Pressure of ideal gas from the kinetic theory |

Molecule = point mass

N molecules of masses m;, i=1,..,N, in a cube of edge L
Velocity of molecule iis Vi = (Vjx, Viy, Vi z)

After elastic reflection: v; x = —V; x

A molecule hits the same wall again after time t = 2L/v;
Force = change of momentum in a time unit

Momentum P =mv

Change of momentum = APx =2mj;v;

Averaged force caused by impacts of one molecule:

APy 2mvl>< miV-2

[simolant -0 -N100 -Prho=.01] 1/27

i,x
Fix=——

t 2L/v[ X L
Pressure = force of all N molecules, divided by the area

N , N 2
P L2 L3
Kinetic energy of one molecule
1 1 1
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Pressure of ideal gas from the kinetic theory Il

Kinetic energy of gas = internal energy (monoatomic gas)

1 N ; 3 N ;
Fun= 2 > ma? =2 > m,

=
N 2
p = 2] MiVix _ 2Exkin
L3 3V
In other words
2 .

pV = §Ekin = nRT

Temperature is a measure of kinetic energy

Assumptions:
@ Pressure is a result of averaged impacts of molecules

@ We used the classical mechanics

& Quantum effects at low T: p < nRT/V for bosons, p > nRT/V for fermions
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Consequences s01/2

Equation of state: N = nNp
pV =nRT = NkgT
also “thermal equation of state”

Energy

U=E 3nRT 3NI<T
= Lkin = 5 — 5 B

’

“caloric equation of state” / “internal energy’
where the Boltzmann constant is

l< R
B = Na
Defined since May 5, 2019: i
kg = R/Na=1.380649x 10~23) K1, Ludwig Eduard Boltzmann (1844-1906)
N A= 6 022 1 4076 X 1023 mOI_l, credit: scienceworld.wolfram.com/biography/Boltzmann.html

hence exactly (both equations of state are

R =28.31446261815324 Jmol—1 K1 needed to define entropy)
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Overview of classical thermodynamics s01/2
Oth Law 1st Law
l l
id. gas: pV=nRT, — | pVK=const (id.,ad.)
1

id. gas: U =U(T)

- 2
-~

l 3o
Carnot cycle — — =0 <« |2ndLaw
|
. dQ
ArG, K, ... — imS=0  « S, dS=—
T—0 T

3rd Law
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Equipartition principle s01/2
Expression Ejn iIs composed of f = 3N terms of the form %m[vizk, where k € {x,y, z}.
f 2

V = NkgT = —kgT = —Ej;
P B 3 B 3 kin

f = number of mechanical degrees of freedom.
Average energy contribution per one degree of freedom:

Ekin _ EkBT
f 2
Generalization: any quadratic function in the Hamiltonian
Heat capacity in molar units (N = Npa, f = 3Na): /degrees of freedom per molecule
o (aU_m) _ (aEkin,m) _ofkeT 3
aT Jy 3T )y  NaT 2

Extension:

@ Linear molecules: + 2 rotations, Cym = %R (but: hydrogen)
@ Nonlinear molecules: + 3 rotations, Cym = 3R

@ (Vibrations classically: + 2 for each (incl. Epot) — imprecise!)
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Equipartition principle - example s01/2
Calculate Cpm for nitrogen and water vapor.

N2: Cym = 3R, Cpm = Cym + R = 3.5R = 29.10J K1 mol~!
H20: Cym = 2R, Cpm = Cym + R = 4R = 33.26) K~ mol~1

Experiment: N> (300 K): 29.12) K~ 1 mol—!
H>0 (500 K): 35.22) K~ 1 mol~! 6 —

Shomate eq. by NIST
* Engineering toolbox

Isobaric heat capacity of water vapor -» —» —

Com/R
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Microstate, macrostate, ensemble, trajectory

@ microstate (state, configuration) = instantaneous “snapshot” at given time
quantum description: state = eigenstate (wave function ¢)
classical description: state = positions and velocities* of all particles
at giventime, ¢y =(r1,..., 7N, V1..., VN)

@ macrostate = averaged action of all microstates
@ ensemble = set of all microstates with known probabilities m(¢)

@ trajectory = record of a time development of a microstate
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*in fact, momenta - more later. There are oo states, hence we work with their probability density p(¢) =

p(Fl ..... FN, ﬁ]_ ..... ﬁ/\/)
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Microcanonical ensemble and ergodic hypothesis $01/2

Microcanonical ensemble = ensemble of microstates in an isolated system (which has developed
in time for a long time)

Also denoted as NVE (N = const, V = const, E = const) Zoﬁvgeénsemble
. . _ N _ 1 _ r smaller balls
@ Ergodic hypothesis (quantum): m(¢;) = const = w (W = # of states) ¢ trajectory

@ Ergodic hypothesis (classical):
trajectory covers the space! with uniform probability

In other words:
Time average (over a trajectory)

. 1 t

= ensemble average
1
= (X)) = — X
(X) W% ()

for any quantity X = X(¢), where ¢ = ¢(t)

namely: the phase state of {(F, ..., n, P1...,Pn)}
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Mean value in the microcanonical ensemble s01/2
D XW)
==

Example. You win $5 if you throw &8 on a dice, you loose $1 if you throw anything else. What is
your mean (expected) win in this game?

