
Simulations of molecular systems
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Small molecules may be rigid (nitrogen, water, methane)

Large molecules must be flexible . . . except (some) bonds

Vibrating (classical) bonds:

simplicity and consistency of the
model

code simplicity

more realistic description of flexibility

technical problems with too stiff springs (short
timestep in v MD, short trial moves in MC)

vibrational frequencies (esp. for hydrogens) are so
high that cannot be treated by classical mechanics
anyway

transfer of energy between the fast vibrations and
slow degrees of freedom is slow (they are decou-
pled), unless a stochastic thermostat is used

flexible models are more complicated theoretically

Fixed (constrained) bonds: just opposite

MC: molecules
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Example of a wrong algorithm for a linear molecule with axis (θ,ϕ):

θtr = θ + Δθ[−1,1]
ϕtr = ϕ + Δϕ[−1,1]

Example of a correct algorithm for a general body:

choose an axis randomly:
– any of ̂, ŷ, ẑ in the body frame
– any of ̂, ŷ, ẑ Cartesian coordinates in 3D space
– any random vector

rotate by angle Δα[−1,1], where [−1,1] is a random number uniformly distributed in [−1,1]
Rotation by Δα around ẑ-axis:



cosΔα − sinΔα 0

sinΔα cosΔα 0

0 0 1




MD: bonds
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Integration of the equations of motion for systems with fixed
bond lengths or angles is not the same as the infinitely-large

force constant limit of the corresponding flexible system.

What to fix:

nothing – short timestep, bad equipartition (convergence of different degrees of freedom)

bonds with hydrogen only – longer timestep allowed, better (but not the best) equipartition
GROMACS: special algorithm for H, h = 4 ps

all bond lengths – larger systematic errors, not good for rigid geometries (fullerene) and heavy
atoms

all bond lengths + angles with hydrogens – cheap and less precise, but longer timestep allowed
+ good equipartition

all bond lengths + all angles – WRONG except small molecules

Methods:

SHAKE (+Verlet)

Lagrangian constraint dynamics

Dihedral angle distribution of butane
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United-atom model (CHARMM19) of butane
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Fixed constraints in MD: SHAKE
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Matematical pendulum:

r⃗(
t
−
h
)

r⃗(t) r⃗
Verlet (t +

h)
r⃗(t +

h)

λr⃗(t)

r⃗(t + h) = r⃗Verlet(t + h) − h2

m
ƒ⃗c(t)

= 2r⃗(t) − r⃗(t − h) + h2
ƒ⃗ (t) − ƒ⃗c(t)

m

h2ƒ⃗c(t)

m
= λr⃗(t)

|r⃗(t + h)|2 = |r⃗(t)|2 = 2

[ r⃗Verlet(t + h) − λr⃗(t)]2 = r⃗(t)2

r⃗Verlet(t + h)2 − 2λr⃗Verlet(t + h) · r⃗(t) +λ2r⃗(t)2 = r⃗(t)2

λ ≈ |r⃗Verlet(t + h)|2 − |r⃗(t)|2
2r⃗Verlet(t + h) · r⃗(t) =

|r⃗Verlet(t + h)|2 − 2
2r⃗Verlet(t + h) · r⃗(t)

SHAKE
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General atom–atom bond:

r⃗(t + h) = r⃗Verlet,(t + h) + λ
1/m

1/m + 1/mj
r⃗j

r⃗j(t + h) = r⃗Verlet,j(t + h) − λ 1/mj

1/m + 1/mj
r⃗j

where
↙
2

λ =
|r⃗Verlet,j(t + h)|2 − |r⃗j(t)|2
2r⃗Verlet,j(t + h) · r⃗j(t)

Based on the Verlet method r⃗j = r⃗j− r⃗, rj = |r⃗j|
Center-of-mass is conserved (integral of motion)!

Complex molecules: repeat iteratively until converged

Speed up: superrelaxation

Velocity version: RATTLE, more variants

For m =∞, r⃗ = (0,0,0), r⃗ = r⃗j = r⃗j ⇒ mathematical pendulum

Optimization I + 7/9
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For short-ranged pair potentials (also r-space Ewald):

all pairs (N < 300)

neighbor list (N ≈ 1000)

domain-decomposition algorithms: linked-cell list method

Optimization II + 8/9
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A couple of tricks:

MD: multiple timestep MD

MC: multimoves (near the critical point – critical slowing-down)

MC: identity change, non-Boltzmann sampling, . . .

hybrid MC/MD (not very good)

Programming tricks:

cache

nearest neighbors in periodic boundary conditions

tables: pair potential calculated by splines

Parallel code:

usually based on domain decomposition (linked-cell list)

standard computers 4–32 cores

Graphics Processing Units: thousands of processors, more difficult to program

Kinetic quantities: EMD vs. NEMD
traj/brown.sh 9/9
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Kinetic quantities: diffusivity, electric conductivity, viscosity, heat conductivity

Nonequilibrium molecular dynamics (NEMD)

as in “real experiment” – field or perturbation added
(electric field, thermal gradient, shear stress)

dissipation – heat is generated ⇒ good thermostat needed

dissipation extrapolation to zero perturbation

SLODD

Equilibrium molecular dynamics (EMD)

one equilibrium simulation enough

based on the Linear Response Theory – Green–Kubo: D =
1

3

∫ ∞

0
〈˙⃗r (t) · ˙⃗r (0)〉dt

Einstein: 2tD =
1

3
〈|r⃗(t) − r⃗(0)|2〉


