=$ const)
Ergodic hypothesis (quantum): $\boldsymbol{\pi}\left(\psi_{i}\right)=$ const $=\frac{1}{W} \quad(W=\#$ of states $)$
for me:
e NVE ensemble
r smaller balls
c trajectory

Orgodic hypothesis (classical):
trajectory covers the space ${ }^{\dagger}$ with uniform probability

## In other words:

Time average (over a trajectory)

$$
=\langle X\rangle_{t}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} X(t) \mathrm{d} t
$$

= ensemble average

$$
=\langle X\rangle=\frac{1}{W} \sum_{\psi} X(\psi)
$$

for any quantity $X=X(\psi)$, where $\psi=\psi(t)$
$\dagger$ namely: the phase state of $\left\{\left(\vec{r}_{1}, \ldots, \vec{r}_{N}, \vec{p}_{1} \ldots, \vec{p}_{N}\right)\right\}$


## Mean value in the microcanonical ensemble

$$
\langle x\rangle=\frac{\sum_{\psi} x(\psi)}{W}
$$

Example. You win $\$ 5$ if you throw $\mathfrak{B}$ on a dice, you loose $\$ 1$ if you throw anything else. What is your mean (expected) win in this game?

$$
\langle\text { win }\rangle=\frac{-1-1-1-1-1+5}{6}=0
$$

Whole thermodynamics can be built on the top of the microcanonical ensemble. But for $T=$ const it is much easier.

NVT ( $N=$ const, $V=$ const, $T=$ const)
Ergodic hypothesis: $\boldsymbol{\pi}(\psi)=\boldsymbol{\pi}(\mathcal{E}(\psi))$
$E_{3} \Psi \psi_{9}\left|\psi_{10}\right| \psi_{11}\left|\psi_{12}\right| \psi_{13}\left|\psi_{14}\right| \psi_{15}$
$E_{\mathrm{A}}+E_{\mathrm{B}}=E_{\mathrm{A}+\mathrm{B}}$ (do not interact) $\pi(E)=$ probability of any state with energy $E$

$$
\begin{aligned}
& \boldsymbol{\pi}\left(E_{\mathrm{A}}\right) \cdot \boldsymbol{\pi}\left(E_{\mathrm{B}}\right)=\boldsymbol{\pi}\left(E_{\mathrm{A}+\mathrm{B}}\right)=\boldsymbol{\pi}\left(E_{\mathrm{A}}+E_{\mathrm{B}}\right) \\
& \Rightarrow \boldsymbol{\pi}(E)=\mathrm{const}^{E}=\exp \left(\alpha_{i}-\beta E\right)
\end{aligned}
$$

Oth Law $\Rightarrow \beta$ is empirical temperature
$\alpha_{i}$ is system-dependent normalizing const. so that $\sum_{\psi} \pi(\psi)=1$
Determining $\beta$ : monoatomic perfect gas, per 1 atom $U_{1}=\frac{3}{2} k_{B} T$

$$
\left\langle U_{1}\right\rangle=\frac{\sum_{\psi} \mathcal{E}(\psi) \boldsymbol{\pi}(\mathcal{E}(\psi))}{\sum_{\psi} \boldsymbol{\pi}(\mathcal{E}(\psi))}=\frac{\int \frac{1}{2} m \vec{v}^{2} \boldsymbol{\pi}\left(\frac{1}{2} m \vec{v}^{2}\right) \mathrm{d} \vec{v}}{\int \boldsymbol{\pi}\left(\frac{1}{2} m \vec{v}^{2}\right) \mathrm{d} \vec{v}}
$$

Evaluation gives: $\left\langle U_{1}\right\rangle=\frac{3}{2} \frac{1}{\beta} \Rightarrow \beta=\frac{1}{k_{B} T}$

$$
\begin{gathered}
\left\langle U_{1}\right\rangle=\frac{\int_{R^{3}} \frac{1}{2} m \vec{v}^{2} \pi\left(\frac{1}{2} m \vec{v}^{2}\right) \mathrm{d} \vec{v}}{\int_{R^{3}} \pi\left(\frac{1}{2} m \vec{v}^{2}\right) \mathrm{d} \vec{v}} \\
=\frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x} \mathrm{e}^{-\frac{1}{2} \beta m v_{y}^{2}} \mathrm{~d} v_{y} \mathrm{e}^{-\frac{1}{2} \beta m v_{z}^{2}} \mathrm{~d} v_{z}}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x} \mathrm{e}^{-\frac{1}{2} \beta m v_{y}^{2}} \mathrm{~d} v_{y} \mathrm{e}^{-\frac{1}{2} \beta m v_{z}^{2}} \mathrm{~d} v_{z}} \\
=3 \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} m v_{x}^{2} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x} \mathrm{e}^{-\frac{1}{2} \beta m v_{y}^{2}} \mathrm{~d} v_{y} \mathrm{e}^{-\frac{1}{2} \beta m v_{z}^{2}} \mathrm{~d} v_{z}}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x} \mathrm{e}^{-\frac{1}{2} \beta m v_{y}^{2}} \mathrm{~d} v_{y} \mathrm{e}^{-\frac{1}{2} \beta m v_{z}^{2}} \mathrm{~d} v_{z}} \\
=3 \frac{\int_{-\infty}^{\infty} \frac{1}{2} m v_{x}^{2} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x}}{\int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x}}=3 \frac{\frac{1}{2} m \frac{1}{2 \frac{1}{2} \beta m} \sqrt{\frac{\pi}{2} \beta m}}{\sqrt{\frac{\pi}{\frac{1}{2} \beta m}}}=\frac{3}{2} \frac{1}{\beta}
\end{gathered}
$$

We have used the Gauss integral: $\int_{-\infty}^{\infty} \mathrm{e}^{-a x^{2}} \mathrm{~d} x=\sqrt{\frac{\pi}{a}}$ (where $a=\frac{1}{2} \beta m$ ) and its derivate by parameter $a$ :

$$
\int_{-\infty}^{\infty} x^{2} \mathrm{e}^{-a x^{2}} \mathrm{~d} x=-\frac{\mathrm{d}}{\mathrm{~d} a} \int_{-\infty}^{\infty} \mathrm{e}^{-a x^{2}} \mathrm{~d} x=-\frac{\mathrm{d}}{\mathrm{~d} a} \sqrt{\frac{\pi}{a}}=\frac{1}{2 a} \sqrt{\frac{\pi}{a}}
$$

