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The bridge function and the background correlation function (and consequently the radial distribution function) of the pure hard sphere
fluid are expanded up to the sixth power in density. The calculations are based on the Ree–Hoover representation of the diagrams
and Monte Carlo integration. The coefficients as functions of the particle–particle separation are fitted to splines taking into account
discontinuities in higher derivatives up to the term of the order of (r − const)5.
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1 Introduction

The structure of fluids is described by various distribution functions [1]. Among them, the radial distri-
bution function (RDF) g(r), also called the pair correlation function, and the bridge function B(r) are
most important. The RDF expresses the normalized probability of finding a pair of particles r apart. It
can be generalized to the background correlation y(r) function which describes a probability of finding a
pair of cavities of sphere size r apart; it is nonzero even when the spheres overlap. The bridge function is
the “most elementary” function in the following sense: (i) it is given by the smallest set of diagrams, (ii)
y(r), g(r), and other functions can be calculated from it via the Ornstein-Zernike equation, and (iii) g(r)
is relatively insensitive to the bridge function, i.e., it is enough to know the bridge function with a low
precision to obtain an accurate RDF. All these functions are used in perturbation theories of fluids.

The terms of the expansion of both functions up to the second order in density are known analytically [2].
The third term in the RDF was calculated by Monte Carlo (MC) integration [3] and for the bridge function
later [4,5]. In addition, the bridge function can be expressed by the h-bond expansion [7] (h = g− 1 is the
total correlation function).

In this work we first review the diagrammatic techniques used, provide details on the diagrammatic and
numerical algorithms, and finally fit the calculated data to splines with variable order. Extensive tables of
results, technical details, and computer code for calculation of the functions, are available [6].

2 Theory

2.1 Mayer expansion

The density expansions of the background correlation and bridge functions read as [1]

y(r) = 1 + H1(r)ρ + H2(r)ρ2 + . . . , (1)

B(r) = E2(r)ρ2 + E3(r)ρ2 + . . . , (2)

where functions Hn and En are given by integrals represented by diagrams with f -bonds (see [1] for details
and combinatorial factors). Here f is the Mayer function, f = e − 1 = exp[−u(r)/kT ] − 1, and u is the
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particle–particle potential. From the background correlation function, the RDF g(r) can be calculated by

g(r) = e(r)y(r).

The background correlation function is more general because e(r) is small or zero at short separations and
information in g(r) in this region is lost.

We consider a fluid of hard spheres of diameter σ. This diameter will be used as a unit length; e.g., the
reduced number density, ρ = Nσ3/V , will be referred to as “number density”. Then f(r) = −1 for r < 1
and f(r) = 0 otherwise.

Functions Hn(r) are given by the sums over all connected diagrams with two white points not connected
by a bond and n black points. The white points, called also root points, represent particles with fixed
positions of distance r. The integration is performed over the black points, called also ρ-points or field
points. None of these n+2 points is a black-articulation point; the black-articulation point is defined here
as a point which, if removed, leaves a disjoint diagram of only black points.

Diagrams in Hn(r) can be classified into chain diagrams (at least one black point is a white-articulation
point; if removed, the diagram splits into two parts, each containing one white point; in other words, both
root points make an articulation pair), parallel diagrams (if both white points are removed, the diagram
splits into at least two parts), and elementary diagrams (neither chain nor parallel).

Function En(r) is given as the sum over all elementary diagrams, in other words, all diagrams of Hn

containing at least two paths of points connecting the root points which remain connected even if both
root points are removed.

The first terms in the expansions are known analytically [2]:

H1(r) = γ1(r), (3)

H2(r) = 1
2γ2

1(r) + ε2(r) + γ2(r) + 2δ2(r), (4)

E2(r) = ε2(r), (5)

(6)

where

γ1 = =
{

π
12(r + 4)(r − 2)2 for 0 ≤ r ≤ 2,
0 for r ≥ 2,

(7)

γ2 = =


π2

630(r6 − 63r4 + 315r2 − 525) for 0 ≤ r ≤ 1,
− π2

1260r (r3 + 12r2 + 27r − 6)(r − 3)4 for 1 ≤ r ≤ 3,
0 for r ≥ 3,

(8)

δ2 = =
{

π2

1260r (r5 + 4r4 − 51r3 − 10r2 + 479r − 81)(r − 2)2 for 1 ≤ r ≤ 2,
0 for r ≥ 2

ε2 = =

−1
2γ2

1(r) + π
2 X(r) for 1 ≤ r ≤

√
3,

−1
2γ2

1(r) for
√

3 ≤ r ≤ 2,
0 for r > 2

X(r) =
(
− 3

280
r4 +

41
420

r2

)
(3− r2)1/2
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For completeness, we define H0(r) = 1 and E0(r) = E1(r) = 0.

