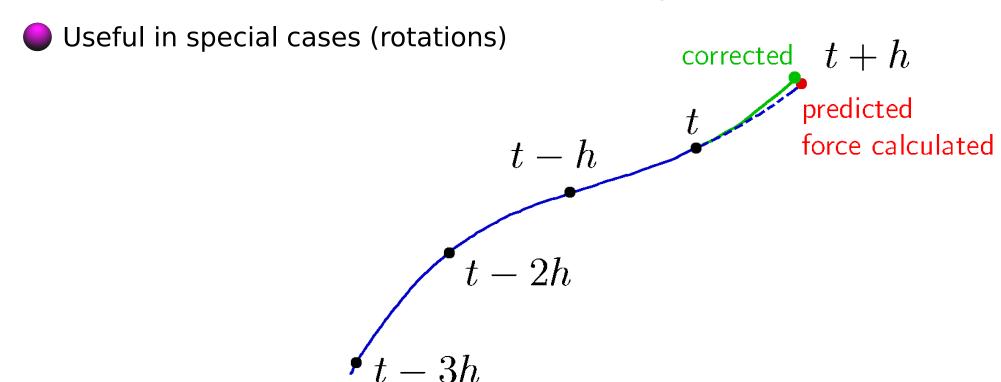
- + 504/2
- Predictor-corrector type: knowledge of history is used to predict an approximate solution, which is made more accurate (and stable) in the following step
- Gear's methods use a polynomial predictor = no additional costly evaluation of the right-hand side . . . but poor stability
- Methods are not time reversible* but have higher order



*Except one version of the simplest singular 2nd order method equivalent to Verlet

Comparison of methods

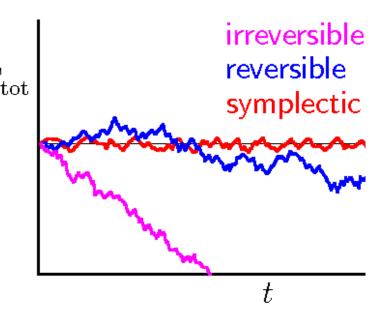
Verlet:

- \bigoplus is time-reversible \Rightarrow no drift in the total (potential + kinetic) energy
- is symplectic ⇒ error in the total energy is bound
- is simple
- low order (phase error)
- (directly) not applicable to a r.h.s. containing velocities (equation $\ddot{r} = f(r, \dot{r})$: Nosé–Hoover, rotations)
- difficult change of the timestep

