
Molecular computer experiment
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Also simulation or pseudoexperiment

REAL EXPERIMENT COMPUTER EXPERIMENT

Record everything in a lab notebook Record everything in a lab notebook

Choose method (device, assay) Choose method (MD, MC, . . . )

Build the experimental apparatus
(from parts)

Download/buy/write a computer program (blocks of
code)

Purchase chemicals, synthetise if not
available

Get a force field, fit/calculate parameters if not avail-
able (e.g., partial charges)

Prepare the experiment Prepare initial configurations, etc.

Perform the experiment, watch
what’s going on

Run the code, observe time development, control
quantities, etc.

Analyse and calculate Calculate mean values (with error estimates)

Clean the laboratory Make backups, erase temporary files

MD or MC?
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Often, MC and MD can be applied to similar systems.

MD

realistic models, complex molecules (bonds, angles. . . )

condensed matter in general (fluids, solutions; biochemistry)

kinetic quantities (diffusivity, viscosity. . . )

better parallelization, more packages available

MC

simple qualitative models (lattice, hard-sphere-like)

dilute systems

critical phenomena

fluid equilibria

overcoming barriers, exchange of molecules, etc. is easier with MC

less efficient parallelization, fewer packages available

Is it correct?
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Systematic errors:

inaccurate molecular model (force field)

neglected quantum effects, neglected many-body forces . . .

small sample (finite-size effects)

insufficient time scale (long correlations, bottleneck problems)

method problems: integration errors (too long timestep), inappropriate thermostat/barostat,
not equilibrated enough, inaccurate treatment of Coulomb forces. . .

Random (stochastic, statistical) errors are essential in stochastic methods

time-correlated

can be decreased by long calculations

Uncertainty (in metrology) includes critical assessment of both the systematic and random errors

Warning: different terminology in different fields (mathematical statistics, metrology, physics,
chemistry)

Simulation methodology
[sleep 3;simul/spceE.sh] 4/18
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Start (initial configuration):

experimental structure (biomolecules)

crystal → liquid (melt), gas → liquid (shrink); Packmol

random configuration (overlaps of molecules = problem in MD)
problem for “ill-defined” models (TIP4P etc.)

lattice models: crystal/chaos

MD: velocities = Maxwell–Boltzmann (approximation enough)

Equilibration → watch graphically
(convergence/time profile)

Measuring the quantities of
interest incl. estimates of errors

Boundary conditions
[simolant] 5/18
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free (vacuum) – droplet, protein in a vacuum . . .
1000 molecules in a cube 103 −→ 83 = 512 are “inside”

periodic (cyclic, torroidal)
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walls (hard, soft, smoothed, made of atoms), pores, slab, . . .

Periodic boundary conditions: MD + 6/18
s06/2

REAL L edge size of the cubic simulation box (cell)
VECTOR r1, r2 where vector r = (r.x,r.y,r.z)

both vectors must lie in the basic box
VECTOR dr := r2 - r1 difference of vectors

(ignoring the boundary conditions)

IF dr.x < -L/2 THEN dr.x := dr.x + L
ELSE IF dr.x > L/2 THEN dr.x := dr.x - L

IF dr.y < -L/2 THEN dr.y := dr.y + L
ELSE IF dr.y > L/2 THEN dr.y := dr.y - L

IF dr.z < -L/2 THEN dr.z := dr.z + L
ELSE IF dr.z > -L/2 THEN dr.z := dr.z - L
Vector dr now goes from r1 to the nearest image of r2

Squared distance to the nearest image:
REAL rr := dr.x**2 + dr.y**2 + dr.z**2

Periodic boundary conditions: MC + 7/18
s06/2

In MC, usually the vector ~r12 = r2− r1 is not needed, the distance is enough

REAL L edge size of the cubic simulation box (cell)
VECTOR r1, r2 where vector r = (r.x,r.y,r.z)

both vectors must lie in the basic box
VECTOR dr := r2 - r1 difference of vectors

(ignoring the boundary conditions)