$$
\frac{\int_{-\infty}^{\infty} \frac{1}{2} m v_{x}^{2} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x}}{\int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x}}=\frac{1}{2 \beta}
$$

```
Eile Edit View Insert Format Table Drawing Plot Spreadsheet Iools Window Help
```




```
    > int(1/2*m*(vx^2)*exp(-beta*m*vx^2/2), vx=-infinity..infinity) /
        int(exp(-1/2*beta*m*(vx^2)), vx=-infinity..infinity)
        assuming m>0,beta>0;
            \frac{1}{2\beta}

\section*{Mean value in the canonical ensemble}

Generalization of the mean value (= expectation value):
\[
\langle X\rangle=\sum_{\psi} X(\psi) \pi(\mathcal{E}(\psi))=\sum_{\psi} X(\psi) \mathrm{e}^{\alpha-\beta \mathcal{E}(\psi)}=\frac{\sum_{\psi} X(\psi) \mathrm{e}^{-\beta \mathcal{E}(\psi)}}{\sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)}}
\]

Boltzmann factor: \(\mathrm{e}^{-\mathcal{E}(\psi) / k_{B} T}\)

Example. You win \(\$ 5\) if you throw \(\mathfrak{B}\) on a dice, you loose \(\$ 1\) if you throw anything else. However,
 0.2 and \(\boldsymbol{\pi}(\odot)=\boldsymbol{\pi}(\odot)=\boldsymbol{\pi}(\odot)=\boldsymbol{\pi}(\because)=\boldsymbol{\pi}(\because)=0.16\). What is your mean (expected) win in this game?
Note: \(5 \times 0.16+0.2=1\) (normalized)
\[
\langle\operatorname{win}\rangle=-1 \cdot 0.16-1 \cdot 0.16-1 \cdot 0.16-1 \cdot 0.16-1 \cdot 0.16+5 \cdot 0.2=0.2
\]

\section*{Boltzmann probability}
... or the first half of statistical thermodynamics.
Probability of finding a state with energy \(\mathcal{E}\) is proportional to
\[
\boldsymbol{\pi}(\mathcal{E})=\text { const } \cdot \exp \left[-\frac{\mathcal{E}(\psi)}{k_{\mathrm{B}} T}\right]=\text { const } \cdot \exp \left(-\frac{E_{\mathrm{m}}}{R T}\right)
\]

\section*{Examples:}
a reacting system can overcome the activation energy \(E^{*}\) with probability \(\sim \exp \left(-\frac{E^{*}}{R T}\right) \Rightarrow\) Arrhenius formula
\[
k=A \exp \left(-\frac{E^{*}}{R T}\right)
\]

O the energy needed for transfering a molecule from liquid to gas is \(\Delta_{\mathrm{vap}} H_{\mathrm{m}}\) (per mole), probability of finding a molecule in vapor is proportional to \(\sim \exp \left(-\frac{\Delta_{\mathrm{vap}} H_{\mathrm{m}}}{R T}\right) \Rightarrow\) Clausius-Clapeyron equation (integrated)
\[
p=p_{0} \exp \left[-\frac{\Delta_{\mathrm{vap}} H_{\mathrm{m}}}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right]=\text { const } \cdot \exp \left(-\frac{\Delta_{\mathrm{vap}} H_{\mathrm{m}}}{R T}\right)
\]

Potential energy of a molecule in a homogeneous gravitational field \(U_{\text {pot }}=m g h\).
Probability of finding a molecule in height \(h\) :
\[
\pi \propto \exp \left(-\frac{U_{\mathrm{pot}}}{k_{\mathrm{B}} T}\right)=\exp \left(-\frac{m g h}{k_{\mathrm{B}} T}\right)=\exp \left(-\frac{M g h}{R T}\right)
\]

Probability \(\propto\) density \(\propto\) pressure:
\[
p=p_{0} \exp \left(-\frac{M g h}{R T}\right)
\]

The same formula can be derived from the condition of mechanical equilibrium + ideal gas equation of state
\[
\begin{gathered}
\mathrm{d} p=-\mathrm{d} h \rho g=-\mathrm{d} h \frac{M p}{R T} g \\
\int_{p_{0}}^{p} \frac{\mathrm{~d} p}{p}=-\int_{0}^{h} \mathrm{~d} h \frac{M g}{R T} \Rightarrow \ln \frac{p}{p_{0}}=-h \frac{M g}{R T}
\end{gathered}
\]

\section*{Boltzmann probability}

Example Energy of the gauche conformation of butane is by \(\Delta E=0.9 \mathrm{kcal} / \mathrm{mol}\) higher than anti. Calculate the population of molecules which are in the gauche state at temperature 272.6 K (boiling point). (1 cal = 4.184 J ).
Solution: There are twogauche states and one anti state!
\[
\begin{gathered}
\pi(\text { gauche }+)=\pi(\text { gauche }-) \\