2.2 Topological analysis and the Ree–Hoover expansion

In our computer code, a diagram (more precisely a labeled diagram) is represented by a binary number
in which 1 marks a presence of an f -bond and 0 its absence. In a diagram consisting of two white and n
black points, there are b = (n + 2)(n + 1)/2− 1 possible bonds because there is no white-white bond. For
n = 6 (our maximum), this is 27 bit which can be coded in one four-byte integer; storing all possible 227

diagrams thus requires moderate half a gigabyte of memory.

2.2.1 Labeled Mayer diagrams. The algorithm takes all 2b diagrams one by one and first excludes
diagrams which are not connected or which contain a black-articulation point; for obtaining elementary
diagrams, white-articulation points and existence of two parallel paths connecting both white points are
checked as well. This procedure results in a table of labeled Mayer diagrams with attached weights 0, −1,
or +1. Weight 0 means that the diagram is not to be included. Weights +1 (−1) mean that the diagram
should be included and it contains an even (odd) number of f -bonds, respectively.

2.2.2 Labeled Ree–Hoover diagrams. In the second step, the Mayer diagrams are converted into Ree–
Hoover (RH) [8] diagrams in which missing bonds are replaced by e-bonds, e = f + 1. A RH diagram is
coded by binary 1 for an f -bond and binary 0 for an e-bond. The conversion proceeds in a loop over all
pairs of points (but white-white). For each Mayer diagram not containing an f -bond between this pair
(i.e., containing 1 = e − f), the weight of the corresponding diagram with this f -bond is added. This
procedure results in a table of labeled RH diagrams with attached weights.

The number of RH diagrams (of nonzero weight) is smaller than the number of Mayer diagrams. This
original reason [8] for introducing the RH diagrams is now irrelevant. However, as we shall see in Section
2.4, the computer code base on RH diagrams is simpler.

2.2.3 Unlabeled Ree–Hoover diagrams. In the third step, the labeled RH diagrams of nonzero weight
are classified into classes of topologically equivalent (isomorphic) RH diagrams. The equivalence test is
based on generating all labelings (renumberings) of the diagram: labeled diagram S1 is topologically
equivalent to labeled diagram S2 if there exists a renumbering L(S1) of S1 such that L(S1) = S2. These
classes are often referred to as “unlabeled” diagrams. We will loosely interchange terms “unlabeled diagram
S” and “class of labeled diagrams topologically equivalent to (labeled) diagram S”. In the computer code,
an unlabeled diagram is represented by the labeled diagram with the smallest binary number, called the
canonical representation. The number of RH diagrams topologically equivalent to diagram S, multiplied
by the diagram weight, will be called the RH weight and denoted by w(S).

2.3 Spanning diagrams

Values of diagrams are calculated by random sampling of spanning diagrams.
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Figure 1. Spanning diagram T = “1230+24”, unlabeled Ree–Hoover diagrams for calculation of E5, and labelings L(S) ⊃ T . See also
the bold line in Table 1.

A spanning diagram (SD; called also spanning graph or framework) T of diagram S is a diagram of two
white points and n black points such that its value can be calculated analytically and T ⊂ S. (T ⊂ S if
each f -bond of diagram T is also an f -bond of diagram S.) We use one or more chains between the white
points, optionally decorated by trees of black points. An example of a SD is shown in figure 1.

For convenience, a symbolic code is assigned to a SD. White points are labeled 0 and 1, black points 2,
. . . , n+1. Each chain composing the SD is represented by a string of digits. Adjacent digits correspond to
an f -bond. The value Γ(T, r) of SD T is a product of terms corresponding to these strings. The value of
“021” (or “031”, etc.) is γ1, see eqn (7), the value of string “0321” is γ2, see eqn (8), for higher γn see [5].
The value of each black point of a tree decoration (e.g., “4” in figure 1) is 4π/3.

