
Pressure of ideal gas from the kinetic theory I
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Molecule = point mass
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N molecules of masses m,  = 1, .., N, in a cube of edge L
Velocity of molecule  is ~ = (,, ,y, ,z)
After elastic reflection: ,→ −,
A molecule hits the same wall again after time t = 2L/,
Force = change of momentum in a time unit
Momentum ~P =m ~
Change of momentum = ΔP = 2m,
Averaged force caused by impacts of one molecule:

F, =
ΔP

t
=
2m,
2L/,

=
m

2
,

L
Pressure = force of all N molecules, divided by the area

p =

∑N
=1 F,

L2
=

∑N
=1m

2
,
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Kinetic energy of one molecule

1

2
m| ~|2 ≡

1

2
m

2
 =

1

2
m(

2
, + 

2
,y + 

2
,z)



Pressure of ideal gas from the kinetic theory II
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Kinetic energy of gas = internal energy (monoatomic gas)

Ekin =
1

2

N
∑

=1
m

2
 =

3

2

N
∑

=1
m

2
,

⇒

p =

∑N
=1m

2
,

L3
=
2

3

Ekin

V
In other words

pV =
2

3
Ekin

!
= nRT

Temperature is a measure of kinetic energy

Assumptions:

Pressure is a result of averaged impacts of molecules

We used the classical mechanics

Quantum effects at low T: p < nRT/V for bosons, p > nRT/V for fermions



Consequences
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Equation of state: N = nNA

pV = nRT = NkBT

also “thermal equation of state”

Energy

U ≡ Ekin =
3n

2
RT =

3N

2
kBT

“caloric equation of state” / “internal energy”
where the Boltzmann constant is

kB =
R

NA

Defined since May 5, 2019:
kB = R/NA = 1.380649×10−23 J K−1,
NA = 6.02214076×1023mol−1,
hence exactly
R = 8.31446261815324 J mol−1 K−1

Ludwig Eduard Boltzmann (1844–1906)
credit: scienceworld.wolfram.com/biography/Boltzmann.html

(both equations of state are
needed to define entropy)



Overview of classical thermodynamics
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0th Law
↓

1st Law
↓

id. gas: pV = nRT → pVκ = const (id., ad.)

↑

id. gas: U = U(T)

︸ ︷︷ ︸

↓

Carnot cycle →
∮

dQ

T
= 0 ← 2nd Law

↓

∃S, dS =
dQ

T
←lim

T→0
S = 0←ΔrG, K, . . .

↑

3rd Law



Equipartition principle
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Expression Ekin is composed of ƒ = 3N terms of the form 1
2m

2
,k, where k ∈ {, y, z}.

pV = NkBT =
ƒ

3
kBT =

2

3
Ekin

ƒ = number of mechanical degrees of freedom.
Average energy contribution per one degree of freedom:

Ekin

ƒ
=
1

2
kBT

Generalization: any quadratic function in the Hamiltonian

Heat capacity in molar units (N = NA, ƒ = 3NA):
↙

degrees of freedom per molecule

CVm =
�

∂Um

∂T

�

V
=
�

∂Ekin,m

∂T

�

V
=
1
2ƒkBT

NAT
=
3

2
R

Extension:

Linear molecules: + 2 rotations, CVm =
5
2R (but: hydrogen)

Nonlinear molecules: + 3 rotations, CVm = 3R

(Vibrations classically: + 2 for each (incl. Epot) – imprecise!)



Equipartition principle – example
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Calculate Cpm for nitrogen and water vapor.

N2: CVm =
5
2R, Cpm = CVm + R = 3.5R = 29.10 J K−1mol−1

H2O: CVm =
6
2R, Cpm = CVm + R = 4R = 33.26 J K−1mol−1

Experiment: N2 (300 K): 29.12 J K−1mol−1

H2O (500 K): 35.22 J K−1mol−1

0 500 1000 1500

T/K

4

5

6

C
p
m

/R

Engineering toolbox

Shomate eq. by NISTIsobaric heat capacity of water vapor → → →



Microstate, macrostate, ensemble, trajectory
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microstate (state, configuration) = instantaneous “snapshot” at given time
quantum description: state = eigenstate (wave function ψ)
classical description: state = positions and velocities* of all particles

at given time, ψ = (~r1, . . . , ~rN, ~1 . . . , ~N)

macrostate = averaged action of all microstates

ensemble = set of all microstates with known probabilities πππ(ψ)

trajectory = record of a time development of a microstate

microstate macrostate ensemble trajectory

*in fact, momenta – more later. There are ∞ states, hence we work with their probability density ρ(ψ) ≡
ρ(~r1, . . . , ~rN, ~p1, . . . , ~pN).



