Verification of the Clausius–Clapeyron equation

Aim: Verify the Clausius–Clapeyron equation by simulations of a 2D model of matter

Software: SIMOLANT

Model: 8-4 type potential (≈ Lennard-Jones in 2D)

$$u(r) = \frac{1}{r^8} - \frac{1}{r^4}$$

truncated at $r_{\rm C} = 4$ and smoothly sewed in.

Attractive walls = potential *u* integrated over a continuous distribution of particles with number density $\rho = N/V = 0.75$:

$$u_{\text{wall}}(d) = \rho \pi \left(\frac{5}{24d^6} - \frac{1}{d^2}\right)$$

Repulsive walls do not contain $-\frac{1}{d^2}$

Units: $k_{\rm B} = R/N_{\rm A} = 1$: "energy and temperature are measured in the same units" Quantities given per 1 atom, not per 1 mol (subscript _{at})

1/14

*sw*1/2

Tasks

- In a system of two phases separated by a flat interface, determine the equilibrium vapor pressure in dependence on temperature (at least two points: simulations #1, #2). Use MD with a thermostat.
- Calculate the mean temperature and pressure, then simulate the vapor by MC and determine the compressibility factor (simula-tion #3).
- Calculate the vaporization enthalpy from the Clausius–Clapeyron equation (corrected for non-ideal behavior of vapor), including the estimated standard error.
- Determine the vaporization enthalpy from an NPT simulation of liquid (simulation #4) and vapor (simulation #3) in the periodic boundary contitions.
- Compare both values.

Simulation methods

- The simulation starts from a random configuration using MC (to remove overlaps), then it automatically switches to MD.
- Recommended method for the equilibrium: Bussi or Berendsen thermostat; other methods incl. MC are possible, too.
- Recommended method for gas and liquid separately: *NPT* MC (*NPT* MD is also possible).

Pressure = averaged force on the top wall:

$$p^{\text{wall}} = \left\langle \frac{f_{\text{wall}}}{L} \right\rangle, \quad L = \text{edge length}$$

 $\langle \cdot \rangle$ = averaging of instantaneous values during the simulation

Alternatively, pressure from the virial of force (no wall needed):

$$p_{yy} = \rho k_{\rm B} T + \frac{1}{DV} \left\langle \sum r_y f_y \right\rangle$$

 p_{yy} = diagonal component of the pressure tensor in the direction of \hat{y} , $\rho = N/V$ = number density^{*}, $V = L^D$, L = edge length, D = dimension (D = 2), the sum is over all pair forces (particle–particle, wall-particle).

*sometimes denoted \mathcal{N} or n

Vaporization enthalpy from the Clausius–Clapeyron equation

4/14 sw1/2

The Clausius–Clapeyron equation (NB: per atom and in our units $R \equiv 1$)

$$\Delta_{\rm vap} H_{\rm m} = -\frac{R \ln(p_1/p_2)}{1/T_1 - 1/T_2}$$

is derived using the following simplifications:

- The vaporization enthalpy does not depend on temperature
- \bigcirc Liquid volume \ll vapor volume
- The ideal gas equation of state holds for the vapor phase.

In the simulation, the first two simplifications are valid (\pm 2%), however, nonideality is sizeable (\approx 30% for T=0.75). More accurate approximation:

The compressibility factor of gas at the saturated vapor pressure does not depend on temperature.

The corrected Clausius–Clapeyron equation is: $(k_B \equiv 1)$

$$\Delta_{\text{vap}}H_{\text{at}} \approx -Zk_{\text{B}}\frac{\ln(p_1/p_2)}{1/T_1 - 1/T_2}$$

Compressibility factor:

$$Z = \frac{pV}{nRT} = \frac{p}{\rho k_{\rm B}T}$$

where Z is approximated by the value at the mean temperature $T = (T_1 + T_2)/2$.