REAL rr := (L/2 - abs(L/2-abs(dr.x)))**2
+ (L/2 - abs(L/2-abs(dr.y)))**2
+ (L/2 - abs(L/2-abs(dr.z)))**2

Calculations
[../simul/ar/showdrop.sh] 8/18
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Example. We simulate an argon droplet in a periodic cubic simulation cell. Let us have N = 1000
atoms and temperature 85 K. The distance between surfaces of periodic images of droplets should
be equal to the droplet diameter. Calculate the size of the box in Å. Argon density is ρ = 1.4g cm−3,
molar mass M(Ar) = 40 g/mol.

molar volume: Vm = M/ρ

volume per 1 atom: V1 = Vm/NA

volume of N atoms: V = NV1 = NM/ρNA
= 1000 · 0.040kg mol−1/(1400kg m−3 · 6.022×1023mol−1)
= 4.744×10−27m3

sphere radius: 43πR
3 = V ⇒ R = 2.24×10−9 m

box size: L = 90 Å

One more example
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Example. Consider a globular protein of molecular weight of 20 kDa. The den-
sity of the protein is 1.35 g cm−3. Calculate the approximate protein diameter.

m =
20kg mol−1

6.022×1023mol−1
= 3.32×10−23 kg

or 1 Da = 1 g mol−1/NA = 1.6605×10−27 kg (atomic mass unit)

m = 20000 × 1.6605×10−27 kg = 3.32×10−23 kg

V =
m

ρ
=
3.32×10−23 kg

1350kg m−3
= 2.46×10−26m3

4π

3
r3 =

π

6
d3 = V

d =
3

√√√6V
π
=

3

√√√6 · 2.46×10−26m3

π
= 3.61×10−9m

.
= 3.6nm = 36Å

Measurements
10/18
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Trajectory = sequence of configurations (MD: in time)

Convergence profile:
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time development of a quantity
(time profile, )
problems better seen

cumulative (running average, )
can estimate the inaccuracy

Type of statistical treatment:

averaged values (← ergodic hypothesis)

less often fluctuations

Type of quantity:

mechanical (temperature, pressure, internal energy, order parameters. . . )

entropic (S, F, μ,. . . )

structure (correlation functions, number of neighbors, analysis of clusters. . . )

auxiliary or control quantities (order parameters, integrals of motion in MD)



Random errors
11/18
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quantity = (estimate of the mean value) ± (estimate of the error)

Arithmetic average (example of a statistic, also statistical functional, estimator, in metrology
measurement function):

statistic = estimator
statistics = field of mathematicsX =

1

m

m∑

=1
X

Standard error = standard deviation of the statistic, usually denoted as σ

σX =

√√�
X − 〈X〉
�2·

For uncorrelated (independent) X and large m, X
has Gaussian distribution

The estimate of the standard error of uncorrelated
data:

σestim
X =

√√√√
∑m
=1ΔX

2


m(m − 1), where ΔX = X − X

〈X〉 ∈ probability

(X − σX, X + σX) 67.3%

(X − 2σX, X + 2σX) 95.45%

(X − 1.96σX, X + 1.96σX) 95.00%

(X − 3σX, X + 3σX) 99.730%

(X − 5σX, X + 5σX) 99.9999427%

Customs and terminology
12/18
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“estimate of quantity with error/uncertainty”: 123.4 ± 0.5 ≡ 123.4(5) ≡ 123.45
What exactly is the “error/uncertainty”?

Physics:

“error/uncertainty” = σX

(Estimated) standard error/uncertainty, standard deviation of the average (or other statistic)

Loosely: error/uncertainty, standard deviation, error margin/bar, . . .

Custom certainty level in physics = 5σX (〈X〉 ∈ X ± σX with probability 99.999943%)

Biology, economy, politology, engineering, pharmacology:

“error/uncertainty” = 2σX more precisely: 1.96σX

Interval of confidence at 95% confidence level

Loosely: Interval of confidence (without specifying the confidence level)

Chemistry: mostly ignored, if given, nobody knows whether error/uncertainty = σX or 2σX

The type of error/uncertainty must be specified

Analysis of time series and error estimation
[cd simul; autoregr.sh 200+2000]13/18
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Problem: correlations

block method: Xj =
1
B
∑B
=1X+(j−1)B

analysis of correlations ⇒

σX =

√√√√
∑m
=1ΔX

2


m(m − 1)(1 + 2τ) τ =
∞∑

k=1
ck ck =

〈ΔX0ΔXk〉
〈(ΔX)2〉

MC: ck is monotonously decreasing [ex.: ck =
∑
λ 6=1 cλλk, λ ∈ (−1,1)]

MD: ck → c(t) (time autocorrelation function): damped oscillations

even better = both approaches combined:
first to block a bit, then τ ≈ c1
from running average (roughly ≈ 10 blocks):

σestim
X ≈ 0.6[max2nd half(X) −min2nd half(X)]

or to be on the safe side (this formula is approximate):
errX ≈max2nd half(X) −min2nd half(X)

⇒ 〈X〉 ∈ (X − errX, X + errX) with probability ≈ 85% (for long enough time series)

Exercise/Example
[simul/errplot2.sh 32+4096 0.9]14/18
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Generate random correlated data (1st order process):

Xk+1 = qXk + 

where  = [0,1) or Gauss etc., and |q| < 1.

Calculate the arithmetic average incl. error by different methods

Note: it is known analytically,

σX =

√√√1 + q
1 − q

√√√VarX

m
=

1

1 − q

√√√Var

m

where the variance, or fluctuation, is defined by VarX = 〈(X − X)2〉

Time autocorrelation function + 15/18
s06/2

Velocity-velocity autocorrelation function of liquid ar-
gon:
— 150 K, 1344 kg m−3,
— 120 K, 1680 kg m−3.
Results from a 100 ps trajectory for 216 Lennard-
Jones particles

0 0.5 1 1.5

t/ps

0

0.5

1

cv(t)

Typical behavior (MC + MD):

fluid: limt→∞ c(t) = const t−3/2 (hydrodynamic tail)

jumps between states: c(t) ∝ λt (λ just below 1)

Error analysis – addition and subtraction
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Sum of independent measurements: squares of standard deviations are additive

Example. Let us perform thermodynamic integration  =
∫ 1
0 ƒ ()d approximately by the Simp-

son’s formula:

 =
∫ 1

0
ƒ ()d ≈ 1

6
[ƒ (0) + 4ƒ (0.5) + ƒ (1)]

For ƒ () we have measured the following data with standard errors:

 0 0.5 1

ƒ () 1.34(5) 1.57(3) 1.77(6)

Calculate  including the error estimate.

 =
1

6
[1.34 + 4 × 1.57 + 1.77] = 1.565

σ()2 = (0.05/6)2 + (0.03 × 4/6)2 + (0.06/6)2 = 0.000569 ⇒ σ() = 0.024

 = 1.565(24)

Error analysis – division and multiplication
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For division and multiplication, the squares of relative errors are additive

Example. Calculate 3.46(7)/0.934(13).

fraction: 3.46/0.934 = 3.704

rel. error =

s�
0.07
3.46

�2
+
�
0.013
0.934

�2
= 0.0246

abs. error = 3.704 × 0.0246 = 0.091
3.46(7)/0.934(13) = 3.70(9) (or rounded up: 3.70(10))

Error analysis
18/18
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Error of function ƒ of a variable with error is (linearized; i.e., for small σ):

ƒ ( ± σ) = ƒ () ± ƒ ′()σ

ln( ± σ) = ln ±
σ


, exp( ± σ) = exp ± σ exp,

1

 ± σ
=
1


± σ

||2

Example. Calculate the activity of H+ from pH = 2.125(5).

activity:

H+ = 10
−2.125 = exp(−2.125 × ln 10) = 0.00750

error Method 1:

σ = 0.005 × ln 10 ×  = 0.000086
error Method 2:

σ = |10−2.125 − 10−2.125−0.005| = 0.000087
activity with error (uncertainty) estimate:

H+ = 0.00750(9)