Microcanonical ensemble and ergodic hypothesis
[tchem/simolant1+2.sh] 8/27
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Microcanonical ensemble = ensemble of microstates in an isolated system (which has developed
in time for a long time)
Also denoted as NVE (N = const, V = const, E = const) for me:

e NVE ensemble
r smaller balls
c trajectory

Ergodic hypothesis (quantum): πππ(ψ) = const = 1
W (W = # of states)

Ergodic hypothesis (classical):
trajectory covers the space� with uniform probability

In other words:
Time average (over a trajectory)

= 〈X〉t = lim
t→∞

1

t

∫ t

0
X(t)dt

= ensemble average

= 〈X〉 =
1

W

∑

ψ
X(ψ)

for any quantity X = X(ψ), where ψ = ψ(t)

�namely: the phase state of {(~r1, . . . , ~rN, ~p1 . . . , ~pN)}



Mean value in the microcanonical ensemble
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〈X〉 =

∑

ψX(ψ)

W

Example. You win $5 if you throw on a dice, you loose $1 if you throw anything else. What is
your mean (expected) win in this game?

〈win〉 =
−1 − 1 − 1 − 1 − 1 + 5

6
= 0

Whole thermodynamics can be built on the top of the microcanonical ensemble.
But for T = const it is much easier.



We want T = const: Canonical ensemble
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NVT (N = const, V = const, T = const)
Ergodic hypothesis: πππ(ψ) = πππ(E(ψ))
EA + EB = EA+B (do not interact)
πππ(E) = probability of any state

with energy E

πππ(EA) · πππ(EB) = πππ(EA+B) = πππ(EA + EB)

⇒ πππ(E) = constE = exp(α − βE)

0th Law ⇒ β is empirical temperature

α is system-dependent normalizing const. so that
∑

ψ πππ(ψ) = 1

Determining β: monoatomic perfect gas, per 1 atom U1 =
3
2kBT

〈U1〉 =

∑

ψ E(ψ)πππ(E(ψ))
∑

ψ πππ(E(ψ))
=

∫ 1
2m ~

2πππ(12m ~
2)d ~

∫

πππ(12m ~
2)d ~

Evaluation gives: 〈U1〉 =
3

2

1

β
⇒ β =

1

kBT



Determining β
[start /home/jiri/vyuka/maple/beta.mw]
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〈U1〉 =

∫

R3
1
2m ~

2πππ(12m ~
2)d ~

∫

R3 πππ(
1
2m ~

2)d ~

=

∫∞
−∞

∫∞
−∞

∫∞
−∞

1
2m(

2
 + 

2
y + 

2
z )e

−12βm2d e
−12βm2ydy e

−12βm2zdz

∫∞
−∞

∫∞
−∞

∫∞
−∞ e−

1
2βm2d e

−12βm2ydy e
−12βm2zdz

= 3

∫∞
−∞

∫∞
−∞

∫∞
−∞

1
2m2 e

−12βm2d e
−12βm2ydy e

−12βm2zdz
∫∞
−∞

∫∞
−∞

∫∞
−∞ e

−12βm2d e
−12βm2ydy e

−12βm2zdz

= 3

∫∞
−∞

1
2m2 e

−12βm2d
∫∞
−∞ e−

1
2βm2d

= 3

1
2m

1
212βm

s

π
1
2βm

s

π
1
2βm

=
3

2

1

β

We have used the Gauss integral:
∫ ∞

−∞
e−

2
d =

√

√π


(where  = 1

2βm)

and its derivate by parameter :
∫ ∞

−∞
2e−

2
d = −

d

d

∫ ∞

−∞
e−

2
d = −

d

d

√

√π


=
1

2

√

√π


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∫∞
−∞

1
2m2 e

−12βm2d
∫∞
−∞ e−

1
2βm2d

=
1

2β



Mean value in the canonical ensemble
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Generalization of the mean value (= expectation value):