\pi(\text { gauche }): \pi(\text { anti })=\exp [-\Delta E / R T]=0.1899 \\
2 \pi(\text { gauche })+\pi(\text { anti })=1
\end{gathered} \begin{aligned}
& \pi(\text { gauche })= \\
& \pi(\text { anti })=\frac{1}{2 \exp [-\Delta E / R T]+1}=\frac{1}{2 \times 0.1899+1}=0.725 \\
& 2 \pi(\text { gauche })=\frac{2 \exp [-\Delta E / R T]}{2 \exp [-\Delta E / R T]+1}=\frac{2 \times 0.1899}{2 \times 0.1899+1}=\underline{0.275}
\end{aligned}
\]

Note: we assumed that both minima are well separated and their shapes are identical. Better formula would be with \(\Delta G\) instead of \(\Delta E . \Delta G\) includes the factor of 2 as well as vibrations which will be a little different in both states. In fact, we solve the equilibrium:
\[
\text { anti } \rightarrow \text { gauche, } \quad K=\exp [-\Delta G / R T]
\]

\section*{Thermodynamics}

Internal energy
\[
U=\sum_{\psi} \mathcal{E}(\psi) \pi(\psi)
\]

Its small change is
\[
\mathrm{d} U=\sum_{\psi} \pi(\psi) \cdot \mathrm{d} \mathcal{E}(\psi)+\sum_{\psi} \mathrm{d} \pi(\psi) \cdot \mathcal{E}(\psi)
\]
\(\mathrm{d} \mathcal{E}(\psi)\) : energy level changed
\(d \boldsymbol{\pi}(\psi)\) : probability of state \(\psi\) changed
1st + 2nd Law:
\[
\mathrm{d} U=-p \mathrm{~d} V+T \mathrm{~d} S
\]
\(-p \mathrm{~d} V\) : A "piston" moved by \(\mathrm{d} x\). Change in energy \(=\mathrm{d} \mathcal{E}(\psi)=\) mechanical work \(=-F \mathrm{~d} x=\) \(-F / \mathcal{A} \cdot \mathrm{d}(\mathcal{A} x)=-p(\psi) \mathrm{d} V\) \(p(\psi)=\) "pressure of state \(\psi\) ", pressure \(=p=\sum_{\psi} \pi(\psi) p(\psi)\).
\(T \mathrm{~d} S\) : Change \(\pi(\psi)[V]=\) change of the population of states with varying energies \(=\) heat
... or the 2 nd half of the statistical thermodynamics
\[
\begin{aligned}
\pi(\mathcal{E}(\psi))=\exp \left(\alpha_{i}-\beta \mathcal{E}(\psi)\right) & \stackrel{\beta=1 / k_{\mathrm{B}} T}{\Rightarrow} \mathcal{E}(\psi)=k_{\mathrm{B}} T\left[\alpha_{i}-\ln \pi(\psi)\right], \quad \sum_{\psi} \mathrm{d} \pi(\psi)=0 \\
\sum_{\psi} \mathrm{d} \boldsymbol{\pi}(\psi) \mathcal{E}(\psi) & =\sum_{\psi} \mathrm{d} \pi(\psi) k_{\mathrm{B}} T\left[\alpha_{i}-\ln \pi(\psi)\right]=-k_{\mathrm{B}} T \sum_{\psi} \mathrm{d} \pi(\psi) \cdot \ln \pi(\psi) \\
& =-k_{\mathrm{B}} T \mathrm{~d}\left[\sum_{\psi} \pi(\psi) \ln \pi(\psi)\right]
\end{aligned}
\]

On comparing with \(T \mathrm{~d} S\) :
\[
S=-k_{\mathrm{B}} \sum_{\psi} \pi(\psi) \ln \pi(\psi)
\]

Microcanonical ensemble: \(\pi(\psi)= \begin{cases}1 / W & \text { for } E=\mathcal{E}(\psi) \\ 0 & \text { for } E \neq \mathcal{E}(\psi)\end{cases}\)
credit: schneider.ncifcrf.gov/ images/boltzmann/ boltzmann-tomb-8.html

If we consider transitions between states, we can derive \(\frac{d S}{d t} \geq 0\) (H-theorem)

\section*{Example: Ideal solution}

\section*{Energies of neighbors:}

All configurations have the same energy
\(\operatorname{Mix} N_{1}\) molecules of \(1+N_{2}\) molecules of 2 :
\[
\begin{gathered}
W=\binom{N}{N_{1}}=\frac{N!}{N_{1}!N_{2}!} \\
S=k_{\mathrm{B}} \ln W \approx-k_{\mathrm{B}}\left(N_{1} \ln \frac{N_{1}}{N}+N_{2} \ln \frac{N_{2}}{N}\right) \\
S_{\mathrm{m}}=-R\left(x_{1} \ln x_{1}+x_{2} \ln x_{2}\right)
\end{gathered}
\]
cf. \(S=-k_{\mathrm{B}} \sum_{\psi} \pi(\psi) \ln \pi(\psi)\)


We used the Stirling formula, \(\ln N!\approx N \ln N-N\) :
\[
\ln N!=\sum_{i=1}^{N} \ln i \approx \int_{0}^{N} \ln x d x \stackrel{\text { by parts }}{=}[x \ln x-x]_{0}^{N}=N \ln N-N
\]

More accurately: \(\ln N!\stackrel{a s y m p t .}{=} N \ln N-N+\ln \sqrt{2 \pi N}+\frac{1}{12 N}-\frac{1}{360 N^{3}}+\frac{1}{1260 N^{5}}-\cdots\)

\section*{Example: Residual entropy of crystals at \(T \rightarrow 0\)}