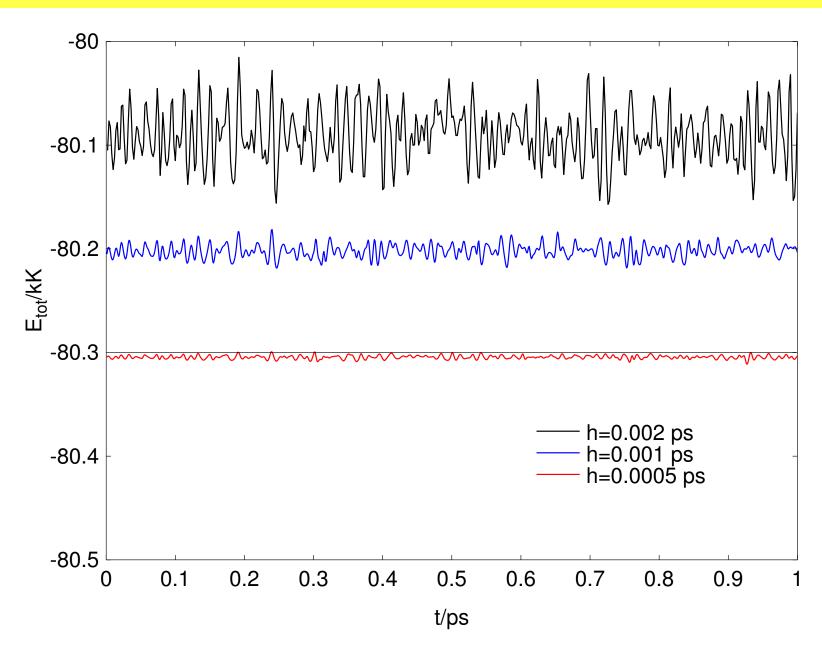
Gear: and similar: just opposite

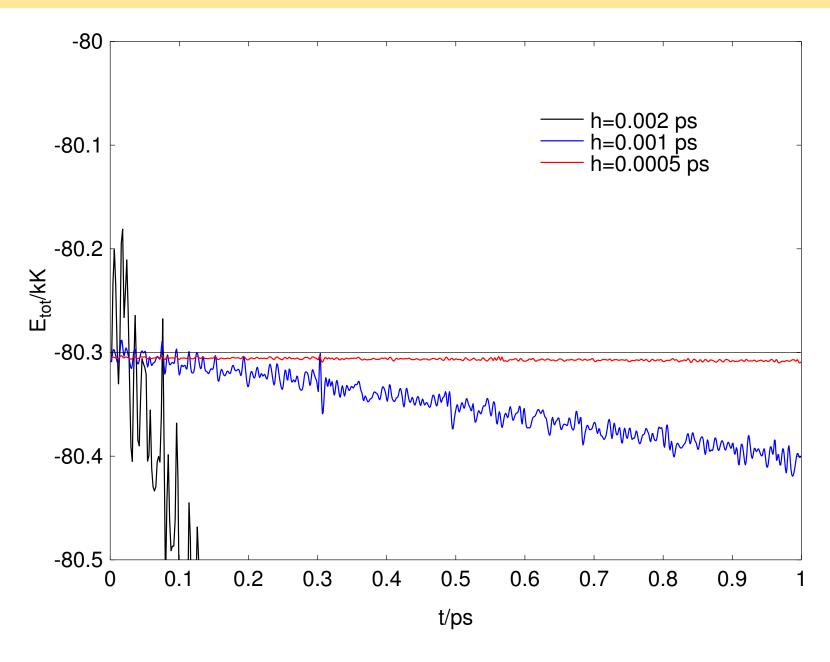
Notes:

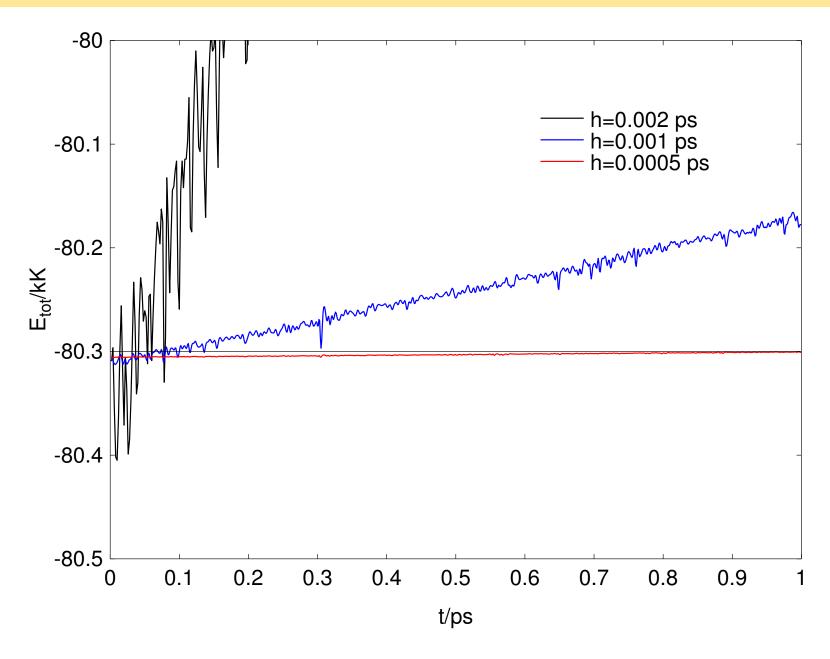
- igoplus a symplectic integerator preserves (with bounded accuracy) the phase space volume $\mathrm{d}\vec{r}^N\mathrm{d}\vec{p}^N$
- is a subset of geometric integrators preserving flow of phasespace volume
- the quality of energy conservation helps us to set up the timestep h