Vaporization enthalpy from *NPT* **simulations of liquid and gas**

A simulation at constant temperature and pressure (*NPT* ensemble: N = constant number of particles, P = constant pressure, T = constant temperature) gives the enthalpy:

$$H = \langle E_{\text{pot}} \rangle + \langle E_{\text{kin}} \rangle + P \langle V \rangle$$

In order to get the vaporization enthalpy, both vapor and liquid is simulated:

$$\Delta_{vap}H_{at} = \frac{H(g) - H(I)}{N}$$

Also, Z of vapor for the last step is determined

NB. In 3D, vapors are dilute and the following approximations hold:

$$\bigcirc \rho(I) \gg \rho(g) \ (\rho = N/V = number density)$$

• vapor = ideal gas $\Rightarrow p\langle V \rangle \approx k_{\rm B}T$

 \bigcirc $E_{pot}(g) = 0$ for molecules without internal degrees of freedom (e.g., vibrations)

In addition, $\langle E_{kin}(g) \rangle = \langle E_{kin}(I) \rangle = \frac{f}{2}k_{B}T$. Therefore, gas simulation is not needed:

$$\Delta_{\rm vap}H_{\rm at} \approx -\left\langle \frac{E_{\rm pot}(I)}{N} \right\rangle + k_{\rm B}T$$

i.e., one simple *NVT* simulation suffices.

SIMOLANT – installation (Windows)

- http://old.vscht.cz/fch/software/simolant
 or Google simolant
- Download simolant-win32.zip

Unpack to a suitable folder.
Do not run directly from simolant-win32.zip, you would not find files...

Run simolant.exe

Hints:

- The calculated data are exported to file simolant.txt with a decimal point. If you like decimal comma (useful with Czech localization), click I, in panel "Measure". SIMOLANT does not detect the localization.
- If you restart SIMOLANT, the old simolant.txt is renamed to simolant.bak. Optionally, the export name simolant can be changed by Menu: File \rightarrow Protocol name..

Vapor pressure – setup

Default number of atoms = 300.

- On a slow computer, decrease the number of atoms (slider "N"), but not below 150.
- Menu: <u>Prepare system</u> \rightarrow Vapor-liquid equilibrium
- Menu: Show → Quantities
 or Energy/enthalpy convergence profile ^a
- Slider "simulation speed" (right bottom) to maximum (only every 15th configuration is shown and analyzed)
- Slider "measurement block" to maximum (block = average of 100 points)
- Hint: Some speed can be gained by turning off drawing: draw mode: Nothing Do not forget to return back to know what's going on!
- ^aBut not Minimum nothing would be calculated!

Vapor pressure – simulation #1 at T_1

- Set temperature (leftmost slider "T", not " τ ") to $T_1 \in [0.5, 0.6]$
- the value of "T" is shown in the data block top right
- the lower temperature, the more precise ... but a faster computer is needed
 - geeks with cool comps: use $T_1 = 0.5$
 - school notebooks: use $T_1 = 0.6$
 - golden mean: use $T_1 = 0.55$
- **Hint:** fine slider move = cursor keys \uparrow and \downarrow
- Hint: also can be typed to field cmd: T=0.55 + Enter
- Simulate until the system is equilibrated
- Click record. Do not change simulation parameters during recording!
- After a while, click record again. The results will be shown. The recommended number of blocks (n= right top) is at least 50, better over 100. The relative standard error of quantity P(top wall)[†], as given in (), should be less than 10%.
 - If not accurate enough, select continue.
 - If OK, select save (overwrite "simolant.txt" and clear).

[†]optionally Pyy

Vapor pressure – simulation #2 at T_2

- Repeat for a higher temperature, approximately $T_2 = T_1 + 0.15 \in [0.65, 0.75]$ A smaller number of blocks (about one half as for T_1) is sufficient because the pressure is higher and the relative statistical error smaller (but the gas is less ideal)
- Record the results by record; since file simolant.txt is present, you will be prompted append to "simolant.txt" and clear

Data analysis I

The results are in file simolant.txt.

You should find two data blocks headed with lines:

If you have typed append to... more than twice, you will find more blocks...

In block #1, find temperature Tkin and pressure P (top wall), denote them as p_1 and T_1 .

- Tkin may only slightly differ from the temperature T_1 you have set.
- Alternatively, the virial pressure component Pyy can be used as p_1 . It should be on average the same, but it is a bit less accurate (more statistical noise).