2.3.1 Unlabeling factors. The next step in topological analysis is finding unlabeling factors. The unla-
beling factor λ(S, T ) of an unlabeled RH diagram S with respect to labeled SD T is the number of labelings
L(S) such that T ⊂ L(S). The result of this analysis is a table R(T ) organized by canonical representa-
tions S of RH diagrams. At each table entry S, the following information is attached: RH weight w(S),
the unlabeling factor λ(S, T ), the list of labeled diagrams L(S) matching T (i.e., their binary numbers),
and a histogram bin.

2.3.2 Example. An example of the topological analysis is shown in figure 1. The value of E3(r) is given
by five unlabeled RH diagrams listed in column S of the figure. One of four SDs used, “1230+24”, is shown
in column T ; the value of this SD is Γ(“1230+24”; r) = 4π/3 · γ2(r). Only four unlabeled RH diagrams
can be sampled by this SD (see the bold line of Table 1, column unl). Some of the RH diagrams can be
sampled by the SD T in several ways and therefore there are seven labeled RH diagrams matching given
SD T (column lbl).

Spanning diagram “1230+24” is not sufficient for obtaining E3(r) because the first unlabeled RH diagram
of figure 1 is not sampled. In this case SD “12340” is sufficient (but combining several SDs improves
precision). For n > 3 several SDs must be combined to sample all unlabeled RH diagrams.
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Table 1. The used spanning diagrams. lbl and unl denote the number of labeled and unlabeled RH diagrams spanned, respectively, and 108 MC

is the number of MC configurations. In the “total” line, lbl and unl stand for the number of labeled and unlabeled RH diagrams, respectively,

and 108 MC is the total number of MC configurations. The diagrams of the bold line are shown in figure 1. The full tables of 18 and 31 SDs for

n = 5 and n = 6 are available [6].

E3 H3

SD lbl unl MC lbl unl MC

120+130+140 1 1 20 8 4 30
1230+140 6 4 20 10 7 30
1230+24 7 4 20 11 7 30
12340 9 5 20 13 8 30

total 9 5 80 59 12 120

E4 H4

SD lbl unl MC lbl unl MC

120+130+140+150 4 2 20 64 11 10
12340+150 103 37 40 139 53 20
1230+140+150 39 14 20 94 30 20
12340+25 149 46 20 202 67 20
1230+140+25 90 37 20 127 55 20
12340+35 163 34 20 188 44 20
1230+1450 112 32 40 154 42 20
123450 171 47 40 225 67 40
1230+24+25 142 36 20

total 1348 55 220 2276 95 190

E5 H5

total 138648 868 246 190939 1243 498

E6 H6

total 27870727 25149 439 33745015 31040 614

2.4 Monte Carlo integration

In the Monte Carlo integration algorithm, a look-up-table of all 2b diagrams is created. The index is the
diagram binary number. If this number is a number from the list of labeled diagrams L(S) matching T ,
the look-up-table entry contains a pointer to the S-entry of table R(T ), otherwise it contains a pointer to
a void entry.

Random configurations of the SDs are generated by standard Metropolis Monte Carlo procedure (see [5,9]
for details) at constant separation of white points r. All f -bonds (i.e., sphere overlaps) are calculated and
the binary number of this configuration composed. Because f is nonzero if and only if e is zero, this number
describes a diagram with nonzero f -bonds and at the same time zero e-bonds. From the look-up-table,
a histogram bin (of table R(T )) is determined and incremented by 1. (The bin of the void table entry is
incremented, too, but never used.)

The MC integration is sensitive to the quality of random numbers. We use double-precision numbers
with all random bits based on four-tap shift-register generator [10]. Details are discussed in [11].
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2.4.1 Sums over spanning diagrams. If we had just one SD T , the value of Hn(T ; r) would be

Hn(r) = Γ(T ; r)
∑
S

w(S)
H(S; r)

Mλ(S, T )
, (9)

where M is the number of MC configurations and H(S; r) is the histogram value of unlabeled RH diagram
S. The formula for En is analogous.

Unfortunately, one SD is not able to span all RH diagrams and several spanning diagrams have to be
combined. For instance, for the calculation of H6 we used 31 SDs (this is not the minimum set). On the
other hand, one RH diagram may be spanned by several spanning diagrams (on average by 19 for H6).
“Strategy I” described in [9] thus becomes inefficient. More sophisticated “data mining” is required. We
therefore adopted and extended “Strategy II” which makes use of all available information. The value of
Hn(r) (and similarly En(r)) is then given by a weighed sum over all used SDs

Hn(r) =
∑
T

Hn(T ; r) , (10)

where

Hn(T ; r) = Γ(T ; r)
∑
S

W (S, T )w(S)
H(S; r)

M(T )λ(S, T )
. (11)

Here W (S, T ) is a weight (which is to be determined) and M(T ) denotes the number of MC configurations
generated in a run with SD T . If we assume that all contributions (for each MC configuration as well as
each labeling out of λ(S, T ) labelings) are independent, we get

W (S, T ) =
1

N(S)
M(T )λ(S, T )

p(S, T )[1− p(S, T )]
, (12)

where N(S) is the normalization constant (so that
∑

T W (S, T ) = 1) and p(S, T ) is the probability of
finding diagram S in samples of SD T . Because we do not know these probabilities in advance and estimate
them, this estimate is biased.

The simplest estimate of p(S, T ) is based on samples of T only,

p(S, T ) =
H(S; r)

M(T )λ(S, T )
. (13)

This choice uses different p(S, T ) for each T . Although in the limit of infinitely many MC steps the
probabilities p(S, T ) do not depend on T , this is not the case of finite number of steps. The differences
in p(S, T ) for several T and lead to an estimator with a considerable bias; in our typical arrangement for
n = 6 the systematic error is of the order of one per cent and bigger than the standard error. To reduce
the bias, we propose a uniform estimate of p(S, T ) which uses all available information,

p(S, T ) = min
{

1,
Hn(r)

w(S)Γ(T ; r)

}
, (14)

where Hn(r) is given by eqn (10). Formulas (10), (11), (12), and (14) thus represent an implicit equation
for p(S, T ) which is iterated until a self-consistent solution is obtained; approximation (13) serves as the
initial estimate. The iterations converge very fast.

The minimum condition in (14) avoids problems with p(S, T ) slightly above 1 which may happen if
p(S, T ) = 1, i.e., all configurations of certain SD T1 are for steric reasons subsets of diagram S while for
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Figure 2. Configurations of spheres leading to: (a) a discontinuity in y(r)′′ at r = 2, (b) a discontinuity in B(r)(4) at r = 1, and (c)

term ∝ (r − 31/2)9/2.

some other diagram p(S, T ′) < 1. In this case W (S, T ′) = 0 (all data for S based on T ′ are discarded) and
W (S, T ) = 1. It never happens p(S, T1) = p(S, T2) for two different diagrams T1, T2.

2.4.2 Optimization of the number of MC steps. The final value (10) is a weighed sum of many
contributions, generated by several SDs. To distribute, at least partly, the available CPU resources to
calculations of individual SDs, we for n > 3 adopted the following algorithm.

A test calculation was made (for r = 1.1) with the same number of MC steps for each SD. Statistical
errors of all RH diagram contributions were estimated. From this set (of 592509 data for H6) we selected,
for each RH diagram, the SD which gives the smallest error. From this set of minimum errors we, for
each SD, selected the RH diagram which has the greatest error. As a result, we get a table of min-max
errors assigned to SDs. The numbers of MC steps were then set to be approximately proportional to these
min-max errors.

2.5 Discontinuities

Because of the discontinuous nature of the hard sphere potential, functions En and Hn contain disconti-
nuities in higher derivatives. These discontinuities have to be taken into account if the functions are to be
expressed by analytic formulas. If data with a higher-order discontinuity are correlated by an analytical
or “more continuous” function, the deviations of the fit from the MC data oscillate in the vicinity of
the discontinuity point and the number of constants needed to fit the data within standard deviations
increases. For instance, omitting the (r−31/2)9/2 term can be compensated by increasing the total number
of adjustable constants by 2 or 3. On the other hand, imposing less continuity conditions may lead to
functions unsuitable for some applications (e.g., if derivatives are needed).

We analyzed and used the continuity conditions up to the fifth derivative.

2.5.1 r = 2. The most pronounced is a jump in the second derivative at r = 2. This jump arises from
diagrams containing a path with one black point as in γ1, eqn (7), at the configuration depicted in figure 2a.
All functions but E2(r) contain this discontinuity; E2(r) contains its square (jump in the fourth derivative
at r = 2) because the only diagram for E2 = ε2 contains two such paths.

2.5.2 r = rrange. Functions Hn(r) and En(r) are zero at large distances, r > rrange. The range is rrange =
n+1 for Hn(r) and rrange = [n/2]+1 for En(r) ([·] denotes the integer part). It holds Hn(r) ∝ (n+1−r)2n

for r → (n+1)− = rrange− because Hn(r) = γn(r) for r ≥ n. More generally, γk(r), k ≤ n, may contribute
to Hn(r) only if r < k + 1 and thus Hn(r) has a jump in 2k-th derivative at r = k + 1.

Function En(r) contains two paths between the root points. For even n the leading term at the range
is given by two paths of the same length (with n/2 black points) and reads as γ2

n/2(r) ∝ (n/2 + 1− r)2n.
For odd n the leading term is given by one path (with n/2 black points—the other path is longer) and
accouts for term γ(n−1)/2 ∝ ((n + 1)/2− r)n−1.

2.5.3 r = 1. The background correlation function expresses a probability of finding a pair of cavities (of
unit diameters) r apart. Therefore it is continuous also at r = 1. Discontinuities are caused by configura-
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Figure 3. The expansion coefficients Hn(r) of the background correlation function.

tions of touching but not overlapping (because we have real fluid around the cavities) spheres. The above
mentioned jump in y(2)′′ is caused by a sphere lying between a pair of cavities r = 2 apart, see figure 2a.
Only configurations of many spheres of this type are possible for r = 1. Therefore the first discontinuity
at r = 1 must be of a very high order. We assumed that the fifth derivative is continuous.

The above probabilistic argument cannot be used for the bridge function. Compact linear configurations
as in figure 2b are possible for n > 2, leading to a jump in the fourth derivative at r = 1.

2.5.4 r = 31/2. In addition, the fifth derivative ε2(r)(5) diverges at r → 31/2− due to configurations
depicted in figure 2c. Detailed analysis of function (5) shows that the leading term is ∝ (r − 31/2)9/2.
Therefore a separate term proportional to (r − 31/2)9/2 was added to splines. The nearest higher term,
(r − 31/2)11/2, was not included.

3 Results

The values of functions Hn(r) and En(r) for n ≤ 6 were calculated with resolution ∆r = 0.01 in the full
range [0, rrange]; values of Hn(r) for r ∈ [rrange − 1, rrange] were calculated directly from Hn(r) = γn(r).
The functions are drawn in figure 3 and 4.

Since the data are correlated, the estimates of standard errors were determined from data blocked by
108 MC steps. The error estimates are then almost unbiased, but subject to uncertainties of about 10%.
To decrease the influence of these “errors of errors” to the fitting procedure, we smoothed the standard
errors; the smoothing was performed separately in [0, 1) and (1, rrange). In addition, too small errors close
to rrange were enlarged. Typical standard errors in the range [1, 2] are less than 10−4 for E3 and H3 and
increase to 10−3 for E6 and H6. The absolute errors increase for r < 1, but the absolute values increase,
too, so that the relative errors are in the range 10−3 to 10−5. For increasing r the absolute errors fast
decrease; the relative errors are not well defined because of null points of the functions, but near rrange

they decrease, too.
Tables of these functions are available on the web [6].
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Figure 4. The expansion coefficients En(r) of the bridge function.

3.1 Tests

As a test, we investigate convergence of partial series

gn(r) =
∑
i=0

Hi(r)ρi

(and similarly Bn) to the RDF and bridge functions [12] for r ≥ 1. An example for ρ = 0.5 is shown in
figures 5 and 6 in the form of differences from the respective theoretical limit, g(r) or B(r). It is seen
that the differences converge to zero. The values of g6(r) and B6(r) for ρ = 0.2 are indistinguishable from
simulation results.

Another test is based on the relation for the compressibility factor Z [1],

Z =
p

ρkT
= 1 +

∞∑
n=1

Bn+1η
n = 1 + 4ηg(1+),

where η = πρ/6 is the packing fraction. By comparing terms one gets the virial coefficients of the y-
expansion (i.e., reduced by the sphere volume)

Bn+2 = 4Hn(1)
(

6
π

)n

.

Our results are in agreement with literature data [9,13], see Table 2. Because the literature data are more
accurate, we used these more accurate data in the correlation.