(0 A B 5 B R B P I

—1—-1—-1—-1-1+5
=0
6

(win) =

Whole thermodynamics can be built on the top of the microcanonical ensemble.
But for T = const it is much easier.



We want 7 = const: Canonical ensemble

NVT (N = const, V = const, T = const)
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s01/2

Ergodic hypothesis: m(¢) = n(E(Y)) E3

e ° o0
° o the.rmczst"at.

Epn+ Eg = Ep+B (dO Nnot interact) E>
n(E) = probability of any state Eq,

with energy E Eo
n(Ep) - m(EB) = mM(Ea+B) = M(EA + EB)
= 1(E) = constf = exp(a;— BE)

@ Oth Law = B is empirical temperature

@ o, is system-dependent normalizing const. so that Ztﬂ ny)=1

Determining (3: monoatomic perfect gas, per 1 atom U1 = %kBT

(U1) =

. . 31 1
Evaluation gives: (U1) = >3 = f

Sy EWnEW)) [ 3mvia(zmv?)dv
[ m(zmv2)dv

> TEW))

" keT
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Determining 3 + 5012

[r33mMV2M(3mv?)dv

[r3 M(zmV2)dV

(U1) =

1 2 _1 2 1 2
© (o0 o0 1 ..o .2 .2\ —5B8MmV Z2pmv —3Bmv
f—oo f—oo f—oo 2m(vx + Vy + V )e 2 xdvy e de e 2 zdvy

2 2[5 e 2BmV; xdvy e —3hm ydv e 2/3szde

f_ =, f_oozmvze 2BmV;; dvy e —36m ydv e Zﬁmvzdvz

f_oof_oof_ BmVde e —2hm ydv e ZBszde

© 1.1,2a2FMVig am T
_3f_ooimvxe Vx| 3 2,8m pm 31
= E P— =
fjooo e Z'Bmvdex

2'8m

T
e—ax° gy = \J; (where a = %,Bm)

0.0

We have used the Gauss integral: f
—00
and its derivate by parameter a:

°° 2 d ® 2
J x%2e X dx = —— e~ X dx = \l‘
— oo da |_« da a 2a
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Determining + 012

15012
oo 1 2 —5Fmv
Jooamvie 2 xdvx 1

_1 2
f_oooo e Zﬁmvdex ZB
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Mean value in the canonical ensemble s01/2

Generalization of the mean value (= expectation value):

wa(q,)e—ﬁf(tﬂ)
Z‘/’ e—BEY)

(X) =D X(W)m(EW)) = D X(p)e?FeW) =
g g

Boltzmann factor: e ¢(¥)/ksl

Example. You win $5 if you throw &8 on a dice, you loose $1 if you throw anything else. However,
you have drilled a small lead weight under [*J (opposite to () so that the probabilities are () =
0.2 and (D) = n()) = n() = w(C) = m()) = 0.16. What is your mean (expected) win in this
game?

Note: 5x 0.16+ 0.2 =1 (normalized)

(-] ] ] ]
(win)=—1-0.16—-1-0.16—-1-0.16—-1-0.16—1-0.16+5:0.2=0.2



Boltzmann probability igﬁ;

... or the first half of statistical thermodynamics.

Probability of finding a state with energy £ is proportional to ~

é‘(w)] ( Em)
() =const-exp|—— | =const-exp| ——
Ozcomool g ool T

@ a reacting system can overcome the activation energy E* with probability ~ exp (—%) =

Arrhenius formula
E*
k =Aexp (——)
RT

@ the energy needed for transfering a molecule from liquid to gas is AvapHm (per mole), proba-
bility of finding a molecule in vapor is proportional to ~ exp(—A"prm) = Clausius—Clapeyron
equation (integrated)

= ex [ AvapHm(l 1)]—const ex ( AvapHm)
P =PoexP R \T To/l . RT

Examples:
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Case study: Barometric formula + <012

... Boltzmann probability once again

Potential energy of a molecule in a homogeneous gravitational field Upot = mgh.
Probability of finding a molecule in height h:

(7)o (i) oo (57)
MXEXP| — =exp|——|=exp| ——
kgl kgl RT

Probability o density o« pressure:

Mgh)

=poexp|——
P =PpPo p( RT

The same formula can be derived from the condition of mechanical equilibrium + ideal gas
equation of state
Mp

dp = —dhpg = —dh—

P P9 RTg
P d h M
J —p=—f dh—g = Inﬁz—h—g
po P 0 RT PO RT
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Boltzmann probability 501/2

Example Energy of the gauche conformation of butane is by AE = 0.9 kcal/mol higher than anti.
Calculate the population of molecules which are in the gauche state at temperature 272.6 K (boil-

Ing point). (1 cal = 4.184)).