〈X〉 =
∑

ψ
X(ψ)πππ(E(ψ)) =

∑

ψ
X(ψ)eα−βE(ψ) =

∑

ψX(ψ)e
−βE(ψ)

∑

ψ e
−βE(ψ)

Boltzmann factor: e−E(ψ)/kBT

Example. You win $5 if you throw on a dice, you loose $1 if you throw anything else. However,
you have drilled a small lead weight under (opposite to ) so that the probabilities are πππ( ) =
0.2 and πππ( ) = πππ( ) = πππ( ) = πππ( ) = πππ( ) = 0.16. What is your mean (expected) win in this
game?

Note: 5 × 0.16 + 0.2 = 1 (normalized)

〈win〉 = −1 · 0.16 − 1 · 0.16 − 1 · 0.16 − 1 · 0.16 − 1 · 0.16 + 5 · 0.2 = 0.2



Boltzmann probability
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. . . or the first half of statistical thermodynamics.

Probability of finding a state with energy E is proportional to

πππ(E) = const · exp
�

−
E(ψ)
kBT

�

= const · exp
�

−
Em

RT

�

Examples:

a reacting system can overcome the activation energy E∗ with probability ∼ exp
�

−E
∗

RT

�

⇒
Arrhenius formula

k = Aexp
�

−
E∗

RT

�

the energy needed for transfering a molecule from liquid to gas is ΔvapHm (per mole), proba-

bility of finding a molecule in vapor is proportional to ∼ exp
�

−ΔvapHm
RT

�

⇒ Clausius–Clapeyron
equation (integrated)

p = p0 exp
�

−
ΔvapHm

R

�

1

T
−
1

T0

��

= const · exp
�

−
ΔvapHm

RT

�



Case study: Barometric formula
[simolant -I2]
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. . . Boltzmann probability once again

Potential energy of a molecule in a homogeneous gravitational field Upot =mgh.
Probability of finding a molecule in height h:

πππ ∝ exp
�

−
Upot

kBT

�

= exp
�

−
mgh

kBT

�

= exp
�

−
Mgh

RT

�

Probability ∝ density ∝ pressure:

p = p0 exp
�

−
Mgh

RT

�

The same formula can be derived from the condition of mechanical equilibrium + ideal gas
equation of state

dp = −dhρg = −dh
Mp

RT
g

∫ p

p0

dp

p
= −

∫ h

0
dh

Mg

RT
⇒ ln

p

p0
= −h

Mg

RT



Boltzmann probability
[cd tchem; blend -g butane]16/27

s01/2

Example Energy of the gauche conformation of butane is by ΔE = 0.9 kcal/mol higher than anti.
Calculate the population of molecules which are in the gauche state at temperature 272.6 K (boil-
ing point). (1 cal = 4.184 J).

Solution: There are twogauche states and one anti state!
πππ(gauche) =
0.1899πππ(anti)
↙

πππ(gauche+) = πππ(gauche−)

πππ(gauche) : πππ(anti) = exp[−ΔE/RT] = 0.1899

2πππ(gauche) + πππ(anti) = 1

πππ(anti) =
1

2exp[−ΔE/RT] + 1
=

1

2 × 0.1899 + 1
= 0.725

2πππ(gauche) =
2exp[−ΔE/RT]

2exp[−ΔE/RT] + 1
=

2 × 0.1899

2 × 0.1899 + 1
= 0.275

Note: we assumed that both minima are well separated and their shapes are identical. Better formula would be with
ΔG instead of ΔE. ΔG includes the factor of 2 as well as vibrations which will be a little different in both states. In fact,
we solve the equilibrium:

anti→ gauche, K = exp[−ΔG/RT]



Thermodynamics
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Internal energy

U =
∑

ψ
E(ψ)πππ(ψ)

Its small change is

dU =
∑

ψ
πππ(ψ) · dE(ψ) +

∑

ψ
dπππ(ψ) · E(ψ)

dE(ψ): energy level changed
dπππ(ψ): probability of state ψ changed

1st + 2nd Law:

dU = −pdV + TdS

−pdV: A “piston” moved by d. Change in energy = dE(ψ) = mechanical work = −Fd =
−F/A · d(A) = −p(ψ)dV
p(ψ) = “pressure of state ψ”, pressure = p =

∑

ψ πππ(ψ)p(ψ).