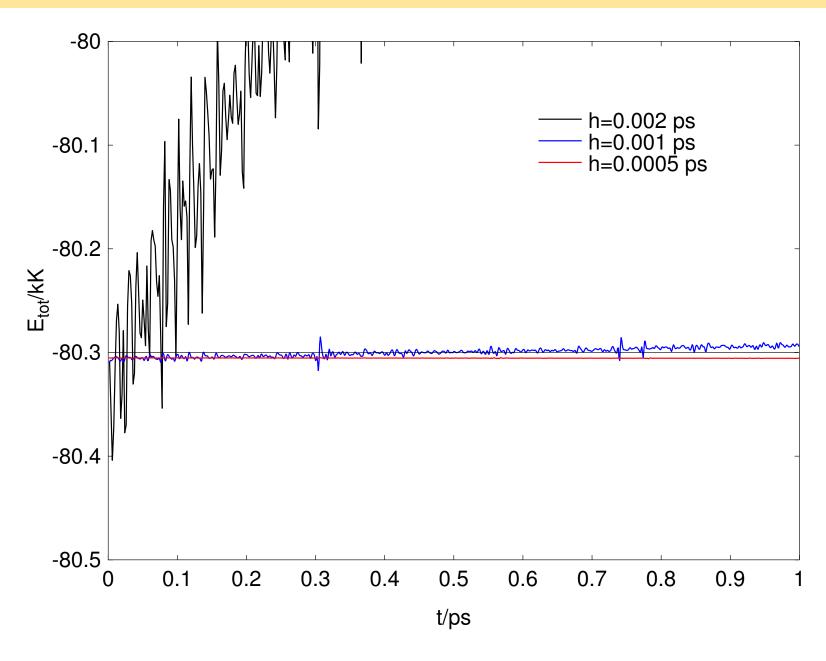


Energy conservation: Verlet









Temperature

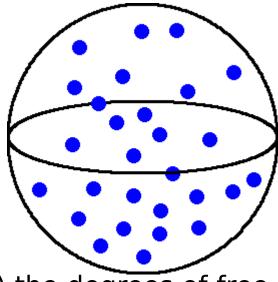
The temperature is **measured** in the standard (microcanonical) MD.

$$T = \left\langle \frac{E_{\text{kin}}}{\frac{1}{2}k_{\text{B}}f} \right\rangle = \left\langle T_{\text{kin}} \right\rangle$$

$$f = 3N - f_{\text{conserved}} \approx 3N$$

Example: molecules in a spherical cavity:

$$f_{conserve} = 1_{energy} + 3_{rotations}$$



NOTE: the averaged kinetic temperature should not depend on (a subset of) the degrees of freedom used. Typically, one may easily separate:

- \bigcirc T_{tr} from the velocities of the centers of mass
- \bigcirc $T_{\text{rot+in}}$ from rotations and internal degrees of freedom.
- olisagreement $T_{tr} \neq T_{rot+in}$ indicates various problems (bad equilibration, too long timestep,

Constant temperature in MD: methods

not canonical (do not give the canonical ensemble)

- velocity rescaling: $\vec{v}_{i,\text{new}} = \vec{v}_i (T/T_{\text{kin}})^{1/2}$
- Berendsen (friction): $\vec{v}_{i,\text{new}} = \vec{v}_i (T/T_{\text{kin}})^q$, q < 1/2, is equivalent to: $\ddot{r}_i = \frac{\vec{f}_i}{m_i} \eta (T_{\text{kin}} T)\dot{\vec{r}}_i$, $\eta = \frac{q}{Th}$

canonical deterministic:

- Nosé-Hoover: one (or more) degrees of freedom added, averaging it ⇒ canonical ensemble. Problem: tricks needed with Verlet (r.h.s. depends on velocities)
- Modified Berendsen

canonical stochastic:

- Maxwell–Boltzmann: once a while the velocties of particles are drawn from the Maxwell–Boltzmann distribution, $\pi(\dot{x}_i) = \exp(-\dot{x}^2/2\sigma^2)/\sigma\sqrt{2\pi}$, $\sigma^2 = k_BT/m_i$
- Andersen: randomly visit particles (usually better)
- Langevin: small random force added to all particles at every step
- Canonical sampling through velocity rescaling (Bussi, Donadio, Parrinello)
- \bigcirc Gaussian rescaling: $E_{kin} = \text{const}$, canonical in the configurational space only

Nosé-Hoover thermostat

- one degree of freedom added: "position" s and "velocity" s
- \bigcirc + kinetic energy $\frac{M_s}{2}\dot{s}^2$
- \bullet + potential energy $-fk_BT \ln s$

Equations of motion ($\xi = \ln s$):

$$\ddot{\vec{r}}_i = \frac{\vec{f}_i}{m_i} - \dot{\vec{r}}_i \dot{\xi}$$

$$\ddot{\xi} = \left(\frac{T_{\text{kin}}}{T} - 1\right) \tau^{-2}$$

Thermostat time constant:

$$\tau = \sqrt{\frac{M_S}{fk_BT}}$$

Provided that the system is ergodic, it can be proven that we get the canonical ensemble

Thermostats

Nosé-Hoover

- canonical
- high quality
- good also for small systems (N-H chain)

- igoplus oscillations, decoupling (fine tuning of au)
- worse for start
- equations of motion w. velocities

Berendsen

- simple
- exponential relaxation
 (i.e., good also for start)

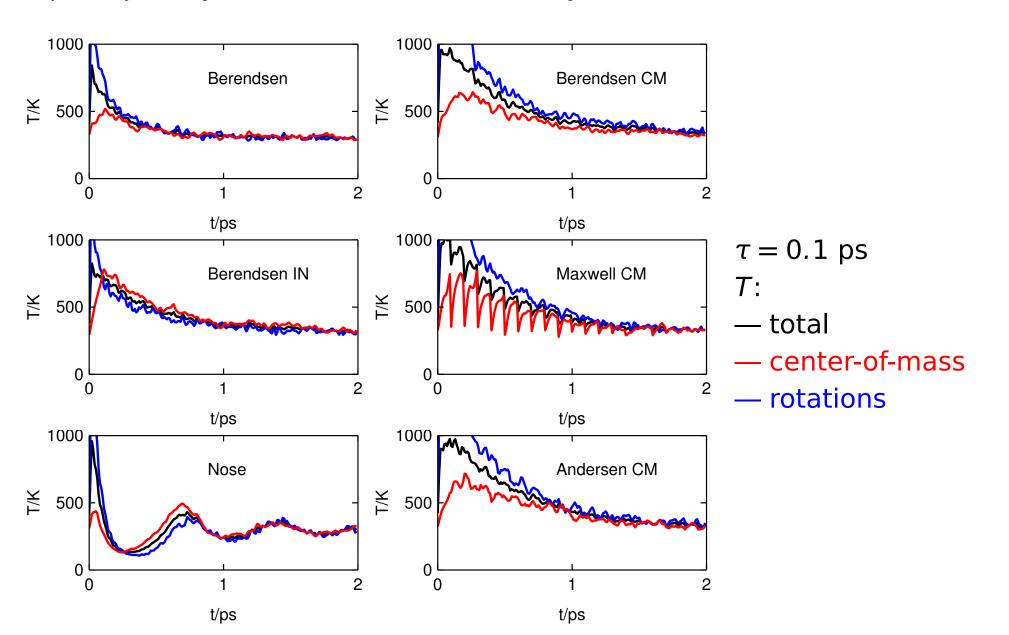
- flying icecube
- not canonical
- poor for small systems

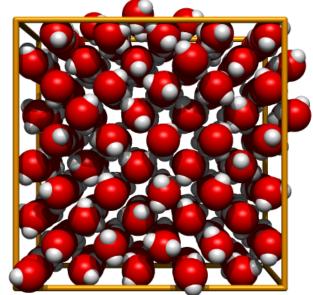
Maxwell-Boltzmann etc.

