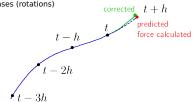
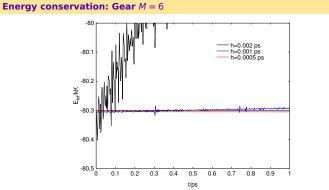


- which is made more accurate (and stable) in the following step Gear's methods use a polynomial predictor = no additional costly evaluation of the right-hand
- side ... but poor stability Methods are not time reversible* but have higher order
- Useful in special cases (rotations)



*Except one version of the simplest singular 2nd order method equivalent to Verlet



Comparison of methods

- is time-reversible ⇒ no drift in the total (potential + kinetic) energy
- \bigoplus is symplectic \Rightarrow error in the total energy is bound
- is simple
- low order (phase error)
- (directly) not applicable to a r.h.s. containing velocities (equation $\ddot{r} = f(r, \dot{r})$: Nosé-Hoover, rotations)
- difficult change of the timestep

Gear: and similar: just opposite

Notes:

- a symplectic integerator preserves (with bounded accuracy) the phase space volume $d\vec{r}^N d\vec{p}^N$
- is a subset of geometric integrators preserving flow of phasespace volume
- the quality of energy conservation helps us to set up the timestep h

Temperature

The temperature is **measured** in the standard (microcanonical) MD.

$$T = \left\langle \frac{E_{\text{kin}}}{\frac{1}{2}k_{\text{B}}f} \right\rangle = \left\langle T_{\text{kin}} \right\rangle$$

 $f = 3N - f_{conserved} \approx 3N$

reversible

symplectic

3/14 504/2

 E_{tot}

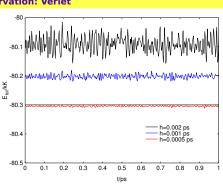
Example: molecules in a spherical cavity $f_{\text{conserve}} = 1_{\text{energy}} + 3_{\text{rotations}}$

 $+\frac{6/14}{504/2}$

NOTE: the averaged kinetic temperature should not depend on (a subset of) the degree dom used. Typically, one may easily separate:

- T_{tr} from the velocities of the centers of mass
- \bigcirc $T_{\text{rot+in}}$ from rotations and internal degrees of freedom.
- igoplus disagreement $T_{
 m tr}
 eq T_{
 m rot+in}$ indicates various problems (bad equilibration, too long timestep,

Energy conservation: Verlet



Constant temperature in MD: methods

not canonical (do not give the canonical ensemble)

• velocity rescaling: $\vec{v}_{i,\text{new}} = \vec{v}_i (T/T_{\text{kin}})^{1/2}$

Berendsen (friction): $\vec{v}_{i,\text{new}} = \vec{v}_i (T/T_{\text{kin}})^q$, q < 1/2,

is equivalent to: $\ddot{r}_i = \frac{n}{m_i}$

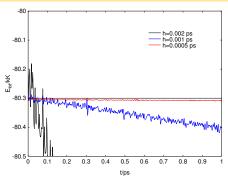
canonical deterministic:

- Nosé-Hoover: one (or more) degrees of freedom added, averaging it ⇒ canonical ensemble.
 Problem: tricks needed with Verlet (r.h.s. depends on velocities)
- Modified Berendsen

canonical stochastic:

- Maxwell–Boltzmann: once a while the velocties of particles are drawn from the Maxwell–Boltzmann distribution, $\pi(\dot{x}_l) = \exp(-\dot{x}^2/2\sigma^2)/\sigma\sqrt{2\pi}$, $\sigma^2 = k_BT/m_l$
- Andersen: randomly visit particles (usually better)
- Langevin: small random force added to all particles at every step
- Canonical sampling through velocity rescaling (Bussi, Donadio, Parrinello)
- \bigcirc Gaussian rescaling: $E_{kin} = \text{const}$, canonical in the configurational space only

Energy conservation: Gear M = 4



Nosé-Hoover thermostat

+ ^{9/14} _{s04/2}

- one degree of freedom added: "position" s and "velocity" s
- \bigcirc + kinetic energy $\frac{M_s}{2}\dot{s}^2$
- + potential energy $-fk_BT \ln s$

+ 4/14 s04/2

Equations of motion ($\xi = \ln s$):

$$\ddot{r}_i = \frac{f_i}{m_i} - \dot{r}_i \dot{\xi}$$

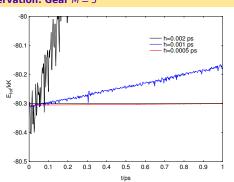
$$\ddot{\xi} = \left(\frac{T_{\text{kin}}}{T} - 1\right) \tau^{-2}$$

Thermostat time constant:

$$\tau = \sqrt{\frac{M_S}{fk_BT}}$$

Provided that the system is ergodic, it can be proven that we get the canonical ensemble

Energy conservation: Gear M = 5



Thermostats

- Nosé-Hoover
- canonical 🛟 high quality
- good also for small systems
 - (N-H chain)
- oscillations, decoupling
- (fine tuning of τ)
- worse for start
- equations of motion w. velocities

Berendsen

- simple 🔒
- exponential relaxation (i.e., good also for start)
- flying icecube
- not canonical
- poor for small systems

Maxwell-Boltzmann etc.

- canonical
- exponential relaxation
- kinetics lost
- problematic with constrained dynamics