Crystal: 1 microstate \(\Rightarrow S=k_{\mathrm{B}} \ln 1=0\) (3rd Law)
3rd Law violation: \(\mathrm{CO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}\).
Not in the true equilibrium, but "frozen"
because of high barriers
Example 1: Entropy of a crystal of CO at 0 K
\[
S_{\mathrm{m}}=k_{\mathrm{B}} \ln 2^{N_{\mathrm{A}}}=R \ln 2
\]

Example 2: Entropy of ice at 0 K

\[
S_{\mathrm{m}}=k_{\mathrm{B}} \ln 1.507^{N_{\mathrm{A}}}=3.41 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\]

\section*{Pauling's derivation:}

O
\(6=\binom{4}{2}\) orientations of a water molecule
then an H-bond is wrong with prob. \(=\frac{1}{2}\)
\(2 N_{\mathrm{A}}\) bonds in a mole
\(\Rightarrow S_{\mathrm{m}}=k_{\mathrm{B}} \ln \left(\frac{6^{N_{\mathrm{A}}}}{2^{2 N_{\mathrm{A}}}}\right)=3.37 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\)


\section*{Example: Information entropy of DNA}

Assuming random and equal distribution of base pairs.
Per one base pair: \(S=k_{\mathrm{B}} \ln 4\), per mole: \(S_{m}=R \ln 4\).
Corresponding Gibbs energy (at \(37^{\circ} \mathrm{C}\) ):
\[
\Delta G_{\mathrm{m}}=-R T \ln 4=-3.6 \mathrm{~kJ} \mathrm{~mol}^{-1}
\]

To be compared to: ATP \(\rightarrow\) ADP
- standard: \(\Delta_{\mathrm{r}} G_{\mathrm{m}}^{\ominus}=-31 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
- in usual conditions in a cell: \(\Delta_{r} G_{m}=-57 \mathrm{~kJ} \mathrm{~mol}^{-1}\)


\section*{Thermodynamics finished}
\[
\alpha=?
\]
\[
\begin{aligned}
& \sum \sum \pi(\psi)=1 \Rightarrow \sum \mathrm{~d} \pi(\psi)=0 \\
& S=-k_{\mathrm{B}} \sum_{\psi} \pi(\psi) \ln \pi(\psi)=-k_{\mathrm{B}} \sum_{\psi} \pi(\psi)[\alpha-\beta \mathcal{E}(\psi)]=-\left(k_{\mathrm{B}} \alpha-\frac{U}{T}\right) \\
& \Rightarrow \alpha=\frac{U-T S}{k_{\mathrm{B}} T}=\frac{F}{k_{\mathrm{B}} T} \Rightarrow F=-k_{\mathrm{B}} T \ln \left[\sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)}\right]
\end{aligned}
\]
[...] = canonical partition function = statistical sum ( \(Q\) or \(Z\) )
Interpretation: number of "accessible" states (low-energy states are easily accessible, high-energy states are not)
From the Helmholtz energy \(F\) we can obtain all quantities:
\[
\mathrm{d} F=-p \mathrm{~d} V-S \mathrm{~d} T
\]
\[
\begin{array}{ll}
p=-\frac{\partial F}{\partial V} & U=F+T S \\
S=-\frac{\partial F}{\partial T} & H=U+p V \\
G=F+p V
\end{array}
\]

\section*{Semiclassical partition function}

Hamilton formalism: positions of atoms \(=\vec{r}_{i}\), momenta \(=\vec{p}_{i}\).
\[
\mathcal{E}=\mathcal{H}=E_{\text {pot }}+E_{\text {kin }}, \quad E_{\text {pot }}=U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right), \quad E_{\text {kin }}=\sum_{i} \frac{\vec{p}_{i}^{2}}{2 m}
\]

Sum over states replaced by integrals (clasical mechanics needed):
\[
Z=\sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)}=\frac{1}{N!h^{3 N}} \int \exp \left[-\beta \mathcal{H}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, \vec{p}_{1}, \ldots, \vec{p}_{N}\right)\right] \mathrm{d} \vec{r}_{1} \cdots \mathrm{~d} \vec{p}_{N}
\]
where \(h=2 \pi \hbar=\) Planck constant.

\section*{Why the factorial?}

Particles are indistinguishable ... but appear in different quantum states

\section*{Why Planck constant?}

Has the correct dimension ( \(Z\) must be dimensionless)
We get the same result for noninteracting quantum particles in a box
Fails if quantum effects are important (vide infra)

\section*{Semiclassical partition function}

\section*{Integrals over positions and momenta are separated}

Integrals over momenta can be evaluated: \(\int \exp \left(-\frac{p_{1, \chi}^{2} / 2 m}{k_{\mathrm{B}} T}\right) \mathrm{d} p_{1, x}=\sqrt{2 \pi k_{\mathrm{B}} T m}\) After 3 N integrations we get:
\[
Z=\frac{Q}{N!\Lambda^{3 N}}, \quad \text { de Broglie thermal wavelength: } \Lambda=\frac{h}{\sqrt{2 \pi m k_{\mathrm{B}} T}}
\]
\(\Lambda=\) de Broglie wavelength at typical particle velocity at given \(T\)
\[
\text { requirement: } \wedge \ll \text { typical atom-atom separation } \approx(V / N)^{1 / 3}
\]

Configurational integral:
\[
Q=\int \exp \left[-\beta U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)\right] \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}
\]
do not confuse:
\(U=\) internal energy
\(U\left(\vec{r}_{1}, \ldots\right)=\) potential

Mean value of a static quantity (observable):
\[
\langle X\rangle=\frac{1}{Q} \int X\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right) \exp \left[-\beta U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)\right] \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}
\]

\section*{Thermal de Broglie wavelength}

\section*{Example}
a) Calculate \(\wedge\) for helium at \(T=2 \mathrm{~K}\).
b) Compare to the typical distance of atoms in liquid helium (density \(0.125 \mathrm{~g} / \mathrm{cm}^{3}\) ).
a)
\[
\begin{aligned}
\Lambda & =\frac{h}{\sqrt{2 \pi m k_{\mathrm{B}} T}} \\
& =\frac{6.6 \times 10^{-34}}{\sqrt{2 \times \pi \times \frac{0.004}{6 \times 10^{23} \times 1.38 \times 10^{-23} \times 2}}} \\
& =6.2 \times 10^{-10} \mathrm{~m}
\end{aligned}
\]

b)
\[
l=\sqrt[3]{V_{1}}=\sqrt[3]{\frac{M}{N_{\mathrm{A}} \rho}}=\sqrt[3]{\frac{0.004}{6 \times 10^{23} \times 125}}=3.8 \times 10^{-10} \mathrm{~m}
\]
\(\underline{l<\Lambda \Rightarrow \text { cannot use classical mechanics }}\)
\[
\begin{gathered}
Q=\int \exp [0] \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}=\int_{V} \mathrm{~d} \vec{r}_{1} \cdots \int_{V} \mathrm{~d} \vec{r}_{N}=V^{N} \\
Z=\frac{Q}{N!\Lambda^{3 N}}=\frac{V^{N}}{N!\Lambda^{3 N}} \approx \frac{V^{N}}{N^{N} \mathrm{e}^{-N} \Lambda^{3 N^{\prime}}}, \quad F=-k_{\mathrm{B}} T \ln Z=-k_{\mathrm{B}} T N \ln \frac{V \mathrm{e}}{N \Lambda^{3}} \\
p=-\left(\frac{\partial F}{\partial V}\right)_{T}=\frac{k_{\mathrm{B}} T N}{V}=\frac{n R T}{V} \quad \begin{array}{l}
\mathrm{e}=\text { Eule } \\
e=\text { eler } \\
U=F+T S=F-T\left(\frac{\partial F}{\partial T}\right)_{V}=\frac{3 N k_{\mathrm{B}} T}{2} \\
\mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}=k_{\mathrm{B}} T \ln \left(\frac{N \Lambda^{3}}{V}\right)=k_{\mathrm{B}} T \ln \left(\frac{p \Lambda^{3}}{k_{\mathrm{B}} T}\right)
\end{array}
\end{gathered}
\]
(with respect to the standard state of a free molecule at zero temperature)
And verification:
\[
G=F+p V=k_{\mathrm{B}} T N \ln \frac{N \Lambda^{3}}{V \mathrm{e}}+N k_{\mathrm{B}} T=N \mu
\]

\section*{Monoatomic ideal gas}

Or quantum calculation of the translational partition function:
Eigenvalues of energy of a point mass in \(a \times b \times c\) box:
\[
\mathcal{E}=\frac{h^{2}}{8 m}\left(\frac{n_{x}^{2}}{a^{2}}+\frac{n_{y}^{2}}{b^{2}}+\frac{n_{z}^{2}}{c^{2}}\right)
\]

Maxwell-Boltzmann statistics: high enough temperature so that a few particles compete for the same quantum state - it does not matter whether we have fermions or bosons; equivalently, \(\Lambda \ll\) distance between particles.

\section*{Partition function:}
\[
\begin{gathered}
Z_{1}=\sum_{n_{x}=1}^{\infty} \sum_{n_{y}=1}^{\infty} \sum_{n_{z}=1}^{\infty} \exp (-\beta \mathcal{E}) \stackrel{\sum \rightarrow \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \exp (-\beta \mathcal{E}) \mathrm{d} n_{x} \mathrm{~d} n_{y} \mathrm{~d} n_{z}=\frac{V}{\Lambda^{3}}}{E=\sum_{i=1}^{N} E_{i} \Rightarrow Z=\frac{1}{N!} Z_{1}^{N}}
\end{gathered}
\]

Yes, it is the same! The choice of factor \(1 / h^{3 N}\) in the semiclassical \(Z\) was correct.```