TdS: Change πππ(ψ) [V] = change of the population of states with varying energies = heat



Boltzmann equation for entropy
[jkv pic/BoltzmannTomb.jpg]18/27
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. . . or the 2nd half of the statistical thermodynamics

πππ(E(ψ)) = exp(α − βE(ψ))
β=1/kBT
⇒ E(ψ) = kBT[α − lnπππ(ψ)],

∑

ψ
dπππ(ψ) = 0

∑

ψ
dπππ(ψ)E(ψ) =

∑

ψ
dπππ(ψ)kBT[α − lnπππ(ψ)] = −kBT

∑

ψ
dπππ(ψ) · lnπππ(ψ)

= −kBT d





∑

ψ
πππ(ψ) lnπππ(ψ)





On comparing with TdS:

S = −kB
∑

ψ
πππ(ψ) lnπππ(ψ)

credit: schneider.ncifcrf.gov/
images/boltzmann/

boltzmann-tomb-8.htmlMicrocanonical ensemble: πππ(ψ) =
§

1/W for E = E(ψ)
0 for E 6= E(ψ)

Boltzmann equation: S = kB lnW

Property: S1+2 = S1 + S2 = kB ln(W1W2) = kB ln(W1+2)

If we consider transi-
tions between states,
we can derive dS

dt ≥ 0
(H-theorem)



Example: Ideal solution + 19/27
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Energies of neighbors: •–• = •–• = •–•
All configurations have the same energy

Mix N1 molecules of 1 + N2 molecules of 2:

W =
�

N

N1

�

=
N!

N1!N2!

S = kB lnW ≈ −kB

�

N1 ln
N1
N
+ N2 ln

N2
N

�

Sm = −R (1 ln1 + 2 ln2)

cf. S = −kB
∑

ψ πππ(ψ) lnπππ(ψ)

We used the Stirling formula, lnN! ≈ N lnN − N:

lnN! =
N
∑

=1
ln  ≈

∫ N

0
lnd

by parts
= [ ln − ]N0 = N lnN − N

More accurately: lnN!
asympt.
= N lnN − N + ln

p

2πN +
1

12N
−

1

360N3
+

1

1260N5
− + · · ·



Example: Residual entropy of crystals at T → 0
[traj/ice.sh]20/27
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Crystal: 1 microstate ⇒ S = kB ln 1 = 0 (3rd Law)

3rd Law violation: CO, N2O, H2O.
Not in the true equilibrium, but “frozen”
because of high barriers

Example 1: Entropy of a crystal of CO at 0 K

Sm = kB ln 2NA = R ln 2

Example 2: Entropy of ice at 0 K

Sm = kB ln 1.507NA = 3.41 J K−1mol−1

Pauling’s derivation:

6 =
�4
2
�

orientations of a water molecule

then an H-bond is wrong with prob.=1
2

2NA bonds in a mole

⇒ Sm = kB ln
�

6NA

22NA

�

= 3.37 J K−1mol−1



Example: Information entropy of DNA
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Assuming random and equal distribution of base pairs.

Per one base pair: S = kB ln 4, per mole: Sm = R ln 4.

Corresponding Gibbs energy (at 37 ◦C):

ΔGm = −RT ln 4 = −3.6kJ mol−1

To be compared to: ATP → ADP
– standard: ΔrG

e
m = −31kJ mol−1

– in usual conditions in a cell: ΔrGm = −57kJ mol−1

credit: www.pbs.org/wgbh/nova/sciencenow/3214/01-coll-04.html



Thermodynamics finished
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α = ?
πππ(ψ) = exp[α − βE(ψ)]
∑

πππ(ψ) = 1 ⇒
∑

dπππ(ψ) = 0

S = −kB
∑

ψ
πππ(ψ) lnπππ(ψ) = −kB

∑

ψ
πππ(ψ)[α − βE(ψ)] = −

�

kBα −
U

T

�

⇒ α =
U − TS

kBT
=

F

kBT
⇒ F = −kBT ln





∑

ψ
e−βE(ψ)





[ . . .] = canonical partition function = statistical sum (Q or Z)

Interpretation: number of “accessible” states (low-energy states are easily accessible, high-energy
states are not)

From the Helmholtz energy F we can obtain all quantities: dF = −pdV − SdT

p = −
∂F

∂V

S = −
∂F

∂T

U = F + TS
H = U + pV
G = F + pV



Semiclassical partition function
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Hamilton formalism: positions of atoms = ~r, momenta = ~p.

E =H = Epot + Ekin, Epot = U(~r1, . . . , ~rN), Ekin =
∑



~p2
2m

Sum over states replaced by integrals (clasical mechanics needed):

Z =
∑

ψ
e−βE(ψ) =

1

N!h3N

∫

exp[−βH(~r1, ~r2, . . . , ~rN, ~p1, . . . , ~pN)] d~r1 · · ·d ~pN

where h = 2πh = Planck constant.

Why the factorial?

Particles are indistinguishable ... but appear in different quantum states

Why Planck constant?

Has the correct dimension (Z must be dimensionless)

We get the same result for noninteracting quantum particles in a box

Fails if quantum effects are important (vide infra)



Semiclassical partition function
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Integrals over positions and momenta are separated

Integrals over momenta can be evaluated:
∫

exp



−
p21,/2m

kBT



dp1, =
Æ

2πkBTm After 3N integra-

tions we get:

Z =
Q

N!Λ3N
, de Broglie thermal wavelength: Λ =

h
p

2πmkBT

Λ = de Broglie wavelength at typical particle velocity at given T

requirement: Λ� typical atom–atom separation ≈ (V/N)1/3

Configurational integral:
do not confuse:
U = internal energy
U(~r1, . . .) = potential

Q =
∫

exp[−βU(~r1, . . . , ~rN)] d~r1 . . .d~rN

Mean value of a static quantity (observable):

〈X〉 =
1

Q

∫

X(~r1, . . . , ~rN)exp[−βU(~r1, . . . , ~rN)] d~r1 . . .d~rN



Thermal de Broglie wavelength
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Example

a) Calculate Λ for helium at T = 2 K.
b) Compare to the typical distance of atoms in liquid helium (density 0.125 g/cm3).

a)6.2Å;b)3.8Å

a)

Λ =
h

p

2πmkBT

=
6.6×10−34

È

2 × π × 0.004
6×1023

× 1.38×10−23 × 2

= 6.2×10−10m

b)

 = 3
Æ

V1 =
3

√

√

√

M

NAρ
= 3

√

√

√
0.004

6×1023 × 125
= 3.8×10−10m

 < Λ ⇒ cannot use classical mechanics

credit: hight3ch.com/superfluid-liquid-helium/



Semiclassical monoatomic ideal gas
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Q =
∫

exp[0] d~r1 . . .d~rN =
∫

V
d~r1 · · ·

∫

V
d~rN = VN

Z =
Q

N!Λ3N
=

VN

N!Λ3N
≈

VN

NNe−NΛ3N
, F = −kBT lnZ = −kBTN ln

Ve

NΛ3

p = −
�

∂F

∂V

�

T
=
kBTN

V
=
nRT

V

U = F + TS = F − T
�

∂F

∂T

�

V
=
3NkBT

2

μ =
�

∂F

∂N

�

T,V
= kBT ln

 

NΛ3

V

!

= kBT ln

 

pΛ3

kBT

!

(with respect to the standard state of a free molecule at zero temperature)

And verification:

e = Euler number
e = elementary charge

G = F + pV = kBTN ln
NΛ3

Ve
+ NkBT = Nμ



Monoatomic ideal gas + 27/27
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Or quantum calculation of the translational partition function:

Eigenvalues of energy of a point mass in a  × b × c box:

E =
h2

8m





n2
2
+
n2y
b2
+
n2z
c2





Maxwell–Boltzmann statistics: high enough temperature so that a few particles compete for
the same quantum state – it does not matter whether we have fermions or bosons; equivalently,
Λ� distance between particles.

Partition function:

Z1 =
∞
∑

n=1

∞
∑

ny=1

∞
∑

nz=1
exp(−βE)

∑

→
∫

≈
∫ ∞

0

∫ ∞

0

∫ ∞

0
exp(−βE)dndnydnz =

V

Λ3

E =
N
∑

=1
E ⇒ Z =

1

N!
ZN1

Yes, it is the same! The choice of factor 1/h3N in the semiclassical Z was correct.