Solution: There are twogauche states and one anti state!

he) =
n(gauche+) = m(gauche—) m(gauc

’ 7 0.1899m(anti)
m(gauche) : m(anti) = exp[—AE/RT] = 0.1899 /

2 t(gauche) + (anti) =1

1 1
n(anti) = = =0.725
2exp[—AE/RT]+1 2x0.1899+1
2 exp[—AE/RT] 2 x 0.1899
2 t(gauche) = 0.275

2exp[—AE/RT]+1 2x0.1899+1

Note: we assumed that both minima are well separated and their shapes are identical. Better formula would be with
AG instead of AE. AG includes the factor of 2 as well as vibrations which will be a little different in both states. In fact,

we solve the equilibrium:
anti —» gauche, K =exp[—AG/RT]
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Thermodynamics 501/2

Internal energy

U= eWny)
g

Its small change is

dU = > m(y)-dEW) + D dm(y) - E(Y)
¢ ¢

dé€(¢): energy level changed
dn(¢): probability of state ¢ changed

1st + 2nd Law:
dU=—pdV + TdS

@ —pdVv: A “piston” moved by dx. Change in energy = d€(¢) = mechanical work = —Fdx =
—F/A-d(Ax) =—p(yY)dV
p(Y) = “pressure of state ¢”, pressure = p = Zw (Y)p(yY).

@ 7dS: Change m(¢) [V] = change of the population of states with varying energies = heat
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Boltzmann equation for entropy s01/2

...or the 2nd half of the statistical thermodynamics

/kT

n(EW)) = explog—PEWY) | >0 EW)=keTlai—Inm(y)], > dm(y)=0
g

D drEW) = Y dm(Y)keT[ai— Inm(y)] = —kgT D, dm(y) - In m(y)
¢ ¢ - . ¢ '

=—kgTd | > 7(¢) Inm(y)
Y

On comparing with TdS:
S=—kg >, m(y) Inm(y)
Y

credit: schneider.ncifcrf.gov/
images/boltzmann/

1/W for E = S(Lﬂ) boltzmann-tomb-8.html

Microcanonical ensemble: w(¢) = {

0 for E #£(¢) If we consider transi-

tions between states,

we can derive % >0

Property: S142 =51+ 5S> = kgIn(W1W>3) =kgIn(W142) (H-theorem)

Boltzmann equation: S=kglnW
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Example: Ideal solution + 5012

Energies of neighbors: e-e = e—e = e—e
All configurations have the same energy

Mix N1 molecules of 1 + N> molecules of 2:

(N) N!
W = =
N1 N1IN>!

S=kpgInW =~ —k (N | e N> | NZ)
=kglnW ~ — n—+ NzIn—
B B N g N

Sm=—R(X1lnx1+Xx2InXx7)

cf. S=—I<BZ¢ n(Y) Inm(yY)
We used the Stirling formula, InN!'~NInN — N:
N N by parts N
InN!=ZInlzJ Inxdx = = [><In><—><]0 =NInN—N
i=1 0

1 1 1
— + — +
12N  360N3  1260N°>

t.
More accurately: InN! 2P NInN =N + In V27N +
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Example: Residual entropy of crystalsat 7 — 0 s01/2

Crystal: 1 microstate = S=kgIn1l =0 (3rd Law)

3rd Law violation: CO, N>O, H>O.
Not in the true equilibrium, but “frozen”
because of high barriers

Example 1: Entropy of a crystal of CO at 0K
Sm=kgIn2NA=RIn2

Example 2: Entropy of ice at 0 K
Sm=kgIn1.507NA =3.41)K"1 mol~1

Pauling’s derivation:

Q6= (g) orientations of a water molecule

@ then an H-bond is wrong with prob,=%

@ 2N bonds in a mole

N
@ =>5,=kgln (ZGZ—NAA) =3.37) K~ 1 mol—1




Example: Information entropy of DNA iéﬁ;

Assuming random and equal distribution of base pairs.
Per one base pair: S =kglIn4, per mole: S, =R In4.
Corresponding Gibbs energy (at 37 °C):

AGm =—RTIn4 =—-3.6kmol—1!