Finally, the results match within the error bars our previous data [5] for E3, E4, and E5, obtained by
Mayer expansion. The new data are by about one order of magnitude more accurate and also include the
r < 1 region.
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Figure 5. Convergence of the expansion (terms up to ρn) to the RDF at ρ = 0.5. The differences of the partial sums from the
simulation RDF are shown.

Table 2. Comparison of the virial coefficients obtained from g(1+) with literature values

n this work Ref. [9]

5 28.2302(33) 28.22445(10)
6 39.819(13) 39.81550(36)
7 53.342(19) 53.3413(16)
8 68.65(11) 68.540(10)

3.2 Correlation of data

In order to facilitate usage of these functions in computer code, we fitted the data to splines of variable
order in intervals of lengths 1. In addition, the leading term of the discontinuity at r = 31/2 was added.
The final formula reads as

Y (r) =
rrange∑
i=1

(r ∈ [i− 1, i])
ki∑

j=0

Cij(r − i)j + C9/2(r − 31/2)9/2, (15)

where symbol (r ∈ [i− 1, i]) is defined as 1 if r ∈ [i− 1, i] and 0 otherwise and Y stands for either Hn or
En. Coefficients C are determined by minimization of the objective function

σ2 =
1

100rrange + 1−N

100rrange∑
k=0

∆2(0.01k), (16)



February 17, 2006 15:48 Molecular Physics KolafaLabik

Density expansion of the RDF and bridge function of the hard sphere fluid 11

1 1.5 2 2.5 3

r

-0.05

0

0.05

0.1

0.15

B
n(

r)
-B

(r
) n=2

n=3

n=4

n=5

n=6

Figure 6. Convergence of the expansion (terms up to ρn) to the bridge function at ρ = 0.5. The differences of the partial sums from
the bridge function obtained by numerical inversion of simulation RDF are shown.

Table 3. Spline continuity conditions. The functions exhibit a jump in the derivative order indicated. For r = 31/2, see the text.

r E3 E4 E5 E6 H3 H4 H5 H6

1 4 4 4 4 6 6 6 6
31/2 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
2 2 2 2 2 2 2 2 2
3 - 8 4 4 4 4 4 4
4 - - - 12 6a 6 6 6
5 - - - - - 8a 6b 6b

6 - - - - - - 10a 6b

a function γn at r = rrange
b the actual order is higher

where the residual function is

∆(r) =
YMC(r)− Y (r)

σMC(r)
(17)

and N is the number of independent constants C. YMC and σMC stand for the MC result of variable Y
and its standard error, respectively.

Coefficients Cij are subject to constraints to guarantee the continuity conditions, see section 2.5. Func-
tions Hn are sewed with γn at r = n = rrange− 1. All continuity conditions used in splines are summarized
in Table 3.

The correlation required determination of the orders of polynomials (number of constants) in all subin-
tervals. Therefore we observed a graph of function ∆(r) which should exhibit random scattering with
normal distribution and no cumulation of errors at any subinterval. Since systematic trends are difficult to
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Figure 7. The residual function ∆(r) (dots) and its smoothed version (line) of the E5(r) fit (top curve). Second from top: ∆(r) with
the order of the polynomial in interval [0, 1] (marked by thick line) decreased from 7 to 6, third from top: in [1, 2] decreased from 8 to 7,

bottom: in [2, 3] decreased from 12 to 11.

see, we also used a smoothed function (a five-point formula [14] repeated three times). The best correlation
gives the value of σ around unity; in addition, decreasing the number of constants leads to a significant
increase in σ while increasing the number of constants leads to only a marginal improvement.

An example of the correlation is shown in figure 7. It is seen that decreasing the order (number of
constants) of the polynomials in the respective subintervals leads to an apparently smaller precision of the
fit.

Functions Hn and En, n ≤ 6, are available [6] in the form of computer code, both in FORTRAN 77 and
ANSI C version.

4 Concluding remarks

The density expansion coefficients of the radial distribution and bridge functions of the pure hard sphere
fluid were calculated up to ρ6 and finally expressed via general polynomial splines. The results for ρ6

are new, lower-order results are more accurate than previous data. These functions may be useful in
perturbation theories of liquids.

Approaches from many branches of up-to-date computer science had to be used until final formulas
(computer code) could be written: symbolic algebra, diagram analysis, high-precision random numbers,
data mining, correlation by splines tailored to various discontinuities, etc.
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[10] R. M. Ziff. Comput. Phys., 12, 385 (1998).
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