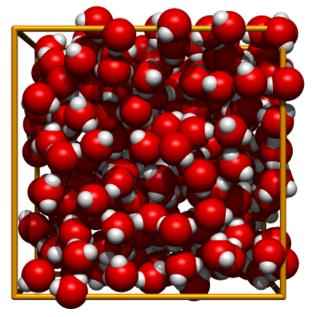
- canonical
- exponential relaxation

- kinetics lost
- problematic with constrained dynamics

2 ps trajectory started from 250 randomly oriented SPC/E water molecules at fcc lattice



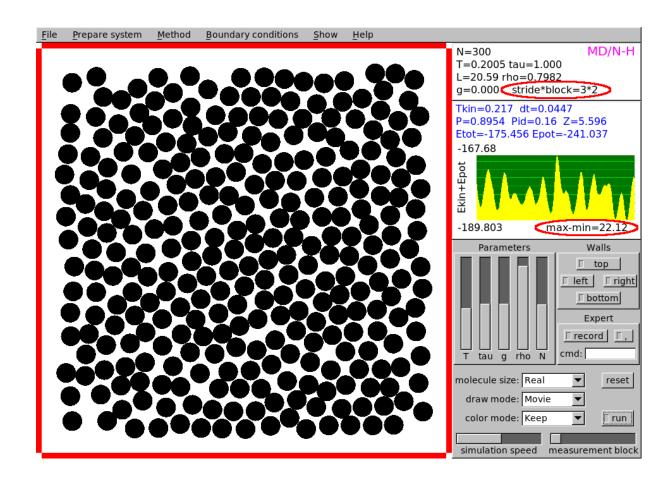




SIMOLANT: Try molecular dynamics by yourself

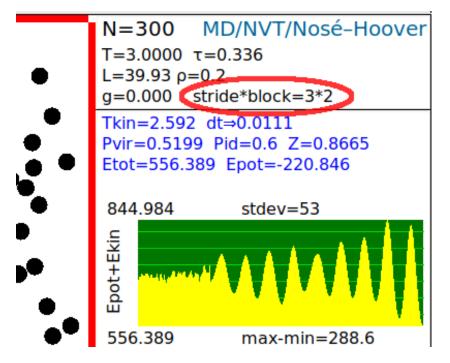
Installation of SIMOLANT (Windows):

- http://old.vscht.cz/fch/software/simolant
- Download simolant-win32.zip
- Create a folder and unpack SIMOLANT there.
 Do not run directly from
 - simolant-win32.zip
 - help would not work
 - you could not find saved files
- 🛑 Run simolant.exe.
- Also supported: linux, MacOS



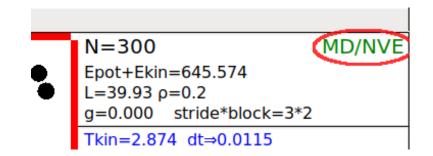
Energy conservation

- Slider "measurement block" to the left (1–3 values averaged per 1 point shown)
- The default is one energy calculated per 3 MD steps (stride).
 This can be changed by slider "simulation speed".
- If slow, decrease # of particles by slider "N"
- Menu:Show → Integral of motion convergence profile



The time development of energy is always scaled from min to max.

- If needed, reset the graph by button reset
- \bigcirc Menu: Method \rightarrow Molecular dynamics (NVE)
 - write "dt=0.01" to the cmd: field
 - write "dt=0.02" to the cmd: field and observe the difference
 - for too long dt, the simulation will switch to MC to avoid crash
 - do not forget to return the default (automatic setup) by "dt=0"



Try thermostats by yourself

- Turn simulation off by button Irun
- \bigcirc Menu: Show \rightarrow Energy/enthalpy convergence profile
- \bigcirc Menu: Method \rightarrow Molecular dynamics (Berendsen thermostat)
- Turn simulation on by button Trun
- \bigcirc Menu: Method \rightarrow Molecular dynamics (Berendsen thermostat)
 - observe the total energy
 - what happens if you change temperature?
 - what happens if you change the correlation time (slider τ)? Do not change the parameters too fast!
- Repeat for other thermostats.
- Repeat for different samples; e.g., liquid: slider "T": $T \approx 0.2$
 - slider " ρ ": $\rho \approx 0.6$