To be compared to: ATP — ADP
- standard: A;G? =—31k] mol—1

— in usual conditions in a cell: A\Gm =—=57 k] mol—1

credit: www.pbs.org/wgbh/nova/sciencenow/3214/01-coll-04.html
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Thermodynamics finished s01/2

n(Y) =expla—LE(Y)]

a="7

Su@)=1= Ydu(y)=0
U
S=—kg . m(y)Inw(Y) =—ks Y (W) a—BEW)] =— (ksa— ;)
¢ Y

= o= =—— = F=—kglIn e—BEW)
kgl kgl 5 %:

[...] = canonical partition function = statistical sum (Q or 2)

Interpretation: number of “accessible” states (low-energy states are easily accessible, high-energy
states are not)

From the Helmholtz energy F we can obtain all quantities: dF = —pdV —-S5dT
oF
p = Y U = F+TS
3F H = U+pV
S = G = F+pV

oT



Semiclassical partition function

Hamilton formalism: positions of atoms = F;, momenta = p;.
=2
P;

5=%=Epot+Ekin, Epot=U(F1,---,FN), Exin = %
{

Sum over states replaced by integrals (clasical mechanics needed):
7 = Ze—ﬁﬁ(tﬂ) —

Y
where h = 2mh = Planck constant.

N'h3N

Why the factorial?

@ Particles are indistinguishable ... but appear in different quantum states
Why Planck constant?

@ Has the correct dimension (Z must be dimensionless)

@ We get the same result for noninteracting quantum particles in a box

@ rails if quantum effects are important (vide infra)

Jexp[—ﬁH(Fl, r2,...,rn, P1,...,Pn)]dF - d

23/27
s01/2
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Semiclassical partition function s01/2

Integrals over positions and momenta are separated

P1x/2m |
Integrals over momenta can be evaluated: | exp| — I< 7 dp1 x = v/ 2mkgTm After 3N integra-
B
tions we get:
Q | h
Z = 3N de Broglie thermal wavelength: A=
AVAY v 2TmkgT

N\ = de Broglie wavelength at typical particle velocity at given T

requirement: A < typical atom-atom separation ~ (V/N)1/3

Configurational integral:
do not confuse:
Q= J exp[—pU(r,...,Fy)]dry...diy U = internal energy
U(ry,...) = potential
Mean value of a static quantity (observable):

1
(X) = an(Fl, ..., Iny)exp[—pU(ry, ..., Iy)]dry...driy
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Thermal de Broglie wavelength s01/2

Example

a) Calculate A for helium at T =2 K.
b) Compare to the typical distance of atoms in liquid helium (density 0.125 g/cm?3).

y8€(Q:yzol(e

a)
h
N =
v 2TmkgT
6.6x 1034
B 0.004 —23
\/2 x mx 20025 1.38x10723 x 2
= 6.2x10710m
credit: hight3ch.com/superfluid-liquid-helium/
b)

M 0.004
[ = 3vi= %|—= 3 =3.8x10"10m
Nao \IGx 1023 x 125

[ < \ = cannot use classical mechanics
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Semiclassical monoatomic ideal gas s01/2

Z

Q=Jexp[0]df1...dFN=J di"lmf diy = VN
Vv

v
? v v F kgl InZ kgT N | —Ve
T NIASN T NIASN T yNe=Np3ne T T TRBEIE = TEBI R S
5 =_(f) _keTN _ nRT e = Euler number
oV /)t 4 4 e = elementary charge
oF 3NkgT
U=F+TS=F—T[—| =
oT )y 2

oF NA3 pA3
u=(—) = kgTIn| — | = kgT In| —
oN TV "4 kgl

(with respect to the standard state of a free molecule at zero temperature)

And verification:

NA3
G=F+pV=I<BTNInV—+NI<BT=N/J
e



. 27/27
Monoatomic ideal gas + 01,2

Or quantum calculation of the translational partition function:

Eigenvalues of energy of a point massin a a x b x ¢ box:

h2 (n2 nZ n
£ = + =+
8m\ a2 b? c

2
4
2

Maxwell-Boltzmann statistics: high enough temperature so that a few particles compete for
the same quantum state - it does not matter whether we have fermions or bosons; equivalently,

N\ < distance between particles.

Partition function:

oo‘ oo‘ oo‘ S © r0O0 ~OO vV
Zi= D, 2, 2, exp(=B¢) szO JO JO exp(=p&)dnxdnydnz = 3

nx=1ny=1nz=1

N
— ) — =N
E—leEl = Z—N!Zl
=

Yes, it is the same! The choice of factor 1/h3N in the semiclassical Z was correct.