Find the value p_2 for temperature T_2 from block #2

Calculate the mean temperature and pressure:

$$\overline{T} = \frac{T_1 + T_2}{2}, \quad \overline{p} = \sqrt{p_1 p_2}$$

Note the geometric mean for pressure – the pressure–temperature dependence is exponential. Be careful, in case of a wrong value, the subsequent simulations would be wrong!

Compressibility factor of gas in the *NPT* **ensemble: simulation #3**

11/14 sw1/2

will be calculated in the periodic boundary contitions. At low pressure, MC is more efficient.

- Menu: <u>Boundary conditions</u> \rightarrow <u>Periodic</u>
- Set temperature to $\overline{T} = (T_1 + T_2)/2$ using cmd: T = number + Enter

Set pressure to $\overline{p} = \sqrt{p_1 p_2}$: P=number + Enter

- $\bigcirc Menu: \underline{M}ethod \rightarrow Monte Carlo NVT (\underline{M}etropolis)$
- Slider " ρ " to the lowest value (gas); if a big droplet persist, set in cmd: rho=0.001 + Enter
- Menu: <u>Method</u> → Monte Carlo N<u>P</u>T (Metropolis). Droplets should disappear!
- Menu: Show \rightarrow Volume convergence profile and reset view (right bottom)
- Slider "measurement block" can be shortened a bit to gain speed
- Let equilibrate, check that you see gas, and turn set MC move off.
- Push record and generate 10–20 blocks.
- Save using <a>F <a>I <
- Find the value of Z in the last data block in simolant.txt
- Find also enthalpy H will be needed later as H(g)

In the productive MC run, the displacement sizes must be constant!

Vaporization enthalpy from the Clausius–Clapeyron equation

Calculate the vaporization enthalpy from the values obtained above $(T_1, p_1 \text{ from } \#1, T_2, p_2 \text{ from } \#2, Z \text{ from } \#3)$:

$$\Delta_{\rm vap} H_{\rm at} = -Z \frac{\ln(p_1/p_2)}{1/T_1 - 1/T_2}$$

12/14

*sw*1/2

Do not forget to estimate the statistical (random) errors (uncertainties)! In the result file simolant.txt, the standard errors[‡] estimated using the block method are given. It is sufficient to consider the errors in p₁ and p₂ only because the temperatures and Z are much more precise.

$$\sigma(\Delta_{\text{vap}}H_{\text{at}}) = Z \frac{\sqrt{\sigma_{\text{rel}}(p_1)^2 + \sigma_{\text{rel}}(p_2)^2}}{|1/T_1 - 1/T_2|}$$

where $\sigma_{rel}(p_i)$ are relative errors, in file simolant.txt given in %

[‡]Standard error = estimated standard deviation of the average caused by stochastic noise. *Uncertainty* includes both the stochastic and systematic errors.

Vaporization enthalpy from NPT simulations #3 and #4

Repeat the calculation of page 11 for liquid (simulation #4). You have already set the periodic boundary contitions, temperature, and pressure. Continue:

- Push set MC move to get the trial displacement adjusted
- Menu: <u>Method</u> → Monte Carlo NVT (<u>Metropolis</u>)
- Slide " ρ " (density) until the configuration is a homogeneous liquid without cavities and pressure fluctuates around $\overline{p} \longrightarrow$
- Menu: <u>Method</u> → Monte Carlo N<u>P</u>T (Metropolis) §
- Let equilibrate and turn set MC move off.
- Push record and generate at least 10 blocks
- Save using Irecord
- Find the value of enthalpy H of liquid
- Calculate the vaporization enthalpy $\Delta_{vap}H_{at} = \frac{H(g) H(l)}{N}$ and its standard error

[§]MD NPT Berendsen is also possible, with a slightly higher systematic error

13/14

*sw*1/2

In the productive MC run, the displacement sizes must be constant!

Results and discussion

- Write down both results of the vaporization enthalpy:
 - from the Clausius–Clapeyron equation, and
 - from the difference of the enthalpies of liquid and gas.
- Are both values in agreement at the 95% confidence level? To answer this question:
 - Calculate the difference of both values,
 - calculate the standard error of this difference,
 - determine the 95% confidence range.
- Which method of determining the vaporization enthalpy is more accurate?
- Which method is subject to more severe systematic errors?
- What is the most common method used in real experiment to determine the vaporization enthalpy?