Structural quantities

Correlation functions

- radial distribution function (RDF, also pair correlation/distribution function), $g(r)=$ probability of finding a particle at distance r (from another particle), normalized to ideal gas
structure factor (diffraction \rightarrow Fourier transform of $g(r)$)
- angular correlation function - good for small nonspherical molecules
- time autocorrelation functions

Order parameters

Ordering in the z-direction: $\left\langle\sum_{i} \cos \theta_{i}\right\rangle: \uparrow$ vs. \downarrow
For symmetric molecules: $\left\langle\sum_{i}\left(\frac{3}{2} \cos ^{2} \theta_{i}-\frac{1}{2}\right)\right\rangle: \uparrow$ vs. \leftrightarrow
O Nematic liquid crystal - the "director" is not known:

$$
Q_{\alpha \beta}=\left\langle\sum_{i}\left(\frac{3}{2} \hat{n}_{\alpha, i} \hat{n}_{\beta, i}-\frac{1}{2} \delta_{\alpha \beta}\right)\right\rangle \text {, eigenvector of the max. eigenvalue }=\text { director }
$$

- Formulas detecting local order (e.g., tetrahedral around water molecules), onset of crystallization, etc.

randomly distributed molecules (ideal gas)

liquid
$g(r)=$ pair correlation function $=$ radial distribution function $=$ probability density of finding a particle r apart from another particle, normalized so that for randomly distributed particles (ideal gas) it is 1

Structure of fluids - correlation functions

How to obtain structure - experiment

Diffraction (neutrons, X-ray, electrons) \Rightarrow "structure factor"inverse Fourier transform \Rightarrow RDF

Argon, hard spheres, water

The structure of simple fluid (argon, HS) is organized by shells.

- The structure of water is determined by the tetrahedral geometry of hydrogen bonds.
- After several molecular diameters, the correlations decay to zero.

Also "cumulative radial distribution function"

$$
\rho=N / V=\text { number density }
$$

$$
N(r)=4 \pi \rho \int_{0}^{r} g\left(r^{\prime}\right) r^{\prime 2} \mathrm{~d} r^{\prime}
$$

For $r_{\min }=$ first minimum on the RDF curve, $N\left(r_{\min }\right)=$ "coordination number" $=$ averaged number of molecules in the first shell

RDF from simulations - simple

Histogram of the number of particle pairs, \mathcal{N}_{i}, so that

$$
r \in\left[r_{i}-\Delta r / 2, r_{i}+\Delta r / 2\right) \quad \text { alternatively: } \mathcal{I}_{i}=\left[r_{i}, r_{i}+\Delta r\right)
$$

The volume of the shell

$$
\Delta V_{i}=\frac{4 \pi}{3}\left[\left(r_{i}+\frac{\Delta r}{2}\right)^{3}-\left(r_{i}-\frac{\Delta r}{2}\right)^{3}\right]
$$

Mean number of molecules around a selected particle in case of uniformly distributed molecules (ideal gas, $\rho=N / V$):

$$
\rho \Delta V_{i}
$$

Sum over all particles (1/2 to count each pair just once):

$$
\mathcal{N}_{i}^{\mathrm{id.gas}}=\frac{N}{2} \rho \Delta V_{i}
$$

Radial distribution function:

$$
g\left(r_{i}\right)=\frac{\left\langle\mathcal{N}_{i}\right\rangle}{\mathcal{N}_{i}^{\text {id. gas }}}=\frac{2\left\langle\mathcal{N}_{i}\right\rangle}{N \rho \Delta V_{i}}
$$

SIMOLANT - installation (Windows)

http://old.vscht.cz/fch/software/simolant
or Google simolant
Download simolant-win32.zip
Create a folder and unpack SIMOLANT there.
Do not run directly from simolant-win32.zip!
ORun simolant.exe
Hint: The calculated data are exported to file simolant.txt with a decimal point. If you like decimal comma (useful with Czech localization), click II, in panel "Measure".

Hint: If you restart SIMOLANT, the old simolant.txt is renamed to simolant.bak. The export name simolant can be changed by Menu: File \rightarrow Protocol name..

Simolant: observe RDF by yourself

Menu: Boundary conditions \rightarrow PeriodicMenu: Method \rightarrow Molecular dynamics NPT (Berendsen)Type 'magic number' $\mathrm{N}=209$ to input field "cmd:" (slow computer: $\mathrm{N}=56$, RDF will be truncated)Slide "measurement block" to max, watch $g_{\text {gas }}(r)$Hint: Set "color mode" \rightarrow NeighborsO Increase temperature (slider " T ") to max ($T=5$). The first peak should be smaller.Decrease temperature; at $T \approx 0.8$, you should observe liquid (may take some time to equilibrate).
O Decrease temperature below 0.4: a crystal should form. Try to heat/cool if there are defects.

- You should get the

