Random numbers in algorithms

 A deterministic algorithm is a sequence of operations giving the correct answer (or failing to do so in such a way that we know about the failure).

Example: matrix inversion by the Gauss–Jordan elimination with full pivoting.

 A Monte Carlo algorithm as a procedure using (pseudo)random number to obtain a result, which is correct with certain probability; typically, a numerical result subject to a stochastic

Example: Solving the traveling salesman problem by simulated annealing.

A Las Vegas algorithm uses random numbers to obtain a deterministic result. Example: matrix inversion by the Gauss-Jordan elimination with the pivot element selected at random from several (large enough) pivot candidates.

Example of pseudo random number generator

$$n_i = 7^5 n_{i-1} \mod (2^{31} - 1), \quad r_i = n_i / 2^{31}$$

Monte Carlo integration (naive Monte Carlo)

Example: Calculate π by MC integration

Also "random shooting". Generally

$$\int_{\Omega} f(x_1, \dots, x_D) dx_1 \dots dx_D \approx \frac{|\Omega|}{K} \sum_{k=1}^{K} f(x_1^{(k)}, \dots, x_D^{(k)})$$

where $(x_1^{(k)},\ldots,x_D^{(k)})$ is a random vector from region Ω $(|\Omega|=$ area, volume, ...; calculation of π : $\Omega=(-1,1)^2,\,|\Omega|=4)$

Metropolis method (intuitively)

- Choose a particle, i (e.g., randomly)
- Try to move it, e.g.:

$$x_i^{\text{tr}} = x_i + u_{(-d,d)},$$
 or in/on sphere, $y_i^{\text{tr}} = y_i + u_{(-d,d)},$ Gaussian,... $z_i^{\text{tr}} = z_i + u_{(-d,d)}$

so that the probability of the reversed move is the same

- \bigcirc Calculate the change in the potential energy, $\Delta U = U^{tr} U$
- \bigcirc If $\Delta U \leq 0$, the change is accepted

If $\Delta U \ge 0$, the change is accepted with probability $\exp(-\beta \Delta U)$, otherwise rejected

Because then it holds for the probability ratio:

new : old =
$$p^{tr}$$
 : $p = \exp(-\beta \Delta U)$

(moves there and back are compared, always the probability the U-decreasing move = 1, and of the opposite move = Boltzmann)

Algorithm - details

- Choose a particle (lattice site, ...) to move
- \bigcirc $A^{tr} := A^{(k)} + random move (spin) of the chosen particle$
- The configuration is accepted $(A^{(k+1)}) := A^{tr}$ with probability min $\{1, e^{-\beta \Delta U}\}$ otherwise rejected:

Version 1	Version 2	Version 3
$u := u_{(0,1)}$	$u := u_{(0,1)}$	IF Δ <i>U</i> < 0
IF $u < \min\{1, e^{-\beta \Delta U}\}$	IF $u < e^{-\beta \Delta U}$	THEN $A^{(k+1)} := A^{tr}$
THEN $A^{(k+1)} := A^{tr}$	THEN $A^{(k+1)} := A^{tr}$	ELSE
ELSE $A^{(k+1)} := A^{(k)}$	$ELSEA^{(k+1)} := A^{(k)}$	$u := u_{(0,1)}$
		IF $u < e^{-\beta \Delta U}$
		THEN $A^{(k+1)} := A^{tr}$
		$ELSEA^{(k+1)} := A^{(k)}$

Exercise - Buffon's needle

Let a needle of length l be tossed randomly on a plane with parallel lines d units apart, $l \le d$. The probability that the needle crosses a line is $p = 2l/\pi d$.

[Georges-Louis Leclerc, Comte de Buffon, 1707–1788]

Proof:

expression (a < b)gives 1 if the inequality holds true, 0 other-

$$p = \frac{1}{d/2} \int_0^{d/2} \frac{dz}{\pi/2} \int_0^{\pi/2} d\theta \left(z < \frac{l}{2} \cos \theta \right) = \frac{1}{d/2} \frac{1}{\pi/2} \int_0^{\pi/2} \frac{l}{2} \cos \theta d\theta = \frac{2l}{\pi d}$$

Usage (δp is the standard error of

$$\pi \approx \frac{2l}{pd}$$
, where $p = \frac{n_{\text{crosses}}}{n_{\text{total}}}$, $\delta p \approx \sqrt{\frac{p(1-p)}{n-1}}$, $\delta \pi = \frac{2l}{pd} \frac{\delta p}{p}$

for me: grid: pic/buffon-grid.pdf and buffon.sh / https://www.youtube.com/watch?v=6jkXBqBOR6o

How to choose a particle to move

In a cycle – check the reversibility!

Deterring examples of microreversibility violation:

Three species A, B, C in a ternary mixture moved sequentially in the order of A-B-C-A-B-C-... Sequence: move molecule A – move molecule B – change volume – · · ·

Chaos is better than bad control

Importance sampling

$$\sum \mathrm{e}^{-\beta U(\vec{r}^N)} f(\vec{r}^N) \, \to \, \frac{1}{K} \sum_{k=1}^K f(\vec{r}^{N,(k)})$$

where $\vec{r}^{N,(k)}$ is a random vector with a probability density $\propto e^{-\beta U(\vec{r}^N)}$.

Metropolis algorithm: $\vec{r}^{N,(k+1)}$ generated sequentially from $\vec{r}^{N,(k)}$

 $\chi = \frac{\text{number of accepted configurations}}{1 - \frac{1}{2}}$

Acceptance ratio

 χ depends on the displament d. Optimal χ depends on the system, quantity, algorithm. Often **0.3** is a good choice. Exception: diluted systems. . .

number of all configurations

