Random numbers in algorithms

s05/2

A deterministic algorithm is a sequence of operations giving the correct answer (or failing to do so in such a way that we know about the failure).
Example: matrix inversion by the Gauss-Jordan elimination with full pivoting.

- A Monte Carlo algorithm as a procedure using (pseudo)random number to obtain a result, which is correct with certain probability; typically, a numerical result subject to a stochastic error.
Example: Solving the traveling salesman problem by simulated annealing.
- A Las Vegas algorithm uses random numbers to obtain a deterministic result.

Example: matrix inversion by the Gauss-Jordan elimination with the pivot element selected at random from several (large enough) pivot candidates.

Example of pseudo random number generator
 $$
n_{i}=7^{5} n_{i-1} \bmod \left(2^{31}-1\right), \quad r_{i}=n_{i} / 2^{31}
$$

Monte Carlo integration (naive Monte Carlo)			
Example: Calculate π by MC integration			
INTEGER n total \# of points INTEGER i INTEGER nu \# of points in a circle REAL x, y coordinates of a point in a sphere REAL rnd ($-1,1$) function returning a random number in interval $[-1,1$)			
nu : = 0 FOR i := 1 TO n DO $x:=\operatorname{rnd}(-1,1)$ $\mathrm{y}:=\mathrm{rnd}(-1,1)$ IF $\mathrm{x} * \mathrm{x}+\mathrm{y} * \mathrm{y}<1$ THEN $\mathrm{nu}:=\mathrm{nu}+1$ PRINT "pi=", 4*nu/n area of square $=4$ PRINT "std. error=", 4*sqrt((1-nu/n)*(nu/n)/(n-1))			

Also "random shooting". Generally

$$
\int_{\Omega} f\left(x_{1}, \ldots, x_{D}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{D} \approx \frac{|\Omega|}{K} \sum_{k=1}^{K} f\left(x_{1}^{(k)}, \ldots, x_{D}^{(k)}\right)
$$

where $\left(x_{1}^{(k)}, \ldots, x_{D}^{(k)}\right)$ is a random vector from region Ω
$\left(|\Omega|=\right.$ area, volume, \ldots; calculation of $\left.\pi: \Omega=(-1,1)^{2},|\Omega|=4\right)$

Usage (δp is the standard error of p)
$\xrightarrow{\text { rel. error }}$

$$
\pi \approx \frac{2 l}{p d^{\prime}}, \text { where } p=\frac{n_{\text {crosses }}}{n_{\text {total }}}, \quad \delta p \approx \sqrt{\frac{p(1-p)}{n-1}}, \delta \pi=\frac{2 l}{p d} \frac{\delta p}{p}
$$

for me: grid: pic/buffon-grid.pdf and buffon.sh / https://www.youtube.com/watch?v=6jkXBqBOR6o

Importance sampling

$$
\sum \mathrm{e}^{-\beta U\left(\Gamma^{N}\right)} f\left(\bar{\Gamma}^{N}\right) \rightarrow \frac{1}{K} \sum_{k=1}^{K} f\left(\vec{r}^{N,(k)}\right)
$$

where $\vec{r}^{N,(k)}$ is a random vector with a probability density $\propto \mathrm{e}^{-\beta U\left(\vec{r}^{N}\right)}$.
Metropolis algorithm: $\vec{\Gamma}^{N,(k+1)}$ generated sequentially from $\vec{\Gamma}^{N,(k)}$

naive MC

importance sampling

Metropolis method (intuitively)

Choose a particle, i (e.g., randomly)
Try to move it, e.g.:

$$
\begin{aligned}
x_{i}^{\mathrm{tr}} & =x_{i}+u_{(-d, d)} \\
y_{i}^{\mathrm{tr}} & =y_{i}+u_{(-d, d)} \\
z^{\operatorname{tr}} & =z+i
\end{aligned}
$$

or in/on sphere, Gaussian,.
so that the probability of the reversed move is the same

- Calculate the change in the potential energy, $\Delta U=U^{\mathrm{tr}}-U$
- If $\Delta U \leq 0$, the change is accepted

If $\Delta U \geq 0$, the change is accepted with probability $\exp (-\beta \Delta U)$, otherwise rejected
Because then it holds for the probability ratio:
$\Delta U>0$ new : old $=p^{\text {tr }}: p=\exp (-\beta \Delta U)$
(moves there and back are compared, always the probability the U-decreasing move $=1$, and of the opposite move = Boltzmann)

Algorithm - details

- Choose a particle (lattice site, ...) to move
- $A^{\mathrm{tr}}:=A^{(k)}+$ random move (spin) of the chosen particle
$\Delta U:=U\left(A^{\operatorname{tr}}\right)-U\left(A^{(k)}\right) \equiv U^{\mathrm{tr}}-U^{(k)}$
- The configuration is accepted $\left(A^{(k+1)}:=A^{\operatorname{tr}}\right)$ with probability $\min \left\{1, \mathrm{e}^{-\beta \Delta U}\right\}$ otherwise rejected:

Version 1	Version 2	Version 3
$u:=u_{(0,1)}$	$u:=u_{(0,1)}$	IF $\Delta U<0$
IF $u<\min \left\{1, \mathrm{e}^{-\beta \Delta U}\right\}$	IF $u<\mathrm{e}^{-\beta \Delta U}$	THEN $A^{(k+1)}:=A^{\text {tr }}$
THEN $A^{(k+1)}:=A^{\text {tr }}$	THEN $A^{(k+1)}:=A^{\text {tr }}$	ELSE
ELSE $A^{(k+1)}:=A^{(k)}$	ELSE $A^{(k+1)}:=A^{(k)}$	$u:=u_{(0,1)}$
		IF $u<\mathrm{e}^{-\beta \Delta U}$
		THEN $A^{(k+1)}:=A^{\operatorname{tr}}$
		ELSE $A^{(k+1)}:=A^{(k)}$

$k:=k+1$ and again and again

How to choose a particle to move

- In a cycle - check the reversibility!

Deterring examples of microreversibility violation:
Three species A, B, C in a ternary mixture moved sequentially in the order of A-B-C-A-B-C-... Sequence: move molecule A - move molecule B - change volume - \cdots

- Randomly

Acceptance ratio

$$
\chi=\frac{\text { number of accepted configurations }}{\text { number of all configurations }}
$$

χ depends on the displament d. Optimal χ depends on the system, quantity, algorithm. Often $\mathbf{0 . 3}$ is a good choice. Exception: diluted systems...

