Molecular computer experiment	Periodic boundary conditions: MD + $\frac{6/18}{s06/2}$
Also simulation or pseudoexperiment Sub/2 Also simulation or pseudoexperiment COMPUTER EXPERIMENT Record everything in a lab notebook Record everything in a lab notebook Choose method (device, assay) Choose method (MD, MC,) Build the experimental apparatus Download/buy/write a computer program (blocks of code) Purchase chemicals, synthetise if not available Get a force field, fit/calculate parameters if not available (e.g., partial charges) Prepare the experiment Prepare initial configurations, etc. Perform the experiment, watch Run the code, observe time development, control quantities, etc.	REAL L edge size of the cubic simulation box (cell) VECTOR r1, r2 where vector r = (r.x,r.y,r.z) both vectors must lie in the basic box VECTOR dr := r2 - r1 difference of vectors (ignoring the boundary conditions) IF dr.x < -L/2 THEN dr.x := dr.x + L ELSE IF dr.x > L/2 THEN dr.y := dr.y + L ELSE IF dr.y < -L/2 THEN dr.y := dr.y + L ELSE IF dr.y > L/2 THEN dr.y := dr.y - L IF dr.z < -L/2 THEN dr.z := dr.z + L
Analyse and calculate Calculate mean values (with error estimates) Clean the laboratory Make backups, erase temporary files	ELSE IF dr.z > -L/2 THEN dr.z := dr.z - L Vector dr now goes from r1 to the nearest image of r2 Squared distance to the nearest image
	REAL rr := dr.x**2 + dr.y**2 + dr.z**2
MD or MC? 2/15 306/2 Often, MC and MD can be applied to similar systems. MD • realistic models, complex molecules (bonds, angles) • condensed matter in general (fluids, solutions; biochemistry) • kinetic quantities (diffusivity, viscosity) • better parallelization, more packages available	Periodic boundary conditions: MC + 010 / 000
MC Simple qualitative models (lattice, hard-sphere-like) dilute systems critical phenomena fluid equilibria overcoming barriers, exchange of molecules, etc. is easier with MC less efficient parallelization, fewer packages available	<pre>REAL rr := (L/2 - abs(L/2-abs(dr.x)))**2 + (L/2 - abs(L/2-abs(dr.y)))**2 + (L/2 - abs(L/2-abs(dr.z)))**2</pre>
Is it correct? 3/18 \$06/2 Systematic errors: inaccurate molecular model (force field) neglected quantum effects, neglected many-body forces small sample (finite-size effects) insufficient time scale (long correlations, bottleneck problems) method problems: integration errors (too long timestep), inappropriate thermostat/barostat, not equilibrated enough, inaccurate treatment of Coulomb forces Random (stochastic, statistical) errors are essential in stochastic methods time-correlated can be decreased by long calculations Uncertainty (in metrology) includes critical assessment of both the systematic and random errors Warning: different terminology in different fields (mathematical statistics, metrology, physics, chemistry) Simulation methodology (sleep 3;simul/spceE.sh] 4/18 	Calculations(./simul/ar/showdrop.sh) so6/2Example. We simulate an argon droplet in a periodic cubic simulation cell. Let us have $N = 1000$ atoms and temperature 85 K. The distance between surfaces of periodic images of droplets should be equal to the droplet diameter. Calculate the size of the box in Å. Argon density is $\rho = 1.4 \text{ g cm}^{-3}$, molar mass $M(Ar) = 40 \text{ g/mol}$.molar volume: $V_m = M/\rho$ volume per 1 atom: $V_1 = V_m/N_A$ volume of N atoms: $V = NV_1 = NM/\rho N_A$ = 1000 · 0.040 kg mol ⁻¹ /(1400 kg m ⁻³ · 6.022 × 10 ²³ mol ⁻¹) = 4.744 × 10 ⁻²⁷ m ³ sphere radius: $\frac{4}{3}\pi R^3 = V \Rightarrow R = 2.24 \times 10^{-9}$ m box size: $L = 90$ ÅOne more example
 Start (initial configuration): experimental structure (biomolecules) crystal → liquid (melt), gas → liquid (shrink); Packmol random configuration (overlaps of molecules = problem in MD) problem for "ill-defined" models (TIP4P etc.) lattice models: crystal/chaos MD: velocities = Maxwell-Boltzmann (approximation enough) Equilibration → watch graphically (convergence/time profile) Measuring the quantities of interest incl. estimates of errors 	Example. Consider a globular protein of molecular weight of 20 kDa. The density of the protein is 1.35 g cm ⁻³ . Calculate the approximate protein diameter. $m = \frac{20 \text{kg}\text{mol}^{-1}}{6.022 \times 10^{23} \text{mol}^{-1}} = 3.32 \times 10^{-23} \text{kg}$ or 1 Da = 1 g mol ⁻¹ /N _A = 1.6605 × 10 ⁻²⁷ kg (atomic mass unit) $m = 20000 \times 1.6605 \times 10^{-27} \text{kg} = 3.32 \times 10^{-23} \text{kg}$ $V = \frac{m}{\rho} = \frac{3.32 \times 10^{-23} \text{kg}}{1350 \text{kg}\text{m}^{-3}} = 2.46 \times 10^{-26} \text{m}^{3}$ $\frac{4\pi}{3} r^{3} = \frac{\pi}{6} d^{3} = V$ $d = \sqrt[3]{\frac{6V}{\pi}} = \sqrt[3]{\frac{6 \cdot 2.46 \times 10^{-26} \text{m}^{3}}{\pi}} = 3.61 \times 10^{-9} \text{m} \doteq 3.6 \text{nm} = 36 \text{\AA}$
Boundary conditions [simolant] 5/18 so6/2 • free (vacuum) – droplet, protein in a vacuum 1000 molecules in a cube 10 ³ → 8 ³ = 512 are "inside" • periodic (cyclic, torroidal) • o o o o o o o o o o o o o o o	Measurements10/18 s06/2Trajectory = sequence of configurations (MD: in time)Convergence profile:

