
1

MACSIMUS manual

benzocaine (ethylaminobenzoate)

parameter_set = charmm21

HA

|

HA-CT-HA

|

HA-CT-HA

|

OSn.2

|

Cp.7=On.5

|

C6R--C6R-HA

| |

HA-C6R C6R-HA

| |

HA-C6R--C6R-NPn.5^-Hp.25

|

Hp.25

Most often used links:

2.2 Blend synopsis and options

9.2 Cook synopsis and options

9.2.5 Cook input data

MACromolecule SIMUlation Software

c© Jǐŕı Kolafa 1993–2018

MACSIMUS may be distributed under the terms of the
GNU General Public Licence

Credits:

• ray: Mark VandeWettering “reasonably intelligent raytracer”

• CHARMM force field (files: charmm*.par, charmm*/*.rsd)

• GROMOS force field (files: gromos*.par, gromos*/*.rsd)

• amoeba implementation by Z. Wagner

• moil support by J. Schofield

• several bug fixes by T. Trnka

• bug discovered by N. Parfenov

Contents

I Program ‘blend’ version 2.2h 14

1 Introduction 16

1.1 Force fields . 16

1.2 ‘blend’ overview . 16

1.3 Versions . 17

2 Running blend 18

2.1 Environment . 18

2.2 Synopsis . 19

2.2.1 Global options . 19

2.2.2 par-options and parameter files . 20

2.2.3 mol-options and molecular files . 22

2.2.4 Extra-options . 29

2.3 File extensions . 34

2.4 Run-time control . 37

2.4.1 get data format for input . 37

2.4.2 Scrolling . 38

2.4.3 Error handling . 39

2.4.4 Interrupts . 39

2.5 Showing molecules graphically . 40

2.5.1 X11 Graphics . 40

2.5.2 Playback output . 43

2.6 Energy minimization . 44

2.7 Missing coordinates . 44

3 Force field and the parameter file 45

3.1 Structure of the parameter file . 45

3.2 Force field generation options . 45

3.3 Table of atoms . 48

2

3

3.4 Non-bonded forces . 49

3.4.1 Selection of site-site and Coulomb energy terms 50

3.4.2 Combining rules for the Lennard-Jones parameters 50

3.4.3 Table of site-site parameters . 51

3.4.4 Non-bonded fixes . 52

3.4.5 Table of polar atom parameters . 52

3.4.6 Table “shellrep” of repulsive counterparts 53

3.4.7 Table of axially polar bonds . 53

3.4.8 Table of 1–3 axially polar groups . 54

3.4.9 Table defining water models . 54

3.4.10 Table defining the protein backbone types 56

3.5 Non-bonded potential cutoff . 57

3.6 Bond potential . 57

3.7 Bond angle potential . 58

3.8 Torsions . 59

3.8.1 Torsion angle . 59

3.8.2 Torsion potential . 59

3.8.3 Conversion of dihedrals . 60

3.8.4 Cis and trans-dihedrals . 61

3.8.5 Implementation of the torsion potential 62

3.8.6 Chirality . 62

3.8.7 Dihedrals in aromatic rings . 63

3.8.8 Tables of dihedrals and impropers . 63

3.8.9 Atom matching rules for finding the energy terms 64

4 Description of molecules 65

4.1 Molecular file (mol-file) format . 65

4.2 Chemical file format . 66

5 Output format (ble-file) 69

5.1 Global parameters . 69

5.2 Site types . 71

5.3 Non-bonded fixes . 71

5.4 Header of molecule . 72

5.5 One species (molecule) data . 72

5.6 Table of sites . 73

5.7 Tables of bonds and bond angles . 74

4

5.8 Tables of dihedrals, impropers and aromatics . 75

5.9 Table of axial polarizability tensors . 76

5.10 Table of dependants . 76

5.10.1 Lone (out-of-plane) dependants . 77

6 Examples 79

6.1 Example 1: Protein in water . 79

6.2 Example 2: Cluster Na4Cl4 . 80

6.3 Crystals . 81

7 Problems 84

7.1 Bugs and caveats . 84

7.2 Trouble shooting . 84

7.3 Frequently asked questions . 86

7.3.1 Free molecules . 86

7.3.2 Prevent molecules from evaporating . 87

7.3.3 One or more molecules? . 87

II Program ‘cook’ version 2.9 88

8 Overview 90

8.1 Features of cook . 90

8.2 History . 91

8.3 Compile-time versions of cook . 92

8.4 Disclaimer . 94

9 Running cook 95

9.1 Where is . 95

9.2 Synopsis . 95

9.2.1 File parameters . 95

9.2.2 Options . 96

9.2.3 File extensions . 102

9.2.4 Program flow . 107

9.2.5 Input data . 107

9.2.6 Interactive and batch control . 139

9.2.7 Interrupt . 139

10 Parallelization 140

5

10.1 Compiling . 140

10.2 Running . 140

10.3 Linked-cell list and Ewald parallelized . 140

10.4 Ewald k-space and r-space running in parallel 141

10.5 Pair sums for a single big molecule parallelized 141

11 Algorithms and parameters 142

11.1 Accuracy . 142

11.1.1 Errors of constraints . 143

11.1.2 Energy conservation . 143

11.1.3 Self-consistent field accuracy . 144

11.2 How to set Ewald parameters α and κ . 144

11.2.1 Simple way . 145

11.2.2 More accurate way . 145

11.2.3 Most accurate way . 145

11.3 Constraint dynamics . 147

11.3.1 The SHAKE algorithm with Verlet integration 147

11.3.2 Constraint dynamics with Gear integrators 148

11.3.3 Constraint forces by Lagrange multipliers 149

11.3.4 Correcting constraints . 149

11.3.5 Dependants . 150

11.4 Site-site potential cutoff . 153

11.5 The timestep . 154

11.6 Functions for r-space Ewald sums . 154

12 NVT and NPT ensembles 156

12.1 Kinetic temperature . 156

12.1.1 Should we subtract 1 from nf for energy conservation? 156

12.2 Constant temperature simulations . 158

12.2.1 The Berendsen (friction) thermostat . 158

12.2.2 Decoupled translational and intramolecular thermostats 159

12.2.3 The Nosé–Hoover canonical ensemble . 159

12.2.4 Maxwell–Boltzmann thermostat . 160

12.2.5 Langevin thermostat . 161

12.2.6 Which thermostat . 161

12.3 Constant pressure simulations . 161

12.3.1 Friction (Berendsen) barostats . 162

6

12.3.2 MTK thermostat and barostat . 162

12.3.3 Simulation along given V (t) time dependence 165

12.3.4 Adjusting force field parameter to pressure 165

13 Initial configuration 167

13.1 Random-shooting algorithm . 167

13.2 Crystal initial configuration . 168

13.3 Immersing a large solute into solvent . 168

14 Measurements 170

14.1 Units of measurements . 170

14.2 Convergence profile . 170

14.3 Analysis of statistical errors . 171

14.4 Kinetic quantities from equilibrium molecular dynamics 173

14.4.1 Diffusivity . 173

14.4.2 Conductivity . 174

14.4.3 Viscosity . 175

14.5 Kinetic quantities from the Einstein relations . 176

14.5.1 Requirements . 176

14.5.2 Usage . 176

14.5.3 Results . 177

14.5.4 Analysis of results . 178

14.6 Structure factor . 179

14.6.1 Structure factor for pure simple fluids . 179

14.6.2 Structure factor for mixtures . 180

14.7 Radial distribution functions . 181

14.8 Cluster (oligomer) analysis and bond kinetics 182

14.8.1 Cluster overview . 183

14.8.2 Compilation and synopsis . 183

14.8.3 Input data . 183

14.8.4 Results . 185

14.8.5 Bugs and caveats . 186

14.8.6 Bond kinetics . 186

14.9 Normal modes of vibration . 187

14.9.1 Without constraints . 187

14.9.2 With constraints . 187

14.9.3 Harmonic Verlet correction . 190

7

14.10Thermodynamic integration from a harmonic crystal 191

14.10.1 Consistent and inconsistent models . 191

14.10.2 Reference state . 191

14.10.3 Thermodynamic functions . 192

14.10.4 Classical crystal . 193

14.10.5 Gas and liquid . 195

14.10.6 Finite-size effects . 196

14.10.7 Miscelaneous notes . 198

15 Special versions 199

15.1 Fixing positions of selected atoms . 199

15.2 Notes on water models . 200

15.3 Cut off electrostatic forces . 201

15.4 Gravity simulation (STARS) . 202

15.5 Polarizable dipoles . 202

15.5.1 Polarizability models . 203

15.5.2 Integration methods . 203

15.6 Pressure tensor . 205

15.6.1 Pressure tensor for Drude oscillators . 207

15.7 Slab geometry and surface tension . 208

15.7.1 Surface tension via pressure tensor . 209

15.7.2 Surface tension via virtual area change 210

15.7.3 Surface tension via virial pressure . 210

15.7.4 Surface tension via virtual volume change 211

15.8 Slab geometry and vapor-liquid equilibrium . 211

15.9 Interfacial Gibbs energy by the cleaving method 212

15.9.1 The method . 212

15.9.2 User interface . 214

15.10Simulations at walls . 215

15.10.1 Atom-surface force field . 215

15.10.2 Atom-metal force field . 215

15.10.3 Using WALL and GOLD versions . 216

15.10.4 Wall versions and integrals of motion . 217

15.10.5 Initial configuration . 217

15.10.6 Input data for the WALL versions . 218

15.10.7 Wall visualization and more . 218

8

15.11Anchor sites and axes and measure forces . 219

15.12Analyze pair energies . 220

15.13Viscosity by shear stress . 222

15.14Widom and scaled insertion particle method . 224

15.15Metals . 226

15.15.1 Tight-binding potential . 226

16 File formats 228

16.1 Configuration . 228

16.2 Convergence profile . 229

16.3 Playback file . 230

17 Examples 231

17.1 Example 1: Protein in water . 231

17.2 Example 2: Melting point of a model of NaCl 233

17.2.1 Force field and molecules . 233

17.2.2 Crystal Na4Cl4 . 233

17.2.3 Preparation of data for the simulation 234

17.2.4 Crystal Na108Cl108 . 234

17.2.5 Equilibrium simulation of the crystal . 235

17.2.6 Melt . 235

17.2.7 Melt–crystal equilibrium . 236

III Utilities 238

18 General utilities 240

18.1 makemake: Makefile and project interface . 240

18.2 plot: Plot a graph (with formulas and mouse-rescaling) 240

18.3 tabproc: Command-prompt spreadsheet . 246

18.4 mergetab: Merge columns of data . 246

18.5 tab: Column table of consecutive numbers . 247

18.6 ev: Calculator . 247

18.7 endian: Change endian (order of bytes) in binary files 247

18.8 start: Start application according to file extension 248

18.9 sortcite: Sort LaTeX citations . 248

19 Program ‘pdb’ version 1.4a 249

9

19.1 Running . 249

19.1.1 Environment . 249

19.1.2 Synopsis . 249

19.1.3 Files . 250

19.1.4 Options . 251

19.2 Residues . 254

19.2.1 Format of residues . 254

19.2.2 Termini . 255

19.2.3 List of residues . 255

19.3 Bugs and caveats . 257

20 Data analysis 258

20.1 showcp: Show and analyze convergence profiles 258

20.2 cp2cp: Manipulate convergence profile files . 261

20.3 rdfg: Analyze and show radial distribution functions 262

20.4 smoothg: Smooth histogram-based RDF . 262

20.5 staprt: Print a sta-file . 263

20.6 sfourier: Structure factor from RDF . 263

20.7 coordn: Coordination number . 264

20.8 hbonds: H-bonds for liquid water . 264

20.9 cppak: Loss (de)compression of convergence profile files 264

20.10autocorr: Statistical analysis using autocorrelation function 265

20.11spectrum: Spectrum (Fourier transform) . 266

21 Working with playback files 268

21.1 plbinfo: Get information on plb-files . 268

21.2 plbcheck: Some checks on binary playback files. 268

21.3 plbconv: Converts old and new plb formats . 268

21.4 plb2plb: Extract selected sites . 269

21.5 plb2asc: Conversion of plb-files to ASCII . 269

21.6 asc2plb: plb-files from ASCII . 269

21.7 frame: Extract one frame from a plb-file . 269

21.8 cutplb: Edit plb-files . 269

21.9 plbcut: extracts parts of a playback file . 270

21.10plbbox: Change box size of a plb-file . 270

21.11densprof: Selected density profile angular correlations. 270

21.12plb2cryst: Sort sites to files according to crystal-like structure. 270

10

21.13plb2nbr: Sort sites to files according to the number of neighbors. 271

21.14plbmerge: Merge several plb files . 271

21.15atomdist: Atom-atom distances . 271

21.16smoothpl: Smooth the playback file . 271

21.17plbmsd: Mean square displacement of atoms . 272

21.18density: Calculate local density . 272

21.19mergeplb: Merge several plb files into one . 273

21.20filtplb: Convert a plb-file for a subset of atoms 273

21.21plbpak: Loss (de)compression of playback files 273

21.22plb2diff: Diffusion and conductivity . 274

21.23shownear: re-color atoms according to their distance 274

21.24tomoil: Conversion to MOIL . 274

22 Molecule visualization 275

22.1 molcfg: Create configuration mol- and gol-files 275

22.2 show V 2.0a: Viewing playback (trajectory) files 276

22.3 ray: The raytracer . 276

22.4 ppm2ps: PPM, PBM, PGM to PostScript conversion 279

22.5 ppminfo: Get information on ppm,pbm,pgm-files 280

22.6 stereo: Stereogram . 281

23 Miscellaneous utilities 282

23.1 pdb2pdb: Rearrange pdb-files . 282

23.2 ramachan: Ramachandran plot from blend and playback files 282

23.3 makepept: Makes a peptide in che-format . 283

23.4 blefilt: Blend-file filter. 284

23.5 bonds: Make (show-able) mol-file from coordinates 284

23.6 cutprt: Shorten a prt-file . 285

23.7 lattice: Make a cubic lattice . 285

23.8 showpro: Show sorted pro-files . 285

IV Appendixes 286

24 Ewald summation 287

24.1 Point charges . 287

24.2 Gaussian charges . 288

11

25 MD of Polarizable Force Fields 291

25.1 Notation . 291

25.2 Polarizability . 291

25.3 Pair operators of electrostatic interaction . 292

25.4 Electrostatic energies . 292

25.5 Electrostatic field . 293

25.6 Total energy . 293

25.7 Forces . 294

25.7.1 Gradient of the repulsive antipolarization 294

25.7.2 Gradient of the polarizability tensor . 294

25.7.3 Fluctuating charge . 294

25.7.4 Implementation . 296

26 Time-reversible predictors for Verlet+SHAKE with a velocity-dependent rhs297

26.1 The task . 297

26.2 MACSIMUS solution . 297

26.3 Algorithm . 298

27 Always Stable Predictor-Corrector (ASPC) instant 300

27.1 Task . 300

27.2 ASPC . 300

28 Specific heat CV in the molecular dynamics microcanonical ensemble 302

29 Dielectric constant in SI 304

29.1 Dielectric constant from external field . 304

29.2 Fluctuation formulas . 305

29.2.1 Notes . 307

29.3 Controlling saturation . 308

29.3.1 Extrapolation to zero saturation . 309

30 Fourier transform 311

30.1 Basic formulas . 311

30.2 Implementation . 311

30.3 Structure factor . 312

30.3.1 Mixtures . 312

31 Slab cutoff corrections 313

12

31.1 Fourier transform slab cutoff correction . 313

31.1.1 Truncated site-site potential . 313

31.1.2 One atom: energy correction . 314

31.1.3 One atom: force correction . 315

31.1.4 Mixture of sites . 315

31.1.5 Total energy correction . 316

31.1.6 Virial of force correction . 316

31.2 Post-processed slab corrections . 317

31.3 Slab stacking corrected . 318

31.3.1 Stacking error for van der Waals forces 318

31.3.2 Thin slabs . 319

32 Correcting the angular momentum 321

References 322

Index 325

13

Foreword

MACSIMUS is essentially a “one man software”. Its development started in 1991 in the John
Perram’s group in Odense, Denmark, under project PROSIS (PROtein SImulation Software).
The first sufficiently general version is from 1993. In 1999, PROSIS was renamed to MACSIMUS
(MACromolecule SIMulation Software), the name invented by John Perram. The latest
development, however, has declined from macromolecular simulations and focused rather on
fluids, ionic systems, polarizability, surface and two-phase phenomena, etc.

MACSIMUS makes use of the traditional Unix (now Linux) front-end of command prompt;
graphics is based on hot keys (with simple online help available). There are no mouse-driven
menus and cards you know from “standard” software.

Basic components of MACSIMUS with the most important file types follow:

@
@
@
@
@
@R

.che

?

.che

?

.pdb

any text editor

‘draw’ molecule

makepept

make simple
peptides

PDB

protein database

pdb

convert to
MACSIMUS

format, assign
charged states..

charmm,
gromos..

force fields

-
.par

�
.mol, .plb

blend

single molecules:
optimize, edit,
prepare force

field..

?

.ble

any text editor

prepare data

cook*

molecular
dynamics

-
.def, .get

-
.plb

?

.cp

�
�

�
�
�
�	

.rdf,..

?

.nff (.pov)

@
@
@
@
@
@R

.mol, .gol

show

visualization of
trajectories

ray (povray)

raytracing

showcp

analysis of time
series

rdfg, densprof..

analysis: RDF,
density profiles..

Part I

Program ‘blend’ version 2.2h

14

15

Odense, October 1993 (V0.663), November 1995 (V1.5), August 1996 (V1.6g)
Guelph April 1996 (V1.6d)

Evanston December 1995 (V1.6c), July 1996 (V1.6f)
Prague 1996 (V1.7)

1999 PROSIS renamed to MACSIMUS
More updates: 2001–

Program blend assigns a force field to (a mixture of) molecules and prepares thus data for
molecular dynamics simulation programs of the cook family.

Unfortunately, not all models are implemented; e.g., Gaussian charges are not, see Sect. 15.5.1.
Then ble-files cannot be automatically generated and clusters cannot be studied. Nevertheless,
the mol and gol files can be obtained using blend.

Chapter 1

Introduction

1.1 Force fields

Force fields describing complex organic molecule are composed of many elementary energy
terms, typically including Lennard-Jones and Coulomb interactions for non-bonded forces, and
bond, bond angle, dihedral and improper torsion potentials for intramolecular bonded forces.

The parameters of elementary energy terms for different combinations of atom types are listed
in tables. Yet these tables do not define uniquely the force field because often different terms
can be used for the same effect. This problem is often solved (e.g., in CHARMM) by defining
these terms separately for each residue (molecular building block). The problem of assigning a
force field then reduces to simple looking in tables.

Our task, however, is to assign a force field to a molecule given by a chemical formula without
additional information with the exception of partial charges attached to atoms which cannot
be easily derived from the chemical formula only and must be defined for each residue. All
other energy terms are generated automatically. This requires a comprehensive analysis of
the molecular structure. Since the rules of assigning a force field to the molecular structure
differ from one package to another, and even from one version of the same package to another,
and are often on purpose obscured by the authors to prevent any other use of the force fields
than buying their expensive and inefficient programs, program blend has become much more
complicated than was originally intended.

1.2 ‘blend’ overview

Program blend assigns a force field to (a mixture of) molecules and prepares thus data for
molecular dynamics simulation program cook (better said, many versions of this).

The force field consists of Lennard-Jones parameters, force constants and values of bond lengths,
bond angles, torsions (dihedral potentials) and improper torsions. blend analyses the structure
of a molecule and finds the required energy terms by looking in tables. Partial charges are
usually not part of the force field and are given separately.

The molecules are described internally in a table-based format (originally produced by graphical
Molecule Editor MEDIT). They can be input by a user in a text format close to the chemical
structure formulas or via external sources (PDB interfaced by utility pdb).

16

1: Introduction [Contents] – [Index] 17

Using the constructed force field, program blend can find the (local) energy minimum of the
molecule (from given configuration or from random input) and also fill missing atom coordinates
(typically hydrogens).

Several molecules can be blend-ed together and the prepared mixture can be simulated by the
MD program cook. In other words, blend creates a file that contains a full description of the
force field of given molecules and this file is used by cook.

X-Windows and PC (compiled by Borland/Turbo C) versions can show molecules graphically
and allow configuration editing.

Although program blend was developed originally with the CHARMM force field in mind, an
attempt was made to be more general if possible.

During years, many features have been added to blend: support of polarizability, molecular
editing features, essential dynamics, normal mode vibrations, inertia matrices and radii of
gyration, internal coordinates, etc.

1.3 Versions

See macsimus/readme.txt and macsimus/blend/metamake for compilation instructions.

Major versions of ‘blend’ are:

POLAR This version supports scalar and tensor polarizabilities of atoms. With the Busing
(exp-6) potential, it supports the ‘shell-core’ model. The polarizability may also be
saturated (see Sect. 25). Use #define POLAR for compiling

site-site potential The used site-site potential can be selected in file macsimus/blend/metamake:
Lennard-Jones, exp-6, WCALJ, Busing etc.

X11 Version with X11 graphics

GUI GTK-based GUI in a separate window.

DOS (Obsolete) Version for DOS with Turbo graphics

TINY (Obsolete) The TINY version omits some less used functions and is suitable, e.g., for
DOS. Use #define TINY for compiling

Chapter 2

Running blend

2.1 Environment

Environment variable BLENDPATH can be set to point to the path that contains the parameter
files (with extensions .bin and .par). If it is empty, the parameter files are looked for in the
working directory.

Example for linux/unix (csh, tcsh):

setenv BLENDPATH /home/jiri/blend/data

Example for linux/unix (sh, bash):

export BLENDPATH=/home/jiri/blend/data

Example for Windows/DOS:

set BLENDPATH=D:\JK\BLEND\DATA

(Obsolete) To remap mouse buttons, use the environment variable called MOUSEMAP.
Example (DOS):

set MOUSEMAP=132

will swap the middle and right mouse buttons. This is recommended for Microsoft Mouse
with only two buttons: the right button will move the molecule/atoms and the less important
function, rescaling and z-rotating, will not be available by mouse.

(Obsolete) To enable graphics under Turbo C/DOS, the graphics driver must be in the working
directory or pointed to by an environment variable BGI, example:

set BGI=C:\TC20

Tested with VGA only (driver egavga.bgi).

18

2: Running blend [Contents] – [Index] 19

2.2 Synopsis

blend \

[-o file | -s] \

[-lnumber] [-vnumber] [-znumber] [-gnumber] \

[par-options] [parset.par | parset.bin] \

[charges.pch] [reactions.rea] \

[mol-options] { species | species.mol | species.che } \

[mol-options { species | species.mol | species.che }] \

...

The options are parsed from left and thus, e.g., -s must precede any parameter that generates
output. Option X is switched on (i.e., set to value 1) by one of -X -X+ -X1 and switched
off (cleared to value 0) by -X- or -X0. The options of blend are case sensitive (most
other MACSIMUS programs use case-insensitive options). Numerical options may be given
in decimal, octal (number begins with 0) or hexadecimal (number begins with 0x).

If blend is run without any parameter, a brief description of options is printed.

2.2.1 Global options

These options apply to the whole run and should be placed before any molecule is processed.

-gnumber Graphical show of minimization (by number steps). Valid for X-Windows or DOS
Turbo C versions. The default is -g3 for DOS but -g0 (no graphics) for UNIX (X-
Windows)

-lnumber Size of the line buffer for reading files (default=256). You may find this option
useful if you have a complicated formula in the chemical format.

-o file This option sets the batch mode. Output from blend is written to file; if file does not
have extension, .ble is appended. No keyboard input is requested; in the case of error,
the calculations exit with a nonzero return code. The space between -o and the file name
is optional. Cannot be combined with option -s.

-snumber (Deprecated) Enable scrolling (screen buffer = number kB). If no number is given,
the default is 31 kB (this is also maximum for DOS). Cannot be combined with option
-o. blend must be compiled with option -DSCR to enable this feature.

-v Sum of (note that the option may be octal or hexadecimal, e.g., -v11 = -v013 = -v0xb)

-v0 Neither force field information nor the table of sites are printed. This is the default
for the interactive mode (no output file specified by -o option).

-v1 List sites and their parameters. Tables of bonds, angles, dihedrals and impropers
are not printed.

-v2 Print tables of bonds, angles, dihedrals, impropers etc.

-v3 The same as -v1 + -v2: Print the full force field information (as required by cook*).
This is the default for the batch mode (file.ble is created).

-v4 Verbose (info on topological analysis, selection of terms, etc.).

2: Running blend [Contents] – [Index] 20

-v8 List the used pair site-site parameter terms.

-v16 POLAR only: print convergence rates.

-v256 List all pair site-site parameter terms (even for atoms not present in the
molecules), may be very lengthy.

-v4 -J1e-11 -v0 (Debugging Jacobi diagonalization: shows the diagonalization
progress and turns off verbose mode otherwise. See -J, -N, -E for details.)

-znumber (0) Seed for random number generator. If -z is not specified, the seed is derived
from time so that it is different for each run.

- digit (6) (Underscore) Output precision of force constants. Most of the force field terms
(like force constants K) are printed with digit decimal digits, some of them (to have
comparable relative precision) with precision digit-1 or digit+1. Must be 0 < digit < 9.
In addition, negative values of digit force fine adjustment of rounding of partial charges
when a mol-file is (re)created so that their sum for a molecule is an exact integer. Useful
for charges pasted to a mol-file from a quantum-mechanical calculation.

2.2.2 par-options and parameter files

Normally, the parameter set to be used is defined in the mol-file (keyword parameter set). If
not defined, it can be specified as a parameter (but note that all molecules blended together
must use the same parameter set!). The options that control the force field assignment logic
have their defaults defined in the parameter file and may be changed using a command line
parameter. See Sect. 19.1.4, for more information. A list of par-options follows:

parset.par Name of the parameter file in text format.

parset.bin Name of the parameter file in binary format. The default is charmm21.bin. The
binary file is created from the text file if option -b is given. It is faster to use binary files
for parameters (well, in 21st century the difference is negligible, but on 386 it used to
make a difference). WARNING: binary files of full and TINY versions are not compatible.

-anumber For number ≥ 0: scale all angle force constants number% times. For number < 0:
set all angle force constants to −number kcal/mol. For number = 0: constrain angles
(inefficient minimization algorithm).
See also -b. Note that the changed -a0 value is exported to a ble-file. -a0 does not work
accurately enough in some cases like planar molecules (e.g., TIP4P water); a large value
may help, but the algorithm becomes inefficient.

-b parset.par (Deprecated) Make binary image parset.bin from parset.par. The name of
the source parameter file parset.par must be specified after option -b. blend version
number is written to the header of parset.bin and two major digits (e.g., 1.2) are tested
whenever blend reads the binary file.

-bnumber For number > 1: scale all bond force constants number times. For number < 0:
set all bond force constants to −number kcal/mol/Å2. For number=0: constrain bonds
(inefficient minimization algorithm).
Warning: -b1 is reserved for making binary files (see above).

-fnumber Fabricate (make up) bond or angle terms that are missing in the parameter file.

2: Running blend [Contents] – [Index] 21

-f0 Missing bond or angle terms issue a warning and no term is added.

-f1 A missing bond parameter is added with length 1.5 Å and force constant K = 50
kcal/mol.

-f2 A missing angle parameter is added with equilibrium angle 120◦ and force constant
K = 20 kcal/mol.

-f3 Both -f1 and -f2.

-inumber (default=5) Calculate the maximum angle potential energy (over all angle
potential terms in a molecule) and print a warning if this energy exceeds number kcal/mol.
Such a warning for “normal” molecules means that the configuration is wrong, e.g.,
methane is in a wrong “pyramidal” conformation:

CT

HA- - - - - - - - -HA

/ /

/ /

/ /

HA- - - - - - - - -HA

The default should detect such cases. Use -i0 if it is OK and the warnings bother you.

-xnumber Lennard-Jones scaling; the default is -x1000100 (all scaling factors are unities).

-xEEE (three digits) All Lennard-Jones energy terms (ε = −Emin) are multiplied by
factor EEE/100.

-xRRRREEE (more than 3 digits) In addition, all Lennard-Jones radii (σ or RvdW are
multiplied by factor RRRR/1000.

-x-DDD Energy terms are scaled x = exp(DDD/1000) times and radii x−1/3 times. This
means that density is scaled x-times with the structure unchanged.

-@number POLAR only: Output multiplication factor in % for the value of shell (number of
shell electrons for auxiliary charges for MD with polarizabilities). Only exported to MD
because blend uses exact point dipoles. Default=100%.

-^number

-~number POLAR only: polarizability multiplication factor in %. Default=100%.

-[number POLAR only: saturation energy multiplication factor in %. Default=100%. Rarely
used.

-[number Active with -n-1 only: reorder sites in molecules of number sites in increasing site
mass. E.g., -[3 -n-1 will reorder TIP3P water to HHO.

2: Running blend [Contents] – [Index] 22

2.2.3 mol-options and molecular files

These options can be changed before each molecule is processed. Once an option is set or
cleared, its new value remains active until it is cleared or set again (i.e., it is not re-set to the
default).

species.mol Molecule file (mol-file) generated by blend, pdb (and originally by the molecule
editor MEDIT) is read and processed.

species.che File in the chemical format (che-file) is read and processed. The corresponding
file species.mol is created or rewritten (in this case the old species.mol is backed-up as
species.mol (species.mox for DOS). See Sect. 4.2.

species If no extension is specified, species.mol is tried first. If it exists, it is read and
processed, otherwise species.che is processed instead and the corresponding species.mol
is created. Thus, if you call blend for the second time, species.mol and not species.che
is read.

-cnumber This option affects how chirality information on CH1E and other chiral atoms is
treated. See Sect. 3.8.6.

-c0 Chirality info is taken from the .mol file or determined by using z-coordinates in
the .che file (default). If a 3D configuration is available and the calculated chirality
differs, a warning is printed.

-c1 Calculate unknown (i.e., not given in the .mol file) chiralities from the configuration
(.plb, .che, etc.) and write them to the .mol file. The old species.mol is backed-up
as species.mol (species.mox for DOS).

-c2 Calculate all chiralities from the configuration (.plb, .che, etc.) and write them
to the .mol file. The old species.mol is backed-up as species.mol (species.mox
for DOS). Warning is printed if the calculated chirality does not match the former
chirality from the .mol file.

-dnumber Automatic bond generation. For positive number, a bond is added if the atom-atom
distance is less than number% of the bond equilibrium distance. For negative number,
all bonds are erased first. Useful, e.g., if some bonds are missing in the PDB file but the
coordinates are good, or if ionic bonds are created (cation-anion strong force) and these
should be turned into explicit bonds. Bond info must be present in the par-file. Useful
range of —number— is between 110% and 120%; values larger than 130% may lead to
extra bonds when atoms are accidentally close together. Values less than 100% issue a
warning. Note: bonds are not created if there is a record in the PAR file for the bond,
but the force constant is zero. This is the case of fake “bonds” as H-H in water to define
a rigid molecule.

-e [no 2D input] Selects editing (adding/removing atoms/bonds). Cannot be combined
with a 2D input (see below). If file species.edt exists then the edit information is read
from this file, otherwise from standard input.

Note that any editing is performed BEFORE the molecule is minimized and shown. The
recommended style of interactive work is to run two instances of blend, one for showing
atom ID’s, and the second for editing. After editing, kill the first blend.

Available commands are

2: Running blend [Contents] – [Index] 23

? Print brief help

aa id type charge [id1 [id2 [...]]] Add Atom and connect it to atoms id1, id2, ...
It will be marked as ‘missing’ and its position will be calculated later (cf. option -k).
Note: thus, after short minimizing, you should start minimizing again with keep=0

or re-run blend.

af id type charge [id1 [dist]]

af id type charge = X Y Z Add Free atom (not connected). It will be placed dist from
atom id1 on the opposite side than id1’s neighbors (or randomly if id1 does not have
neighbors) and will not be marked as ‘missing’. The second form adds the atom
with given absolute coordinates X,Y,Z. Blend should be called with -y0 or -y2

aw [id1 [dist [#]]]

aw = X Y Z Add Water molecule (TIP3P model). Its oxygen will be placed dist from
atom id1 on the opposite side than id1’s neighbors (or randomly if id1 does not
have neighbors) and will not be marked as ‘missing’. Both water hydrogens will be
marked as ‘missing’. The atom ID’s are W#-O, W#-H1, and W#-H2; if # is missing, it
is advanced by 1 from previous aw command (or is 1 for the 1st aw command). The
default dist is 2. See the note for aa statement. The second form places the water
oxygen to X,Y,Z specified. Note: Equivalent to the following sequence of commands:

af W#-O OW -.834 ID1 DIST

aa W#-H1 HT .417 W#-O

aa W#-H2 HT .417 W#-O

ra id Remove Atom.

rm id Remove whole Molecule. id is the ID of any atom in the molecule.

ab id1 id2 Add Bond.

rb id1 id2 Remove Bond.

i id newid Change ID (rename atom)

q id charge Change charge.

t id type Change type.

p id Print info on atom(s) id.

pf id type charge [grid [shell [NforPLB]]]

pw [grid [shell [NforPLB]]] Probe using Free atom / Probe using Water. Given
probes (atom for pf, TIP3P water for aw) are placed to a grid around the molecule
and the energy is calculated; in the case of water, the water molecule is first rotated
to give the minimum energy. The minimum energies are then printed and optionally
the playback files containing the molecule and NforPLB minimum energy probes are
generated. This may be optimized by a special patch: compile-time option causing
omitting all atoms kept on place from energy calculations (#ifdef OMITKEPT in
blendmin.c)

react rea-file where rea-file is a reaction-file (extension .rea, see Sect. 2.3). Thus,
‘reaction’ can be performed during editing. Example:

af prot HP 1 16-OAC .8

react p.rea

.

2: Running blend [Contents] – [Index] 24

ff parset Sets the force field (parameter set), also parameter set=parset. If set,
the editing commands are performed only if the current force filed matches the
ff command. Turned off by empty parset (i.e., editing is on). This allows to have
different editing statements for different force fields in one .edt file. Example:

ff charmm22

! this applies for charmm22 only

t CYS13aSG S

ff charmm21

! this applies for charmm21 only

t CYS13aSG ST

ff

! this applies for any force field

q CYS13aSG -0.8

! Any comment.

.

end End of editing (not needed for input from species.edt)

Blank lines are simply ignored. Wildcards ? (matches exactly one character) and * (only
at the end of id, matches any number of characters) can be used in id’s. Example: if your
mol-file has been created for the che-file (in some previous blend run), it has atom ID’s
of the form 12-CH2E. Specify 12-* if you know the number but not the atom type.

-enumber [2D input] Scaling for 2D input given in % of the default values. If number is
positive, the plane configuration is “waved” to prevent numerical problems with pure 2D
starting configuration. This can be switched off by using negative number. Active only
if 2D input has been specified (option -r2 or -r12, or .che file as the only source of
information: in this case option -e does not mean editing!).

-hnumber Constraint bond angles containing light atoms (typically hydrogens). This
information is written to a ble-file applies for a subsequent cook* simulation, not the
optimization performed by blend!

abs(number)+0.5 is the mass limit (in atomic units) to treat bond angles constrained.
Thus, -h- (default) sets the limit to 0.5 (all bond angles with hydrogens can bend), -h or
-h1 sets the limit to 1.5 (bond angles with hydrogens are fixed but all other atoms not).
This applies only to output passed to cook where the bonds corresponding to constrained
angles are marked by K=0.0 in the table of bonds.

If the argument of -h is negative, all angles containing light atoms are constrained,
irrespective of overdetermination and singularities.

Normally the argument of -h is positive. Then the program removes the overdetermined
bond in groups like -CH3 and constraints only one bond of two possible in a chain
like -C-NH-C- and does not constraint the H-N-H angle in -NH2. No general algorithm
detecting overdetermination or singularities is used but the used algorithm constraints
correctly hydrogens in proteins and TIP3P water.

Using -h improves generally energy and constraint conservation with a marginal impact
on the generated trajectory. Higher values of -hnumber are not recommended.

The new bond force constant exported to a blend-file is equivalent to the angle bending
(the same vibrational frequencies) provided that the adjacent bonds are constrained. If
also the bonds are vibrating (-u9999 on cook), the vibration spectrum differs.

2: Running blend [Contents] – [Index] 25

-jnumber This option has two purposes:

1. Allows adding special bonds (harmonic springs between atoms). Useful e.g. for
keeping certain distances (nearly) constant (if the force constant is high). These
bonds are used while energy minimization and, if option -o is used simultaneously,
exported to cook. These ‘bonds’ are specified either in file species.jet, or, if this
file does not exist, may be given from keyboard. The format of data is similar to
the format of the table of bonds, See Sect. 3.6, only atom IDs replace atom types.
Example:

!REMARK : Distances to keep tail from folding up:

! id id K length

ASN3CA TYR159CA 1 61

LEU22CA TYR159CA 1 52

ALA26CA TYR159CA 1 84

end

where K is in [kcal/mol] and length is in [A]. Single statement end or . marks the
end of data (not needed if data are read from file).

HINT: if you want to use these constraints only within blend and not in cook, re-run
blend with these options: -m- -w- -o file, but without -j.

2. Dihedrals to constrain can be also given in this file. Example:

! ID ID ID ID ANGLE/degree(0,180)

5-CT 6-CT 7-CT 8-CT 120

BUGs (in V2.1k): cos(angle) is used internally, 0 and 180 are not allowed and the
sign of ANGLE is not distinguished.

-knumber This options allows to keep some atoms in fixed positions during minimization.

-k0 All atoms (incl. those marked by * in the 1st column in species.mol) are free and
can move during minimization.

-k1 The *marked atoms are kept fixed; however, atoms with missing coordinates are
always free to allow energy minimization.

-k2 Atoms with missing coordinates are free, known ones are kept fixed (marking is
irrelevant).

-k3 If there is any missing atom, -k2 applies, otherwise -k1. This is the default.

-k4 Read keep info from file species.keep. Should be combined with -k1 to be active
(keep=1), i.e., use -k5 to read the keep info and minimize using it.

-k8 Read mark info from file species.mark.

-k-1 -k-2 -k-3 As above with the exception that single atoms are always free.
Particularly, option -k-3 is intended to initial minimizing a protein with charges
compensated by counterions: protein skeleton is kept, unknown hydrogens and
counterions are free (note that hydrogens are filled by blend while counterions have
been exported from pdb and are inaccurate and may clash with hydrogens).

-mnumber Energy minimization (optimization). If number is positive, then number steps of
the conjugate gradient method is performed. If number is negative, -number/4 steepest
descent steps are performed and then -number steps of the conjugate gradient method.
The default is -m-100.

2: Running blend [Contents] – [Index] 26

-nnumber Number of molecules. Not used by blend, only passed via a ble-file to program
cook.

-n-number If the argument is negative, blend tries to split a ‘molecule’ into submolecules
(clusters). The format of output ble-file is changed and understood by cook as a
configuration. PDB-file with crystal water or insulin consisting of two identical chains
are typical examples.

BUG: the algorithm for determining whether two clusters are identical is simplified.
Clusters having the same numbers and types of atoms and bonds on each atom are
considered identical. Thus, clusters written with different order of atoms are not
recognized as identical. On the other hand, the following two clusters will be incorrectly
considered as identical:

A--B A--B

| | and \/

| | /\

D--C D--C

WARNING: If the mol-file has been generated from a che-file, it may happen that numbers
in atom ID’s do not match the real numbering because sites might have been renumbered
to have consecutive numbering of clusters.

TECHNICAL NOTE: since blend does not know the final number of species, it first
writes nspec=<number> !? to the ble-file. After all molecules are processed, and if -o
has been specified, it re-reads the ble-file and writes the correct final number of species in
the form nspec=<number> !fixed. This does not work if -o has not been specified (i.e.,
you use option -v0 and either -s with $w command or redirection of standard output).

-pnumber Write configuration in the playback-compatible format. Optional number > 0
means that number% of the van der Waals radii of atoms will be used as the radii of
atom spheres (default is 70%). Two files, species.plb and species.gol, will be created.

-p-number As above with reversed endian of species.plb. To be used for transferring binary
data between computer architectures using the same format of floating point numbers
(e.g., IEEE) but different order of bytes (endianness, sex). E.g., x68 (IBM-compatibles)
and Dec Alpha are little endians while Sun, SGI are big endians. If this does not help,
ASCII data should be transfered (utility plb2asc).

-qnumber Scaling of charges in %. The default is 100%. Note that scaling is done on input, i.e.,
the scaled charges are written to output. At the same time, warning on fractional charges
is suppressed. Hint: use -q100 to suppress the warning and keep charges unchanged

-rnumber Read configuration option:

-r0 Initial configuration will be read from available configuration (tried in the order of
types species.plb, .pla, .3db, .3dt), if not available then derived from 2D data
in species.che (or deprecated species.2db, species.2dt), and if this does not help,
then filled with random numbers. This is the default.

-r1 Initial configuration is random. No action is taken to prevent atoms overlap. Note
that certain force fields (Busing) may fail for atoms very close together.

2: Running blend [Contents] – [Index] 27

-r2 Initial configuration will be obtained from 2D screen coordinates. If the molecule is
given by species.mol file, then species.2db (binary) file will be read, if the molecule
is given by species.che, then the 2D coordinates are derived from it. See also option
-e.

-r12 (Deprecated) If the molecule is given by species.mol file, then species.2dt (text) file
containing screen coordinates will be used to determine the initial 3D configuration.
See also option -e.

-r3 Initial configuration will be read from species.3db (binary) file. Note that format
.3db is deprecated since V2.1a and replaced by .plb.

-r13 Initial configuration will be read from species.3dt (text) file.

-r4 Initial configuration will be read from the playback file species.plb. Special sub-
options can be specified:

-r4:frame Selected frame is read from the playback file. frame = 1 is the 1st frame,
frame = −1 denotes the last frame, frame = −2 the second last, etc.

-r4:from:to:by[:file] For special functions (see options -A -E -G -I -R) as well
as the PDB output (options -w10, -w20, -w30), the range of frames analyzed
is specified. The default is [-r4:1:-1:1]. Parameter file must be given with
extension (usually .plb); if omitted, species.plb is the default.
NOTE: for PDB output, see also pdb -pFROM:TO:BY.

-r-3 Initial configuration will be read from deprecated species.3db file with reversed
endian.

-r-4 Initial configuration will be read from the playback species.plb file with reversed
endian. Use for transfering data between machines with the same format of floating
point numbers (now usually IEEE) but different order of bytes (endian, sex).

-r5 Alpha helix, old algorithm

-r6 (Added in version 1.6d, changed in 1.7k; see also -k7 and -k5.) The initial
configuration is alpha-helix. The molecule must be a protein (or peptoid, i.e., N-
substituted glycine; the N-backbone may need finer minimization). The backbone
is recognized by atom types (see Sect. 3.4.10). The alpha-helix configuration is
generated and the backbone atoms are marked as to be kept during minimization
(cf. option -k2). The side-chains are very approximate and thus the first step should
be energy minimization which should not include the backbone: the keep status is
set to -k1 (see option -k. As the second step, the backbone atoms should be included
in the minimization (use keep=0 or re-run blend). Example:

blend -r6 -g -t10 polyval.che # creates alpha-helix

+ optimizes side-chains

blend -o xxx -g polyval # optimizes whole config.

-r7:phi:psi:omega (Added in version 2.0k.) The initial configuration is described by dihedral
angles phi (-C-N-Ca-C-), psi (-N-Ca-C-N-), and omega (-Ca-C-N-Ca-) (in degrees). If no
phi, psi, omega are given, the default is phi=psi=-51, omega=180, which is approximate
alpha-helix (to be optimized). If more molecules are processed, the default is the values
of previous molecules.

-tnumber The range [C1,C2] for the cutoff switch function will be C1=number-1 and
C2=number+1. The default is no cutoff. See Sect. 3.5.

2: Running blend [Contents] – [Index] 28

-t-number The range [C1,C2] for the cutoff switch function will be C1=int[number/100]/10
and C2=C1+(number mod 100)/10. E.g., -t-12345 gives C1=12.3, C2=12.3+4.5.
Normally the -tnumber form is preferred.

-unumber All non-bonded pair energies (i.e., site-site [typically Lennard-Jones] and Coulomb
ones) are recorded and first number highest terms are printed. Thus, possible atom
overlaps are easily visible. If number is negative then first -number terms with lowest
energy are printed.

-w Write configuration in some special formats:

-w Write configuration to species.3db. If this file already exists, the old one is backed
up as species.3db (species.3dx for DOS). This was the default prior V2.1a; the 3db
format is now deprecated—plb is recommended instead.

-w- -w0 Do not write configuration; does not apply to the plb format (use -p0 to
suppress writing species.plb). This is the default.

-w-1 As option -w with reversed endian.

-wdigit If digit > 1 then write configuration to ascii species.3dt. digit is the number
of decimal digits printed. If this file already exists, the old one is backed up as
species.3dt (species.3dx for DOS).

-w10[:Hstyle] Creates PDB file species.pdb using backbone analysis. To be used for
che-file based peptides created, e.g., by makepept. BUGS: This is a simple code
that may fail in complex cases. Does not recognize PRO as the 1st residue. Uses
non-standard numbering of H and perhaps also other atoms. None or very limited
support for residues like HEM, etc. Knows only some termini. Some problems can
be solved by hand-editing the resulting PDB file.

-w10:0 Hydrogen on beta C is ‘ HCB1’

-w10:1 Hydrogen on beta C is ‘ HB1 ’ (C as Carbon omitted). Hydrogen on the
backbone N is always NH1 (N is not omitted).

-w10:2 Hydrogen on beta C is ‘1HCB ’

-w10:3 Hydrogen on beta C is ‘1HB ’

-w10:4 Hydrogens are omitted (default)

Can be used with option -r4 to create a series of PDB files.

-w20 Re-creates PDB file species.pdb using id names in mol-file, to be used for files
created by the pdb converter. BUGS: 1 backbone only; changes order of atoms (in
this case, try utility pdb2pdb, see Sect. 23.1.) Can be used with option -r4 to create
a series of PDB files.

-w30 Selects -w10 or -w20 automatically

-w40 Write file species.atm with a header containing the number of atoms, a blank line,
and then 1 line/atom in 4 columns At x[A] y[A] z[A].

-w80 Write a cfg-file in the cook format (V2.7a and newer. Cf. plb2cfg.

-w160 Write a cfg-file in the cook format (older than V2.7): deprecated.

The -w options may be combined (-w125 = .3dt in 5 digits + .atm + .cfg); however, .3db
and .3dt cannot be combined (only one is written).

-ynumber Center molecule or create box. Sum of flags:

2: Running blend [Contents] – [Index] 29

1 Center molecule before minimizing; box size (if contained in the plb-file) is not
changed. Recommended to show a molecule.

2 Center molecule after minimizing and set box size (written to the .plb file) to zero
(free boundary conditions). Note that cook with init<0 reads only the contents
from such a plb-file (the box size is derived from cook initialization).

4 Make all coordinates positive, incl. Lennard-Jones sigma. This means that min
and max in all coordinates are determined and the molecule is moved so that all
coordinates are positive.

8 Box molecule after minimizing, incl. Lennard-Jones sigma. Maximum of all
coordinates is written as box size to the plb-file. Recommended with -y4. Note
that cook with init<0 reads such a plb-file including the box size.

16 Modifies -y4 and -y8: do not add Lennard-Jones sigma to coordinates (may lead
to overlaps in periodic b.c.). (To modify the box size, use plbbox).

The default, suitable for making a blend-file, is -y3. To work with a configuration in
periodic b.c., use -y13

2.2.4 Extra-options

-A Generate species.ang of independent internal coordinates. File species.plb (and
species.mol) will be read (see option -r4) and the following files will be generated:

species.ang protocol about angle analysis

species.1, species.2 ... angle files

Option -A implies -w0,-p0 (no write), -m0 (no minimization), and all dihedrals=0 (one
dihedral per bond).

The angle analyzing algorithm takes into account only the following structures:

3- and 4- bonded atoms 1 dependent angle is removed, 2 angles and 1 improper are
left

6-cycles of 6 dihedrals and 6 angles, 6 are removed

5-cycles of 5 dihedrals and 5 angles, 6 are removed

merged rings 1 additional improper removed

NOT SOLVED other cycles than 5- and 6- (like if there are CYS-CYS bridges); complex
merged rings (like in the heme)

Actually, the topological analysis to get only independent angles is not easy. The formula
2*ns-5 works for trees only (no cycles). WARNING (?): tested with CHARMM21 only.

-Cnumber (-1) Reference atom for dipole and quadrupole calculations, and for the second
virial coefficient (see -V; in this case, both molecules must have the same atom as the
reference). Note that the dipole value depends on the reference point for ions only, and
similarly the quadrupole value depends on the reference point for dipolar molecules.

number>=0 Atom number.

-1 The reference point is the centroid of atomic charges (default).

2: Running blend [Contents] – [Index] 30

-2 The reference point is the center of mass.

-3 The reference point is the geometric center.

-D File species.msd of mass-weighed MSD (mean square displacement) is calculated. Implies
-w0,-p0 (no write), -m0 (no minimization).

-E Essential dynamics. The essential dynamics (ED) algorithm analyzes the trajectory (in
playback file, see option -r4) and by diagonalizing the covariance matrix calculates the
“essential motions”. Implies -w0,-p0 (no write), -m0 (no minimization).

-EA use all atoms in ED

-EH use all heavy atoms (not hydrogens)

-EC use only C-alpha (cheapest but usually sufficient)

-EB use all atoms in the backbone (omits all sidechains)

It is assumed that atom IDs have been derived from a PDB file.

Algorithm:

1. reads frames and matches frames with the 1st frame which means that r is rotated
and displaced so that

∑
(ri − r0i)2 is min (simple MC minimization)

2. calculates the covariance matrix rmCov(ri, rj) (all coordinates separate, i.e.,
rank=3*# of atoms)

3. calculates its eigenvalues

More about ED:

• Essential dynamics files with extension .ess####.plb use the average frame as the
center

• This average frame is also written as essr0.plb (if -F# is odd, this is the same is
the central frame)

• The amplitude of essential motion in .ess####.plb is the same as to reproduce
the stdev (mean square amplitude), i.e., cos-amplitude is sqrt(2)*stdev and linear
/\/\/\ amplitude=sqrt(3)*stdev (if the essential motions were harmonic or /\/\/\
, respectively, the ess####.plb would show the correct motion). This holds for -M1
(the default), -M# just multiplies the motion by #

• File .ess.cp is written containing development of coordinates in the basis of
eigenvectors. There are -P# items (columns) in ess.cp. Use showcp -a or showcp

-p etc. to analyze ess.cp, ignore bad headers of columns 0 (Etot) and 1 (T)

• the matched trajectory (with rotations and translations removed) is written
to essmatch.plb if option -P. blendess.c must be compiled with #define

WRITEMATCH.

Note: try blend/esstest.c

2: Running blend [Contents] – [Index] 31

-Fnumber For essential dynamics and normal mode analysis. Number of frames in the output
playback files used to visualize the motion. Positive number denotes harmonic motion,
negative denotes linear motion between min and max. Cheap: use -F2, better: -F7 or
so. See also -M and -P. Of course, -F-2=-F2, -F-3=-F3.

-G Calculate eigenvalues of the gyration (-G) matrix (see below)

-I Calculate eigenvalues of the inertia matrix. Three files are produced (for -G they are
gyration.cp, etc.)

inertia.cp Convergence profile of 7 items: Ixx, Iyy, Izz, Rx, Ry, Rz, Rg.

inertia.mol Mol-file file for show to visualize inertia.plb. ‘inertia’ is viewed as a
‘molecule’ of 6 atoms

inertia.plb Playback file for ‘inertia’. The following Cartesian cross or ‘molecule’:

O

| O

| /

|/

O----+----O

/|

/ |

O |

O

where the masses of ‘atoms’ O are 1/2 and the lengths of axes (O–center) are Rx,
Ry, Rz, has the same tensor (matrix) of inertia as the original molecule

BUG: the sign of both vectors in each O–O ‘bond’ is undefined. This does not cause any
problems while showing, but might cause problems in further calculations

Theory: The gyration or inertia matrix is calculated first
↔

G =
∑
i

mi∆
→
r i∆

→
r i (2.1)

↔

I =
∑
i

mi

[
∆
→
r

2
i

↔

δ −∆
→
r i∆

→
r i

]
(2.2)

where
↔

δ is the unit tensor (matrix) and

∆
→
r i =

→
r i −

→
rcenter of mass

The diagonalized tensor is

E = U(I or G)U−1 =

Ex 0 0

0 Ey 0

0 0 Ez

where U is a unitary matrix. In the same spirit of “radius of gyration”, the following
“partial radii of gyration” Ra are defined from diagonalized G (and similarly I, if this
makes sense).

Ra =
√
Ei/mtot,

2: Running blend [Contents] – [Index] 32

where mtot is the total mass of the molecule. Finally,

Rgyr =
√
R2
x +R2

y +R2
z

For diagonalized I, the principle moments of intertia vs. axes are Ey + Ez, Ez + Ex,
Ex + Ey.

-Jnumber Essential dynamics and normal mode analysis: accuracy for the diagonalization
(Jacobi method)

Essential dynamics: sqrt(number)*0.2 is used as the error threshold for configuration
matching when the configurations are translated and rotated to match best each other
(before the covariance matrix is calculated)

-Mnumber For essential dynamics and normal mode analysis. Amplitude of the visualized
motions. The units are Å for normal mode analysis, and standard deviation of the
essential motion for the essential dynamics. The default is 1 (Å or standard deviation).

-M-number For normal mode analysis, the same as number · ns1/2. -M-0.2 gives a reasonably
good amplitude irrespective of molecule size.

-Nnumber Calculate the normal mode frequencies (vibrational spectrum). If number is given,
it denotes dr for numerical calculation of second derivatives; default dr=1e-5 Å. File
species.nmf is created. See also -M, -P, and -F. See Sect. 14.9 for the theory.

The input configuration should be well minimized: use -mBIG NUMBER or cg=BIG NUMBER

and wait until the minimization stops; to be on a very safe side, repeat once more with
-m-100 or sd=100. The output file species.nmf contains frequencies ν in THz and wave
numbers in cm−1, ordered.

If the eigenvalue is negative (saddle point—not enough minimized or numerically
imprecise), then ν printed is negative, too.

Accuracy: If the step ∆r ≈ (machine precision)1/3 ≈ 10−5, then U ′ is known with
precision of 10 digits. Six (for a general molecule) eigenvalues corresponding to rotations
and translations should be zeros ⇒ they will be calculated with relative (to other
eigenvalues) precision of about 1e-10. Since the frequencies are square roots of eigenvalues,
they will be given with relative precision of 1e-5. Consequently, frequencies slower than
1e-5 of the fastest ones, i.e., slower than about 1GHz, cannot be calculated.

Diagonalization method: threshold Jacobi method

Example (especially didactic): Create file biphenyl.che:

biphenyl

HA HA^

| |

HA-C6R--C6R C6R^--C6R^-HA^

| | | |

HA-C6R C6RP--C6RP C6R-HA

2: Running blend [Contents] – [Index] 33

| | | |

HA-C6R--C6R C6Rv--C6Rv-HAv

| |

HA HAv

then do the following:

blend -p -N -M.4 -P99 -F7 -m-9999 biphenyl

(biphenyl.nmf and biphenyl.nm0000.plb, ... created)

show biphenyl biphenyl.nm0006

rotate the molecule (left mouse button)

type hot keys: ‘$’ ‘i’ ‘w’ ... Esc Esc $

BUG: cannot be used for models with zero masses of some particles (as TIP4P water)

-Pnumber For essential dynamics and normal mode analysis. Number of playback files
generated. number of the most significant eigenvalues is considered (-number least
significant if number is negative). Files have extensions .ess####.plb or .nm####.plb,
where #### is 0000, 0001, ... Use also ‘blend -p’ to get the gol-file, then show to view
the motion. The default is -P0 (no playback files).

-Rnumber Core size for the second virial coefficient (see -V). The center of this spherical core
is given by -C.

-Snumber POLAR ONLY: maximum number of self-field iterations before an error is printed.
The default is 200. With virial calculation (see -V), divergence is treated as infinity
potential. Since the internal accuracy is 1e-8, this means that the convergence rate must
be better than 1e-81/200 = 0.91; increase -S if you have such an ill-defined model. On the
other hand, you may decrease -S if you are sure the convergence is fast enough. Also,
the number of SHAKE iteration. Was -I before V2.2h

-Tnumber Temperature (in K) for the second virial coefficient (see -V).

-Vnumber Number of random samples for the second virial coefficient. Negative value means
that twice as many samples are used and every second is generated with molecule 1
reflected. Use this if both molecules are dipolar.

Caveat: both molecules are treated as rigid (after separate optimizations).

To calculate the second virial coefficient, use 1, 2, or 3 mol-files as blend arguments:

1 The second virial coefficient of pure compound is calculated.

2 The cross second virial coefficient (for a mixture) is calculated.

3 For development purposes: the third argument must correspond to a mol (or che)
file with both molecules merged (in the same order of sites).

An example of the 2nd virial calculation at 373 K is:

blend -C1 -V-1000000 -T373 spce

2: Running blend [Contents] – [Index] 34

The algorithm is based on the formula:

B2 =
2π

3
R3 − 2π

∫ 1/R

0
〈f(1/x,Ω)〉Ω1/x4dx

where f(r,Ω) = exp(−u(r,Ω)/kBT) − 1, Ω, stands for all angles, and R is the core size
(option -R; the potential can be assumed infinity inside the core).

First, the configuration is split into molecules. Both are minimized separately (in two
steps, with the other molecule shifted far away).

Then, the above integral is calculated by the naive Monte Carlo (random shooting) If the
-V option has a negative value, every second configuration is created instead by inverting
(r → −r) the first molecule. This is necessary for both molecules dipolar because the
integrand is then limiting to a constant as r →∞ (otherwise it would be infinity and the
integral would be unsuitable for the MC method).

Works with polarizability, too; note that a diverging self-field is treated as infinity
potential. (See -I for the number of iterations.)

2.3 File extensions

File names of all molecule-related files are derived from species or species.mol or species.che
specified at command line. A list of extensions follows. ‘(i)’ means that the file is can be read
by blend, ‘(o)’ that it is created or rewritten.

.2db (i) OBSOLETE! 2D screen configuration (binary). Produced by MEDIT (?).

.2dt (i) 2D screen configuration (2 column x-y ASCII file). Produced by MEDIT (?).

.3db (io) 3D configuration (binary file). It consists of number of atoms vectors, each
consisting of three single precision floating-point numbers containing x-y-z.

.3dt (i) 3D configuration in ASCII (3 column x-y-z).

.3db~ (o) Backup of .3db (UNIX, OS/2 etc.).

.3dt~ (o) Backup of .3dt (UNIX, OS/2 etc.).

.3dx (o) Backup of .3db or .3dt (DOS only).

.che (i) Chemical format. See Sect. 4.2.

.edt (i) Edit molecule file. See option -e.

.dep Dependant info file, with lines of the form dependants : base sites. See Sect. 5.10.

.keep Info on atoms kept (frozen) while minimizing. Can be written by hot key @k , read

by @K or option -k4. The file format is simple:

! comment

2 ! atom number

3 ! atom number

2: Running blend [Contents] – [Index] 35

.mark Info on marked atoms. Can be written by hot key @m , read by @M or option -k8.
The file format is the same as for .keep

.pch (i) Partial charge replacement file, must be in the current directory or in the directory
given by BLENDPATH. If present in the input line, all patterns for groups of atom types
replace the respective patterns found in the molecule, overriding any charge specified in
the .che or .mol files. Mol-file will be rewritten with the new charges. Example of the
pch-file:

! >C=O

C=0.55 O=-0.55

! -NH2

NT=-0.3 H=0.15 H=0.15

The first atomtype=charge item on line is the ‘central’ atom, all other atoms are connected
by bonds. Ordering of atoms but the first one defining the center is irrelevant. The charge
assignment algorithm takes sites in a molecule one by one and for each tries to match all
possible groups of this site and its nearest neighbors to patterns in the .pch file. If there
are several matches possible, the first one applies; thus, the following trick is possible:

CT=-0.4 HA=0.1 HA=0.1 HA=0.1 HA=0.1

CT=-0.3 HA=0.1 HA=0.1 HA=0.1

Using this, the first line will be used for (full-atom) methane and the second one for
ethane.

If an atom is a member of several groups, its charges is calculated as a sum over all group
contributions and info is printed.

.pro (o) Results of probing. See 2.2.3, option -e, commands pa and pw. See also utility
showpro (23.8).

.rea (i) Chemical reaction file. Performs a special form of ‘chemical reaction’ on groups
defined by reaction patterns. Can be given also by command ‘react’ during editing.
Example: to perform the following reaction

O OT--H

/ /

HP + -C -> -C

\ \

OAC OA

the rea-file should contain a line like this:

HP + O <1.2 *C OAC += H-.6 OT+.35 C+.05 OA+.2 > -100

< the reaction takes place if the distance of HP and O is less than the distance given
by the ‘<’ command (here 1.2 Å, default = previous line, if nothing given = 1 Å)

* *C means that C is the central atom of the group (if no * is given, 1st atom after
‘+’ is central)

2: Running blend [Contents] – [Index] 36

+= += means that partial charges (numbers after atom types) will be added to already
present partial charges

= = instead of += means assignment of partial charges

> energy of the reaction follows (negative=exothermic). This energy is written to the
mol-file as the ‘zero energy’ field.

\ EXTRA lines: if the charge redistribution extends over one group, ‘continuation’
lines may be added. They start with ‘\’, e.g.

\C5RE + N5R H C5R += C5RE+.05 N5R+.1 H+0.05 C5R+0.05

Here, ‘+’ does not denote a reaction but an atom that has been marked in previous
reaction step (=line without ‘\’ + any number of lines with ‘\’); it must be bonded
to the next atom (here C5RE–N5R) which itself must not be marked. Marking of
other atoms in the group is irrelevant. Note that any such marking is canceled by a
new reaction (=line without ‘\’). The above example changes charges in the group:

H--N5R---C5R

/

C5RE

where C5RE has been affected by a reaction but N5R not

.geo (i) If this file is present, blend prints selected distances and angles on hotkey ‘E’ and
after minimizing is finished. species.geo is just file of lines with sites of bonds or angles

! comment

1 2 # bond 1-2

1 2 3 # angle 1-2-3

The comments are printed, too.

BUGS: very ugly implementation, should unify with ‘clicking’, should add dihedrals...

.gol (o) File containing a 2-line header followed by colors and radii of atoms. Used by show.
Originally the goal file goal.fil for PlayBack.

.jet (i) File determining additional constraints. See Sect. 2.2.3, option -j.

.mol (io) Molecule description file. See Sect. 4.1.

.mox (o) [DOS]

.mol (o) [UNIX etc.] Backup of .mol. (blend in several cases rewrites the .mol file; in
these cases, the old version is backed-up.

.plb (io) 3D configuration (binary file). It has 2 float numbers as a header, otherwise it
is identical to the .3db file. The first float of the header contains the number of sites,
the second should contain 0e0 (in other cases, it contains box size). For show and Niels’
program PlayBack.

.sym (i) File defining some symmetry conditions to be kept while minimizing. Very
primitive. Turned off if -N specified. Example:

2: Running blend [Contents] – [Index] 37

z 0 2

z 3-4

z 5

.

z 0 2 means that sites 0 and 2 are kept symmetric with respect to z=0 plane. z 5 means
that site is kept in z=0 plane. z 3-4 means that sites 3 and 4 are kept in z=0 plane. .

stops Instead of x,y,z one may use X,Y,Z or 0,1,2.

Other extensions (not related to individual species):

.par (i) Parameter file in text format

.bin (io) Its binary image.

.ble (o) Default extension for the output file.

2.4 Run-time control

If no option -o is given, program blend runs in the interactive mode. The user can interactively
control the course of minimization and respond to error messages. The output is written to
stdout. If option -s is also given, the user can watch several last screens of output. (Do not
confuse with key and mouse control in the graphical window!)

If option -o is given, only few messages are printed to stderr. The only user interaction is
typing Ctr-C (see Sect. 2.4.4).

2.4.1 get data format for input

The get data format resembles the GET DATA statement in PL/1 or NAMELIST in FORTRAN.
It is used as user-friendly input format in several places.

The input data consist of assignments of the form variable=numeric expression.

A set of such assignments is ended by a semicolon. The numeric expression may contain
numbers, variables, operators + - * / ^ () # % and elementary functions, where symbol ^
denotes exponentiation and # the result of previous assignment. Operators += -= *= /= ^=

%= are also allowed if # is not used.

If used interactively, some additional commands are available so that you can use the get data
module as a calculator.

Example:

ran=1/3 ! this is comment

by *= 2; ! by is doubled (WARNING: not allowed in cook

! because data are read twice!!!)

List of commands:

? Get help

2: Running blend [Contents] – [Index] 38

?? List all variables.

expression Evaluate expression and store it into #

variable=numeric expression Evaluates expression and assigns the result to variable

?variable=numeric expression Evaluates expression, assigns the result to variable, and prints
the result

?= Toggle auto echo mode (NOTE: this is useful in case of errors during input, as wrong
identifier or syntax)

?format Set output format (C-style), e.g. ?%.15g is g-format with 15 digits

! Comment to the end of line

; End of data

$command To enter scrolling (see below).

2.4.2 Scrolling

Deprecated feature from the old times of simple 80x25 terminals.

Scrolling is available if the program has been compiled with option -DSCR (i.e., #define SCR)
and run with option -s.

Scrolling is called from the get data unit by $ and a command. Then, prompt $ appears; it is
not repeated in next scroll commands. Scrolling is also available if an error occurs. Standard
screen of 25 rows and 80 columns is the default screen.

A list of scroll commands follows:

$? $h Get help

$u Scroll by one screen up

$number Number lines down (up if negative)

$- One line up

$t $g Go to the top of stored screens

$d $SPACE Scroll by one screen down

$b $G Go to the bottom of stored screens

$wfile Write whole buffer to file file

$ifile Include file as if typed in

$/string Find string

$/ Repeat last find

$Lnumber Set number of lines on screen

2: Running blend [Contents] – [Index] 39

$Cnumber Set number of columns on screen. Lines longer than this limit are truncated; if
you see garbage on the screen, try to re-set the number of columns. WARNING: Some
screens have that bad habit of eating ends of lines longer than number of characters/line
which does not fit the scroll’s assumptions. If this is the case, set C to a large number.

$!number Set clrscr mode (try if the screen clears badly or slowly)

$Q Emergency quit (=exit(1))

$. $q Return control to the get data unit or error handling

$exit Kill program (nothing saved!)

2.4.3 Error handling

Error messages (Warnings, Errors and Disasters) are self-explanatory and contain also the
name of the source file in C and the line number. They are printed both to stderr and the file
defined by option -o (or stdout if not specified); the latter contains more information needed
for analyzing the source of the error.

When an Error occurs in the batch mode (option -o file), the program exits with a nonzero
return code. When a Warning occurs, message is printed and execution continues.

When either an Error or Warning occurs in the interactive mode, the user is prompted for an
appropriate action (by typing a letter followed by RETURN).

(a)bort Abort (with a core dump).

(e)xit Exit without a core dump (see above for the return code).

(c)ontinue (Warnings only) If you wish, it is safe to continue.

(i)gnore Ignore the Error and continue. No further check is made whether it is possible to
continue so that this selection is strongly discouraged.

(s)croll Use scroll (see above). Active only if option -s has been specified.

2.4.4 Interrupts

You can interrupt energy minimization by pressing Ctrl-C ; if the course of minimization is

shown graphically, then ESC is preferred (in the X11 environment, ESC must be typed in

the graphical window). Ctrl-C pressed in the graphics window kills the program; on X11,

Ctrl-C pressed in the text window works as ESC in graphics.

In the interactive mode (no option -o) you will get back to get data.

In the batch mode (option -o file) just the current minimization is interrupted; type Ctrl-C
twice to break the program.

Under UNIX, the interrupt is caught immediately and you only have to wait until one
minimization step is finished. Under DOS, you must wait until the first I/O; for some extenders

and Windows no Ctrl-C is accepted at all.

2: Running blend [Contents] – [Index] 40

2.5 Showing molecules graphically

blend can generate output for program show (both for X11 and DOS). (Originally X11 program
PlayBack written by Niels Jacobsen was used). Program tomoil can be used to translate the
blend-format to format understood by moil (by C. Simmerling, University of Chicago). In the
X11 and DOS/Turbo C versions there is a simple on-line graphics available.

2.5.1 X11 Graphics

Graphics is available if blend has been compiled with compile-time switch -DX11 (i.e., #define
X11)1

If blend runs with option -gnumber, the course of minimization is shown each number-th step.
Pressing ESC interrupts the minimization and you can watch the molecule, rotate it, etc. From
the interactive input for minimization, graphics is called by entering gr=1; (bonds only, fast),
gr=2; (balls-and-sticks, slower), gr=3; (shaded balls, slow), or gr=4; (stereo bonds – blue-red
glasses needed). On-line help for hot keys (rotating and moving the molecule, rescaling, etc.)
is obtained e.g. by pressing ?.

Mouse:

drag left button Rotate molecule (or marked atoms in the ‘move’ mode) around x and y
axes

drag middle button Move molecule (or marked atoms in the ‘move’ mode) in x and y
directions

drag right button horizontally Rotate molecule (or marked atoms in the ‘move’ mode)
around z axis

drag right button vertically Resize (rescale)

click left button Print info on the selected atom and mark the atom (e.g., for moving).
Second click on any atom gives atom-atom distance, third click gives the angle. Does not
work in the stereo (anaglyph) mode (gr=4).

click middle button Flood-mark, i.e. marks all atoms connected by bonds until any other
marking. See also hot key M . To mark a group, left-click first the nodal atom(s) (which
connects the group to the rest of the molecule), then middle-click any atom in the group.

click right button Unmarks the atom.

Hot keys:

cursor arrows Move the molecule in x and y directions; if the ‘move’ function is active (see
yellow info bar in the bottom of the screen), the marked atoms are moved.

Home End Move the molecule in z direction, i.e., move the eye for central projection

1Originally emulated from the Turbo C under DOS code available still by option -DDOS. This code will be
removed in future.

2: Running blend [Contents] – [Index] 41

x X y Y z Z Rotate molecule around given axis. Lowercase rotates in positive

direction (anticlockwise), uppercase in negative direction.

w Write (remember) molecule position (in fact, erases a list of translations and rotations)

W Undoes all translations and rotations (but those made with parts of a molecule) W and

w are intended for editing a configuration which can be pasted back to cook*. Example:

blend -o SYS A B C # prepare SYS.ble

cook SYS # simulate+write SYS.plb

molcfg A B C SYS # generates SYS.mol

blend -o SYS -n-1 -g -y0 -r4:-1 SYS # move molecules, then type W .

NOTES: If original molecules A B C consist of non-connected parts, file SYS.def (variable
N[]) will have to be changed. Option -y0 to blend is essential. Option -n-1 is required
in the periodic b.c. These are not treated properly in blend so that -m0 or -mSMALL

is needed. Then, -tSMALL is recommended. BUG: inefficient implementation, memory
consuming (problems with DOS version)

+ - Resize (rescale) the screen. Do not confuse with Home End !

* Double step size for the above functions

/ Halve step size for the above functions

r R Decrease/increase radii of atoms (draw styles 2 and 3 only)

1 Show bonds only (fastest)

2 Stick-and-ball model

3 Stick-and-ball model, spheres are shaded (slowest)

4 Anaglyph, bonds shown in blue and red for the right and left eye, respectively. To view
in 3D, blue and red glasses are needed

g G Toggle among the above four graphics modes

i Label atoms by atom identifiers. For proteins taken from PDB database, this is something
like ALA12CA

t Label atoms by atom types

n Label atoms by atom numbers

q Label atoms by (partial) atomic charges

l Toggle labeling style

f Find atom. One of the above labeling styles must be set. For atom identifiers and types,
wildcards ? and * are accepted, however, * works only as the last character. For charges,
you must enter two numbers, charge value and inaccuracy. Thus, e.g., 0.3 0.05 will find
all charges in the range [0.25,0.35].

2: Running blend [Contents] – [Index] 42

F Cancel finding, i.e., label ALL atoms again

d POLAR only: Show induced dipoles in eA

D POLAR only: Show induced dipoles in Debye

p POLAR only: Show polarizabilities in Å3

s POLAR only: Show saturations (in the saturated polarizability model only)

SPACE Cancel any labeling and redraw

m Toggles the ‘move’ function. Atoms to be moved must have been marked: click the atom

centers by mouse or use the ‘find atom’ function (hotkey f), alternatively use hot keys

M and u . The selected atoms are moved either by cursors and hot keys x X y Y

z Z or by the mouse. Rotations twist around the least clicked atom (=in green) as

the center. Type m again to leave the moving mode; hot keys like . ESC , cancel
moving. BUG: there is no ‘undo’

L Mark all labeled atoms (see hot key f)

M Flood mark. Marks all bonded atoms connected by bonds until an already marked atom
is found. Groups can be readily marked. Equivalent to middle button click.

u Unmark all marked atoms

I Invert marking (swap marked ↔ not marked)

k Show keep status. Atoms kept while minimizing (cf. option -k, variable ‘keep’, and * in
the 1st column of the mol-file or in front of atom id in the che-file) are marked.

K Inverse to hot key k: Will keep the marked atoms while minimizing. In addition, ‘get

data’ is forced after ESC .

A Average charges of marked atoms and unmark. Useful, e.g., for editing quantum-
mechanical charges: mark a group of equivalent atoms (e.g., all three hydrogens in a

-CH3 group), then press A .

b B Recolor bonds, cycles through 9 preferably light colors: yellow (default), white, gray,
dark gray, blue, green, cyan, red, magenta

c Recolor carbons, cycles through 3 colors: cyan (default), gray, dark gray. BUG: dump
screen functions fail for dark gray.

= Toggle none/ 1 Å / 0.1 Å grid (graphic modes 2 and 3 only).

’ Cycles through different styles of showing atom centers (graph modes 2,3 only) or turns
centers off.

e Erase/draw-over toggle. Useful while minimizing to see conformational changes. The
default is writing over with gradual shading off old positions, first value is ‘animation’
(old molecule is erased, new drawn), second value is writing over (without shading, fastest
option).

2: Running blend [Contents] – [Index] 43

P PPM (raw Portable PixMap, P6) dump of screen to file blend000.ppm; further dump is
blend001.ppm, etc. Colors are inverted for draw styles (graphic modes) 1 and 4, with
the exception that the background (black on screen) is always white. Bug: dark gray for
carbons (see hotkey c) does not work well.

C PostScript dump of screen to file blend000.ps, see above for more info.

O PostScript black-and-white dump of screen to file blend000.ps. Colors are translated
using 0.3R+0.59G+0.11B. See above for more info. NOTE: for fancy pictures, use show

and ray.

E Calculate Energy, dipole moment, quadrupole moment, and geometry (according to the
.geo file). The quadrupole moment tensor Q is defined by

Q =
1

2

∑
i

qi(3
→
r i
→
r j − r2I)

where I is the unit tensor. Tensor Q is then diagonalized.
NOTE: This form is common in chemistry. In physics, it is used without factor 1/2.
NOTE: the diagonalized tensor is not ordered and the molecule is not rotated into the
principal axes. To get also the non-diagonalized tensor, use option -v (verbose).

ESC Escape showing: if option -s has been specified, you may enter data and continue
interactively.

, Minimize again (conjugate gradients); if cg=0, then cg=1 is used. The same as ESC

and ; Enter

; As above with preceding steepest descent minimizing (with sd=cg, or sd=1 if cg=0)

’ Toggle center points (when atoms are shown). (The center points help clicking.)

Ctrl-C Kill blend (nothing saved!)

h ? Display brief help for hot keys

DOS: The graphics driver must be in the working directory. Tested with VGA only (driver
egavga.bgi).

2.5.2 Playback output

Output in the playback-compatible format is generated if option -pnumber is specified.
Optional number means that number% of the van der Waals radii of atoms will be used as
sphere radii (default is 70%). File names for output are derived from molecule names: the
goal.fil file (ASCII) takes extension .gol, the binary playback file (with 1 configuration
only) takes .plb. The files are written to the working directory.

Playback files with long trajectories are generated by cook and can be also read in by blend.

2: Running blend [Contents] – [Index] 44

2.6 Energy minimization

Energy minimization (optimization) module implements two common methods: the greedy
(steepest descent) gradient method and the conjugate gradient method. The steepest descent
method simply moves by certain step in the direction of forces; the step size increases in the
case of success and decreases on failure. The conjugate gradient method is basically the Polak-
Ribiere version [13]; the algorithm to find a minimum along a line was optimized so that in
most cases only two evaluations of forces are required by one conjugate gradient step.

The steepest descent method is usually less efficient than the conjugate gradient method. It
is recommended for initial high energy configurations with atom overlaps. Once energy drops,
the conjugate gradients should be used.

The force field used by this minimization is the full force field including bond vibrations which
will be replaced by bond-length constraints in simulations.

The energy minimization is called by -m option. If the molecular configuration is to be generated
from random input, -r1 is used. There is no guarantee that the resulting configuration is
close to global energy minimum, a locked high-energy configuration may arise for complicated
molecules. It is best seen using graphics, and it is discernible also from energy terms printed
to output.

In the interactive mode, the user is after one minimization cycle prompted for entering new
data. (See Sect. 2.4.1, for the data format.) On-line help is obtained by entering

help=1;

While minimizing, a protocol is printed. You can interrupt minimization by pressing Ctrl-C .
See Sect. 2.4.4.

If the process of minimization is shown graphically, press ESC rather than Ctrl-C to stop

minimization. Now you can watch the molecule. A second ESC then moves control to input
data as above.

2.7 Missing coordinates

The initial configuration can have missing atom coordinates. These appear as blank lines or as
values bigger than 9e5 in the .3dt file, or as values bigger than 9e5 in the .3db file. Program
blend calculates approximately the missing coordinates by using known positions of bonded
atoms; if it has not got enough information, a random position is generated. The configuration
should be energetically minimized, preferably with the atoms with known coordinates kept in
place (see option -k). Especially fitted to fill missing hydrogens.

Chapter 3

Force field and the parameter file

Program blend first reads in the parameter file (or its binary image); while reading the file,
various checks (e.g., on duplicated entries) are made.

Then, blend analyses the structure of the molecule and finds both bonded and non-bonded
energy terms. It looks in the tables to assign the potential parameters. The rules that apply
as well as the format of the parameter file are described in this section.

3.1 Structure of the parameter file

The parameter file is recognized by extension .par. Its format is close to the format provided
by CHARMM. Its general structure is:

<options>

<table "atoms">

<table of site-site terms>

<table "bonds">

<table "angles">

<table "dihedrals">

<table "impropers">

<table "nbfixes"> [obsolete name: <table "NBFIX">]

<table "polaratoms"> [POLAR only]

<table "polarbonds"> [POLAR only]

<table "waters">

<table "backbone">

The exclamation mark ! denotes a comment.

Each table begins with a header (single keyword on a line) and ends by a blank line; hence,
blank lines are not allowed within tables (any lines without a header after a blank line are
omitted). Detailed explanation is given below.

3.2 Force field generation options

Example of table <options> is:

45

3: Force field and the parameter file [Contents] – [Index] 46

all_dihedrals=0 ! one dihedral per central bond

ar_dih_limit=1 ! inclusion limit for dihedrals in aromatic rings

all_impropers=0 ! one improper per central atom

column_X=0 ! column X disabled (all atoms match = all X=1)

comb_rule=0 ! no sqrt combining rule for LJ energies

LJsigma=0 ! vdW radii used

factor14=0.5 ! multiplicative factor for 1-4 interactions

distance14=4 ! 1-4 interactions are really 1-4

ar_14_limit=0 ! 1-4 also for aromatic rings (use 3 for GROMOS)

polar=0 ! polarizability not included

; ! end of data set

The assignments may be in any order and must end by ; (see Sect. 2.4.1).

Description of options:

all dihedrals all dihedrals=1 All dihedrals are generated for each central bond. Thus,
ethane has 9 dihedrals. Used in newer versions of CHARMM. (This is the default if
all dihedrals is missing).

all dihedrals=0 Only one dihedral is generated for each central bond. Thus, ethane
has one dihedral. Required by older versions of CHARMM. The rules which dihedral
from generally several possibilities to select are mainly aesthetic. It is preferred that
the four atoms of the dihedral be part of a longer chain.

all dihedrals=-1 No dihedrals nor aromatics are generated.

all dihedrals=2,3 As all dihedrals=0,1 and dihedrals with multiple periodicities are
shifted (i.e. absolute term K[0] set) to give Emin=0

ar dih limit Maximum aromaticity of dihedrals. The default is ar dih limit=-1 which
turns off special treatment of dihedrals in aromatic rings. See Sect. 3.8.7, for detailed
explanation.

ar 14 limit Controls 1–4 interactions in aromatic rings (see Sect. 3.8.7). Implemented with
distance14=4 only.

ar 14 limit=4 The 1–4 interactions of atoms that are all in an aromatic ring are
excluded (their nonbonded interactions are zero).

ar 14 limit=3 As above and also atoms attached to the aromatic ring do not interact
with the aromatic atoms (X does not interact with B but X and Y do interact).

A

/ \

B F-X

| |

C E-Y

\ /

D

ar 14 limit=2 As above and also atoms attached to the aromatic ring do not interact
themselves (X and Y do not interact). This is used for GROMOS96.

3: Force field and the parameter file [Contents] – [Index] 47

ar 14 limit=0 No special treatment of aromatic atoms. A and D, X and B, and X and
Y in the above molecule interact by 1–4 interactions. This is the default.

all impropers all impropers=-1 No impropers are generated.

all impropers&1 = 1 All three impropers are generated for each central atom.

all impropers&1 = 0 Only one improper is generated for each central atom (default).
The rules which improper from three (or six if all impropers&2) possibilities to
select are mainly aesthetic—symmetry and bond length criteria are applied. See the
comments in the blendgen.c for details.

all impropers&2 = 2 Swapping of central and ending atom is allowed when generating
the impropers. Thus, one line C I J K is enough in the table of impropers for both
these cases:

I I

\ \

C--K K--C

/ /

J J

This is used for CHARMM21.

all impropers&2 = 0 Swapping of central and ending atom is not allowed. Thus, the
second improper in the above figure will not match C I J K: a separate term for K

I J C (or K J C I or K C I J) is required.

column X Enable/disable column X in the atom table in parset.par.

column X=0 Any atom can match wildcard atom X in the tables of dihedrals and
impropers (default).

column X=1 Only the atoms marked by 1 in column X in the table of atoms can match
X. Rarely used option.

comb rule The combining rule, See Sect. 3.4.2

distance14 Normal value for this option is 4. If, however, distance14=3 or distance14=5

then everything written in this manual about 1–4 interaction (incl. factor14) applies for
1–3 or 1–5 interactions, respectively.

factor14 1–4 interactions are interactions for atoms connected by three bonds (1–2–3–4).
All Coulomb interactions for 1–4 atoms are multiplied by factor14. Lennard-Jones
interaction for which no explicit 1–4 terms or nbfixes are available are also multiplied
by factor14. The default is factor14=0.5.

LJsigma If LJsigma=1 then the RvdW column in the Lennard-Jones table is interpreted as
Lennard-Jones sigma and the sigvdW column in NBfix table also as Lennard-Jones sigma.
Affects reading the .par file only.

polar polar=1 denotes a polarizable force field; POLAR version of blend must be used.
polar=0 is the nonpolarizable default; do not confuse with CHARMM old ‘polar’ force
field, it is NOT polarizable!
polar=2 no longer active (see table “shellrep” as a more flexible replacement)
polar=4 (in addition to 1, i.e., polar=5) (1+4) requests ADIM (induced dipole–induced
dipole terms within a molecule)

3: Force field and the parameter file [Contents] – [Index] 48

3.3 Table of atoms

The first table in the parameter file lists all atom types. Example:

atoms

!i name X A mass Z col description

1 H 0 0 1.00800 1 H Hydrogen bonding hydrogen (neutral group)

2 HC 0 0 1.00800 1 H Hydrogen bonding hydrogen (charged group)

...

10 CT 1 0 12.01100 6 C Aliphatic carbon (tetrahedral)

11 CH1E 1 0 13.01900 7 C Extended atom carbon with one hydrogen

...

Description of columns follows:

i Number of atom, extended atom or interaction site. The atom numbers must be positive.
They need not be ordered but must not duplicate.

name Symbolic name of atom, extended (united) atom or interaction site. It must be composed
of max. 4 UPPERCASE letters and digits (1st char must be letter). (Maybe the length
limit is 6, I am not sure now :-()

X 1 if the atom will match wildcard X in the tables of dihedral and improper torsions,
otherwise 0 (as for hydrogens). Active only if column X=1.

A 1 if the atom is used in aromatic rings.

mass Atomic mass in g/mol.

col (version 1.7 or higher) This is color type. Valid values are:

C Carbon (cyan or gray)

H Hydrogen (white or light gray)

O Oxygen (red)

N Nitrogen (blue)

S Sulphur (yellow)

M Metal (magenta)

X Halogen and other gases (green)

Z Atomic number. Used for determining the atomic charge centroid serving as the reference
point in dipole and quadrupole calculations (cf. hot key E).

description Any text.

3: Force field and the parameter file [Contents] – [Index] 49

3.4 Non-bonded forces

Non-bonded forces consist of the site-site and Coulomb forces. Typical site-site forces are the
Lennard-Jones forces, blend however supports any forces that are written in a separate module.
(macsimus/sim/MODULE/sitesite[ch]). The following MODULEs are available:

lj Lennard-jones

u(r) = −ε
[(
σ

r

)12

− 2
(
σ

r

)6
]

where eps = EvdW = ε < 0, and sig = 2*RvdW = 21/6*LJsigma = van der Waals
diameter

wcalj WCA-cut-and-shifted Lennard-Jones potential

u(r) = −ε
[(
σ

r

)12

− 2
(
σ

r

)6

+ 1

]
, r < σ

= 0, r ≥ σ

In cook* data, LJcutoff = −21/6 and corr = 0 is needed.

buck Exp-6 (with #define REP12, Exp-6-12) potential:

urep(r) = Aij exp(−Bijr),

u(r) = urep(r)− Cij
r6

+
Dij

r12

Several combining rules are available, incl. the Busing aka Kong combining rule (cf.
below).

busing Exp-6 (with #define REP12, Exp-6-12) potential in the Busing form (Busing
combining rule, equivalent to the Kong rule):

urep(r) = f(ρi + ρj) exp

(
Ri +Rj − r
ρi + ρj

)
,

u(r) = urep(r)− CiCj
r6

+
DiDj

r12

where f = 0.05e2/Å2 (in CGS), equivalent to (using CODATA 2014) f = 1.1535388e-09
N = 69467.729 J/mol/Å= 16.603186 kcal/mol/Å.
Note 1: nbfixes replace ρij = ρi + ρj and Rij = Ri +Rj by another values.
Note 2: Conversion from Buckingham urep(r) = A exp(−Br): ρ = 1/2B, R =
ρ ln(A/2fρ).

metal RGL potential, tight binding potential (2nd order), see macsimus/blend/data/metals.par

Parameters for the site-site potentials are calculated from the atom data in the parameter file
using combining rules. The values of partial charges needed to calculate the Coulomb forces are
not (and cannot be easily) given in the parameter file and must be specified with the molecule.

The following text assumes the Lennard-Jones potential as an example.

3: Force field and the parameter file [Contents] – [Index] 50

3.4.1 Selection of site-site and Coulomb energy terms

The following rules, ordered from high to low priority, apply for selection of the site-site (e.g.,
Lennard-Jones) interactions between two atoms:

1. All non-bonded forces between directly bonded atoms (1–2) and between second neighbors
(1–3) are zero.

2. If the pair is separated by three bonds (1–4 interaction), energy terms are looked for in
the following order:

(a) 1–4 value from table nbfixes

(b) General value from table nbfixes with energy multiplied by factor14

(c) Atom values are taken from 1–4 columns of table Lennard-Jones and combined
according to combining rules. If no 1–4 value is available in table Lennard-Jones,
it is derived from the general value by multiplying the energy Emin by factor14.

3. Other interactions than 1–2, 1–3, 1–4 (both intra- and intermolecular): If the pair of
atoms is listed in table nbfixes, these values for the Lennard-Jones parameters are used,
otherwise table Lennard-Jones and the combining rules are applied.

The following rules apply for calculating the Coulomb interactions between two atoms:

1. All Coulomb forces between directly bonded atoms (1–2) and between second neighbors
(1–3) are zero.

2. Coulomb forces between atoms separated by three bonds (1–4 interaction) are multiplied
by factor14.

3. In all other cases (intra- and intermolecular), normal Coulomb forces are used.

3.4.2 Combining rules for the Lennard-Jones parameters

The combining rules depend on the site-site module used and you should read the comments
of the respective module (files macsimus/sim/*/sitesite.[ch])

For the most usual Lennard-Jones module (MACSIMUS/sim/lj/sitesite[ch]), they are
controlled by variable comb rule (old still understood name sqrt rule):

1. comb rule & 1: 0=polarizability rule for Emin (see below), 1=geometric mean for Emin
(TIPS style)

2. comb rule & 2: 0=additive diameters (see below), 2=geometric mean for diameters
(TIPS style)

The Lorentz–Berthelot combining rule (comb rule=1) and geometric mean square rule
(comb rule=3) are typical for modern force fields. Older versions of CHARMM used the
‘polarizability rule’ (comb rule=0) based on the Kirkwood-Slater formula. The Lennard-Jones
interaction of two atoms i and j is then given by:

3: Force field and the parameter file [Contents] – [Index] 51

1. If the values of both polarizabilities alpha in table Lennard-Jones are nonzero and neither
comb rule nor option -\ is specified:

u(rij) =
Aij
r12
ij

− Bij

r6
ij

(3.1)

where the combining rules for the coefficients are

Aij =
Bij

2
(RvdW,i +RvdW,j)

6

Bij =
αiαj
γi + γj

γi =
−α2

i

256Emin,iR6
vdW,i

2. If any of polarizabilities alpha is zero then comb rule=1 applies, i.e., geometric mean of
energy and arithmetic mean of diameters (Lorentz–Berthelot rule).

Bij = (−2Emin,i)
1/2(−2Emin,j)

1/2(RvdW,i +RvdW,j)
6

and Aij is as above.

NOTE: The original article [10] contains the effective number of outer shell electrons N instead
of Emin and a different formula. The conversion (see also program alphatoe.c) is:

Emin = −K
4
α3/2N1/2(2RvdW)−6

where

K =
3

2
(4πε0me)

−1/2eh̄ = 362.3376 kcal mol−1Å
3/2

3.4.3 Table of site-site parameters

Lennard-Jones is the second table in the CHARMM and GROMOS parameter files. For other
site-site interactions, Lennard-Jones is replaced by the corresponding name, e.g., Busing,
Busing-12 – see file metamake in the blend directory. blend checks the table name not to use
a wrong force field. Example:

Lennard-Jones

! alpha Emin Rmin These columns used for

!name [A^3] (kcal/mol) (A) 1-4 interactions

H 0.044 -0.04983 0.800

HC 0.044 -0.04983 0.800

HA 0.100 -0.00447 1.468

CT 0.980 -0.09027 1.800

...

Description of columns follows:

name Symbolic name of atom, extended (united) atom or interaction site.

3: Force field and the parameter file [Contents] – [Index] 52

alpha Polarizability α in Å3 to be used by some combining rules

Emin Minimum energy Emin of the Lennard-Jones (LJ) atom-atom potential in kcal/mol

RvdW Van der Waals radius RvdW (half of the atom-atom distance of the LJ potential
minimum), in Å. Note that if LJsigma is set than this column contains the Lennard-
Jones sigma instead!

1-4 interactions If another three columns are given, they contain alpha Emin Rmin for
1–4 interactions

For other site-site interactions, the Emin and RvdW columns may have different meaning
and more columns may be added; all columns but atom are repeated for 1–4 interactions.

The alpha column is used for combining rules and does not mean the polarizability in
the POLAR version. Often it is irrelevant.

3.4.4 Non-bonded fixes

Site-site forces between certain types of atoms cannot be accurately calculated using the
combining rules and must be listed separately in table nbfixes (old name NBFIX). If the 1–4
columns are missing, factor14 multiple of the normal value is taken for the 1–4 interactions.
WARNING: not true, also 1–4 must be present (to be fixed). If sigvdW=0 for the normal
interaction (not 1–4), the interaction is calculated from site-site (e.g, Lennard-Jones) tables
using the combining rule; thus, only 1–4 terms can be given separately in the nbfixes table
while other terms are regular. Example (from charmm22.par):

nbfixes

! names Emin sigvdW

! i j [kcal/mol] [A]

! OT OT -0.152073 3.5365 not needed

HT HT -0.04598 0.4490 -0.04598 0.4490

HT OT -0.08363 1.9927 -0.08363 1.9927

where sigvdW is twice the van der Waals radius. Note that if LJsigma is set than this column
contains the Lennard-Jones sigma instead!

WARNING (BUG/FEATURE): Emin (or other energy-like parameter, as A for Buckingham)
is in the same units as in the Lennard-Jones (or Buckingham) table, typically kcal/mol. If there
are additional parameters (as C and D for the Buckingham force field), they are in kcal/mol in
the Buckingham table. For cook* version V2.7v and older, they are in the internal units (K)
in the nbfixes table. It holds 1 kcal/mol = 503.219565 K (CODATA 2010). In version V2.8a
and newer, uniform units are used.

3.4.5 Table of polar atom parameters

This applies for the POLAR version only.

polaratoms

!atom alpha shell Esat arep

! A^3 e kcal/mol 1/e

3: Force field and the parameter file [Contents] – [Index] 53

CL 2 -1000 0 0.22439024

I 4.5 -1000 0 0.37037037

atom Atom name

alpha Dipolar polarizability1 α in Å3

shell Number of outer shell electrons in e (normally negative because the electron shell is
negative). This value is copied to the output atoms table and used by the polar version
of cook as the charge of auxiliary site mimicking polarizability by a dipole.

Esat Saturation energy of the induced dipole. Esat=0 turns off the saturation (the same as
infinity saturation energy)

arep Parameter for the shell-core model (repulsive antipolarization), in e−1. Also denoted κ.

3.4.6 Table “shellrep” of repulsive counterparts

This applies for the POLAR&1 version only. The “repulsive antipolarization” or “shell-
core” term, equation (25.2), is not symmetric and and consists of a polarizable ion (usually
anion), i, and its “repulsive” counterpart (usually cation with none or small polarizability), j.
MACSIMUS uses this term if:

1. the atoms are more than distance14 bond apart (normally distance14=4 and 1–4
interactions cannot have the shell-core term),

2. the anion i has nonzero parameter arep alias κi,

3. the cation j is listed in table “shellrep” (one atom type per line).

Example:

shellrep

!atom

NA

LI

(In principle also anions (with κ > 0) may appear in this table. In this case there may be two
shell-core terms per a pair of atoms. This is not recommended.)

3.4.7 Table of axially polar bonds

This table describes the axial polarizability tensor of a pair of atoms connected by a bond. The
tensor is located at the first atom of the pair. alphazz is the polarizability in the direction of
the axis, alpha = alphaxx =alphayy.

polarbonds

! atom --> atom alpha alphazz Esat

! A^3 A^3 kcal/mol

H CL 1 2 300

1More precisely, the polarizability volume

3: Force field and the parameter file [Contents] – [Index] 54

3.4.8 Table of 1–3 axially polar groups

The same as polarbonds but the second atom is a second connected neighbor (1–3). The middle
atom does not enter the formulas for induced dipoles and is used only in topological analysis
to assign the force field terms.

polarangles

! atoms alpha alphazz Esat

S C N 1.778 5.670 0

N C S 0.867 0.801 0

3.4.9 Table defining water models

Table waters defines water model(s). The reason is that water molecule is recognized from
molecule topology and appropriate information is exported so that cook is able to use an
optimized code for water which speeds up the calculations.

waters

! must be in standard order recognized by cook

! name NS atom charge atom charge ...

TIP3P 3 HT .417 HT .417 OT -.834

name is the model name, NS number of sites. Atom types and partial charges follow.

More about water compatibility:

1. Command aw adds water sites in order H H O which is ‘standard’ and recognized by cook

to be rigid TIP3P water model (it only is recognized if blend -o SYSNAME is called with
-n-1 option!)

2. To treat old files with water added by aw with order of sites O H H, option -[3 should be
used (in addition to -n-1). (Precisely, -n-1 -[# causes #-atom clusters to be reordered
so that H go first)

3. Then, in the result of blend -n-1, water line ‘species xxx.1’ should be edited to ‘species
TIP3P’ unless the appropriate table water is present.

Supported water models are collected in water.par

The molecules are (in standard versions) rigid; thus, option -h should be given to blend to
prepare the force field ble-file, e.g.: blend -o spc -h spc.che

SPC Simple Point Charge by Berendsen etal., used by GROMOS. The che-file spc.che for
blend is:

SPC water model

parameter_set=gromos

HW.41 HW.41

\ /

OWn.82

3: Force field and the parameter file [Contents] – [Index] 55

SPC/E More popular version, spce.che; cf. blend/data/sea.par:

water SPC/E water model

parameter_set = sea

Hp0.4238 Hp0.4238

\ /

On.8476

TIP3P Three-site model by Jorgensen. File tip3p.che is:

TIP3p water model

parameter_set=water

!parameter_set=charmm21 is with LJ on H

HT.417 HT.417

\ /

OWn.834

TIP3P/CHARMM The CHARMM version contains additional H-H and O-H Lennard-Jones terms.
cook must be run with option -x to include these terms (see below).

TIP3p water model

HT.417 HT.417

\ /

OWn.834

WARNING: in CHARMM21, the TIP3p water oxygen is called OW, in CHARMM19 and
CHARMM22 it is OT.

TIP4P Four site model by Jorgensen. File tip4p.che is:

TIP4P water model

parameter_set = water

H4p.52000

/

O4-M4n1.04

\

H4p.52000

ST2 Classical but now obsolete model by Stillinger et al. File st2.che is:

ST2 water

parameter_set=water

! use blend -o st2 -h-1 st2

! not real masses - not suitable for diffusivity etc.

! (real masses can be implemented by "lone dependants")

3: Force field and the parameter file [Contents] – [Index] 56

OH2--LPn.2357

/ | \

H.2357 | LPn.2357

H.2357

F3C Model by Levitt et al., to be used with vibrating bonds and angles (cook -u999).
Therefore there is no rigid version.

F3C water model by Levitt etal

parameter_set=water

OFn.82

/ \

HF.41 HF.41

blend caveat: crystal water in PDB files is not (now) recognized. If blend has been called with
option -n-1, it is possible to edit the corresponding species command in the ble-file.

cook notes: virial pressure for ST2 is not correct – pressure by virtual volume change should
be used. ERFCPLUS (see ewald.c) must be at least 1.8 for ST2 !!!

In versions of cook newer than Sep 96 there are special optimized functions available for water-
water interactions for standard rigid models. If option -x is given to cook, using of these
functions is turned off and general slower functions are used (ST2 is not available with -x).
The CHARMM version of TIP3P and any modifications with flexible angles and/or bonds are
available with -x only.

3.4.10 Table defining the protein backbone types

This table contains three lines with atom types used respectively for N, Cα, and carbonyl C.
Example:

backbone

! types of atoms for the backbone

! peptide N types:

NH1 NH2 NH3 N

! Calpha types:

CT1 CT2 CP1

! carbonyl (>C=O) C types:

C CC CD

This information is used for:

• Writing a PDB file ‘from scratch’ (option -w10), e.g., when the source of molecule was a
che-file.

• Creating α helix conformation (option -r6).

3: Force field and the parameter file [Contents] – [Index] 57

3.5 Non-bonded potential cutoff

If option -tnumber is specified, the non-bonded interactions within blend are calculated with
cutoff. This speeds up the calculations.

The cutoff is smooth between site-site distances C1 and C2 given by option -t (see Sect. 2.2.3).
The switch function which multiplies the potential u(r) is:

s(r) =

1, for r < C1

A[((r2 − C)2 −B)2 −D]2, for C1 < r < C2

0 for r > C2

where C = (C2
1 + C2

2)/2, B = (C2
2 − C2

1)/2 and constants A, D are given by the requirements
that s(C1) = 1, s(C2) = 0. Then, s′(C1) = s′(C2) = s′′(C1) = s′′(C2) = 0 and the cut-off
potential and the corresponding force are sufficiently smooth.

Note that this cutoff is used only within blend to increase performance for large molecules and
is not exported to cook, which uses a different cutoff algorithm.

Recommended values:

-t0 (Default) No cutoff, recommended for molecules smaller than 500–1000 sites.

-t11 Minimum reasonable value for larger molecules. Typical cutoff is then 3 LJ sigma,
minimum (for larger atoms as triply bonded carbon) is 2.5 LJ sigma.

-t6 This is sufficient for filling missing hydrogens (in this case, all other atoms are kept fixed
and the most important forces are bond angles).

3.6 Bond potential

The bond potential is:
U(r) = K(r − r0)2

where r is the bond length, r0 the equilibrium bond length, and K the force constant.

This potential is used for minimization in this program. In simulations by cook, bond-length
constraints may be used instead.

The format of the table of bonds is given by the example:

bonds

!atom atom K length

C C 450 1.38

C CH1E,CH2E,CH3E 405 1.52

Description of columns follows:

atom Atom type. Comma separated lists of atom types are allowed. Both atoms may be
lists, however, repeating terms are not allowed (e.g., C1,C2 C1,C2 100 1.5 is incorrect
because it expands into C1 C2 100 1.5 and C2 C1 100 1.5 which are equivalent.)

K Force constant K in kcal mol−1Å−2.

3: Force field and the parameter file [Contents] – [Index] 58

length Equilibrium bond length r0 in Å.

An error condition is raised if blend cannot find a bond in the table.

3.7 Bond angle potential

The bond angle potential is

U(θ) = K(θ − θ0)2 +KUrey−Bradley(|r1 − r3| − s)2

The algorithm to calculate the bond angle θ uses the scalar product of both bonds to calculate
cos θ. There is a substantial (mechanical) singularity for θ close to 0 or π; for the equilibrium
bond angle θ0 = 0 or θ0 = π it becomes a numerical singularity only and is fixed. In the
Urey-Bradley term, s is the 1–3 equilibrium constant

The table of bond angles in the parameter file looks like:

angles

!atom atom atom K angle [Kub s]

C C C 70 106.5

C C CH2E,CH3E 65 126.5

C C CR1E 70 122.5

S C N 40 180 100 2.879

Description of columns follows:

atom Symbolic atom name.

K Force constant K in kcal/mol.

angle Equilibrium angle θ0 in degrees.

Kub Force constant K in kcal/mol Å2. If not present, Kub=0.

angle Equilibrium 1–3 distance in Å.

An error condition is raised if blend cannot find an angle in the table.

For planar groups (like Fe in the heme):

B

|

A--X--C

|

D

where bond angles are 90◦, it is necessary to suppress generating angle terms for angles A-X-C
and B-X-D. This is not a problem if (approximate) coordinates are known: an angle larger than
150◦ is removed from the list of angle terms and a message is printed. If the coordinates are
not known, a warning message is printed; it may help to run blend again.

3: Force field and the parameter file [Contents] – [Index] 59

3.8 Torsions

Torsions are force field terms defined by four atoms. Different types of torsions (dihedrals,
impropers, and also aromatics) differ by bonding of the atoms and by energy terms used but
not by the definition of the torsion angle.

3.8.1 Torsion angle

The torsion angle of four atoms I J K L (written in this order but not necessarily connected
by bonds in this order) is the oriented angle of plane IJK from plane JKL. The orientation is
defined as follows: let us watch the four atoms from the KJ direction so that atom K is closer
to the eye than atom J. Then the angle is the oriented angle of line segment LK from IK:

L L

. I \ angle I

. - \ <---- /

. - \ /

. - \ /

. - \ /

wiew ----> K ------- J K

If the four atoms are connected by bonds as in I–J–K–L , the torsion angle is called dihedral
(torsion) angle or proper torsion angle; it is zero for the cis conformation. If atom I is bonded
to J, K, and L, the torsion angle is called improper (torsion) angle, atom I is thus the central
atom.

3.8.2 Torsion potential

The torsion potential for four atoms I J K L with the torsion angle φ, equilibrium torsion angle
φ0, force constant K and periodicity n is:

U(φ) =

{
K(φ− φ0)2 for n = 0
K[1 + cos(nφ− φ0)] for n > 0

The torsion potential with n > 0 is sometimes called dihedral (torsion) potential. It is used to
describe hindered rotation as e.g. of the methyl groups in ethane.

EXCEPTION: n = 5 denotes a special cis- and trans-dihedrals (see Sect. 3.8.4).

CAVEATS: Only φ0=0◦ and 180◦ occurs. The case φ0=180◦ is replaced by the following formula

U(φ) = | −K|+ (−K) cos(nφ)

which is equivalent as soon asK > 0. If, however, K < 0, which is the case of some CHARMM22
terms, this formula for U(φ) gives shifted values of energy.

The torsion potential with n = 0 is sometimes called improper (torsion) potential. It is used
for three purposes:

3: Force field and the parameter file [Contents] – [Index] 60

1. With non-zero improper torsion angle it is used to define chirality of sp3 chiral atoms in
the extended atom representation (e.g., CH1E in aminoacids).

2. With zero improper torsion angle it is used to keep the sp2 hybridized bonds planar (e.g.,
carbon in ketones).

3. In some force fields the improper torsion with zero dihedral angle is used misleadingly
to keep 5- and 6- aromatic rings planar. The angle is in fact the dihedral angle of four
atoms around the ring; for instance in benzene there are six such aromatic dihedrals. The
problem is that the energy terms occur in the table of impropers and special hooks must
be used to find them. See Sect. 3.8.7.

Note that the output from blend uses slightly different formulas for the torsion potentials (see
Sect. 5.8).

3.8.3 Conversion of dihedrals

WARNING: Often ψ = π − φ is used as the dihedral angle (i.e., trans is zero).

The OPLS style formula for dihedrals is[40]

U(φ) = V0 +
1

2
[V1(1 + cos(ψ)) + V2(1− cos(2ψ)) + V3(1 + cos(3ψ))].

In case of φ0 = 0, K2 has opposite sign. Note also factor 1/2. Several such terms must be
written separately. For example:

!atom atom atom atom K[kcal/mol] n angle

CT CT CT CT 0.87 1 0

CT CT CT CT 0.0785 2 0

CT CT CT CT 0.1395 3 0

is equivalent to V1 = 1.74, V2 = −0.157, V3 = 0.279 (in kcal/mol). The MACSIMUS coefficients
are positive indicating positive energy of the cis conformation.

The Ryckaert–Bellemans formula for dihedrals (good for alkanes) is

U(φ) =
∑
n

Cn cosn ψ, ψ = π − φ.

The conversion is

C0 = V0 + V2 +
1

2
(V1 + V3)

C1 =
1

2
(3V3 − V1)

C2 = −V2

C3 = −2V3

Conversion of Ryckaert–Bellemans to MACSIMUS is (with φ0 = 0, upto n = 6, but note that
K5 means something else so that always use K5 = 0):

K0 = C0 + C1 + C3 −
1

4
C4 + C5 −

3

8
C6

3: Force field and the parameter file [Contents] – [Index] 61

K1 = −C1 −
3

4
C3 −

5

8
C5

K2 =
1

2
C2 +

1

2
C4 +

15

32
C6

K3 = −1

4
C3 −

5

16
C5

K4 =
1

8
C4 +

3

16
C6

K5 = − 1

16
C5

K6 =
1

32
C6

and from MACSIMUS to Ryckaert–Bellemans:

C0 = K0 +K1 +K3 + 2K4 +K5

C1 = −K1 + 3K3 − 5K5

C2 = 2K2 − 8K4 + 18K6

C3 = −4K3 + 20K5

C4 = 8K4 − 48K6

C5 = −16K5

C6 = 32K6

In addition, constant positions of zero K0 and C0 are ignored (may be nonzero).

Scripts to convert Ryckaert–Bellemans to MACSIMUS and back (upto n = 3 only):

tabproc "-A-C*.75" B/2 -C/4 # C1 C2 C3 -> K1 K2 K3

tabproc "3*C-A" "2*B" "-4*C" # K1 K2 K3 -> C1 C2 C3

3.8.4 Cis and trans-dihedrals

Sometimes it is necessary to guarantee the cis and trans conformation around a bond. For
instance, CHARMM22 distinguishes both amide hydrogens in amides:

H O H HA^p.09 Ovn.55 HCISvp.32

| || / | | /

H--C--C--N HA^p.09-CT2n.27--CCp.55--NH2n.62

| \ | \

H H HA^p.09 HTRA^p.30

This is a problem of the initial configuration only—filling unknown hydrogens (heavy atoms
are known). To do it correctly, both hydrogen types are distinguished and special cis dihedral
terms are added:

Ucis(φ) = K cos2 φ for K cosφ < 0

Ucis(φ) = 0K for K cosφ > 0

K < 0 (or K > 0 and φ0 = 180) denotes the trans dihedral.

The cis-dihedral energy term is 0 is the atoms are in the correct cis position and large if cis is
encountered.

3: Force field and the parameter file [Contents] – [Index] 62

These dihedrals are not exported (in a ble-file) to cook because they are not needed once the
bond is in the correct conformation.

3.8.5 Implementation of the torsion potential

There are two different algorithms to implement the torsion potential. For φ0 = 0 or φ0 = π
the potential is even in φ and it is sufficient to calculate cosφ (which requires evaluation of
certain scalar product); both (φ − φ0)2 and cos(nφ − φ0) (the former is implemented for the
most usual case of φ0 = 0 only) is then expressed via cosφ.

The improper torsion used for keeping chirality has n = 0 and arbitrary φ0 and in this case
the sign of φ is important; another (and more complicated) algorithm based on sinφ has to be
used in this case.

3.8.6 Chirality

The chirality of an extended atom I (usually of type CH1E) with three bonds to atoms J, K,
L (listed in this order) is defined as follows: if the triple of vectors (IJ,IK,IL) has the same
arrangement as the standard right-hand orthogonal coordinate system x-y-z, the chirality is +1.
In other words, let us watch the molecule from that side of plane JKL so that we see J–K–L
arranged anti-clock-wise (in the positive direction). If then atom I lies below plane JKL, the
chirality is +1.

The sign of the equilibrium improper torsion angle of four atoms I J K L is the same as chirality
of atom I (see Sect. 3.8.1).

The chirality of a tetrahedral atom I (usually of type CT) with four bonds to atoms J, K, L,
M (listed with this order in column bound atoms) is defined in the same way. It is naturally
assumed that I and M are not separated by plane JKL. Not implemented yet.

Normally, blend finds the requested chiralities in .mol file or calculates them from z-coordinates
in .che file. If option -c is given, blend calculates chiralities from the 3D configuration. File
species.mol is then rewritten (the old one is named species.mox).

Chirality calculations and checking are performed in two stages: first, 3D configurations around
all three-bonded atoms are considered; second, tables of impropers are searched to find whether
the atom is really chiral. It may happen in the first stage that an atom is considered chiral just
because the planar configuration was distorted and this is fixed in the second stage.

Since the chirality depends on atom numbering, it is not suitable to human hackers. Thus,
we define alphabetical chirality as the chirality with respect to alphabetical order of the three
neighbors of the chiral atom, and mass chirality as the chirality with respect to ordering by
atomic masses. All three chiralities are printed to output. The alphabetical chirality of chiral
alpha CH1E atom in the main chain of naturally occurring aminoacids (but glycine) is +1 if
the atoms are named as in CHARMM and united atom representation is adopted for aliphatic
hydrogens. Our simple algorithm does not solve cases when some of the three neighbors of the
chiral atom are the same (the atom may still be chiral); in these cases, ? is printed.

3: Force field and the parameter file [Contents] – [Index] 63

3.8.7 Dihedrals in aromatic rings

This section applies only to force fields using impropers (=terms listed in the table of impropers)
also for aromatic dihedrals. Normally ar dih limit=-1 and then all energy terms listed in table
dihedrals apply to atom chains I-J-K-L (including case n=0 for aromatic dihedrals) while all
energy terms listed in table impropers are for atoms J,K,L bonded to I.

Let us define aromaticity of the dihedral angle I–J–K–L as the number of atoms that lie in
the same aromatic ring, provided that bond J–K lies in the same aromatic ring too. For
instance, benzene (full-atom model) has 6 dihedrals with aromaticity=4, 12 dihedrals with
aromaticity=3, and 6 dihedrals with aromaticity=2.

Specifying ar dih limit>0 has two effects:

1. Aromatic dihedrals are looked for in the table of impropers.

2. Variable ar dih limit controls the way in which dihedrals are assigned to bonds that are
parts of aromatic rings. ar dih limit is the maximum aromaticity allowed for dihedrals
to be included. ar dih limit must be in the range 1–4. The default is 1 (no dihedrals with
central bond in aromatic ring) because normally the aromatic dihedrals should be enough
to keep aromatic rings planar. ar dih limit=4 means that aromaticity is irrelevant when
counting dihedrals—all are included. ar dih limit=3 means that if all atoms I, J, K, L
lie in the same aromatic ring, they are not included in dihedrals (they have already been
included in aromatic dihedrals). If, however, at least one of atoms I and L points out of
the aromatic ring, the dihedral is included.

A 5-ring is called aromatic if it contains at least 3 aromatic atoms. A 6-ring is called aromatic if
it contains at least 4 aromatic atoms. This cumbersome definition is necessary in older versions
of CHARMM because non-aromatic (general) atom types are used sometimes in aromatic rings.
In new versions of CHARMM, all atoms in aromatic rings are of aromatic type so that a simpler
criterion could be used.

3.8.8 Tables of dihedrals and impropers

Example (from charmm.par):

dihedrals

!atom atom atom atom K n angle

CH1E C N CH1E 10 2 180

CH2E C N CH1E 10 2 180

... lines deleted ...

X S S X 4 2 0

impropers

! Improper torsions. See dihedrals above.

!atom atom atom atom K n angle

C CR1E C CH2E 90 0 0

C CR1E CR1E CH2E 90 0 0

3: Force field and the parameter file [Contents] – [Index] 64

... lines deleted ...

NR X X CT 25 0 0

cisdihedrals

O CC NH2 HCIS 1000 5 0.00 ! cis

O CC NH2 HTRA 1000 5 180.00 ! trans

Description of columns follows:

atom Symbolic atom name

K Force constant K in kcal/mol.

n Periodicity number. Note that n = 5 is exceptional—see above.

angle Equilibrium angle φ0 in degrees.

3.8.9 Atom matching rules for finding the energy terms

If column X=1 has been specified, wildcard atom X in the tables of dihedrals and impropers
matches any atom but hydrogen (to be more precise, it matches all atoms with 1 in column X

in the atom table); if column X=0 has been specified, X can match any atom.

If there are several matches possible, the match with less wildcards is selected; if this selection
is not unique, an error message is printed.

If the dihedral or improper torsion is not found in the table, it is assumed that it is zero; if -v
has been specified, a message is printed.

Example: In the improper torsion table [12], there are the following two entries:

!atom atom atom atom K n angle

C OC OC CH2E 100.0 0 0.0

C X X CH2E 60.0 0 0.0

Then, parameters for C-OC-OC-CH2E will be taken from the first line, while the parameters for
C-C-OC-CH2E from the second line.

If there are several periodicities in the table of dihedrals, they are summed; note that the entries
may have different numbers of wildcards. It is not allowed to combine the improper potential
(n = 0) with the dihedral potential (n > 0).

Example:

!atom atom atom atom K n angle

CUA1 CUA1 CUA3 CUA3 0.43 1 0.0

X CUA1 CUA3 X 0.76 2 180.0

In this case, both terms are summed for CUA1-CUA1-CUA3-CUA3.

Chapter 4

Description of molecules

The structure of molecules is described by listing all atoms and bonds. In addition, information
to determine conformation of chiral atoms and partial charges are given.

blend supports two formats: The molecular format is intended for interaction with other
programs. The chemical format allows simple molecules to be easily build up using a text
editor only.

4.1 Molecular file (mol-file) format

This file with extension .mol describes the topology of a molecule and contains also partial
charges. Program blend checks consistency of bonds, removes possible multiple bonds, and
calculates the number of clusters. Thus, you can treat e.g. fulerene with an atom inside the
cage or a water dimer as one “molecule” consisting of more clusters.

alanine - aliphatic hydrogens in united atom representation

! total charge = 0.00

parameter_set = charmm21

zero_energy = -1

number_of_atoms = 9

atoms

! i a-id a-type charge chir nbonds bound_atoms

0 H1 HC 0.3500 0 1 2

1 H2 HC 0.3500 0 1 2

2 N NT -0.3000 0 4 1 3 0 4

3 H3 HC 0.3500 0 1 2

4 CA CH1E 0.2500 -1 3 5 2 6

5 CB CH3E 0.0000 0 1 4

6 C C 0.1400 0 3 7 4 8

7 O1 OC -0.5700 0 1 6

8 O2 OC -0.5700 0 1 6

The first non-comment (i.e., not beginning with !) line is the header.

65

4: Description of molecules [Contents] – [Index] 66

Optional parameter set defines the name of the parameter file without extension. Extension
.bin is added, and if the binary file does not exist, extension .par is tried. The default is
charmm21.

Optional zero energy is the energy (in kcal/mol), or energy offset, which is to be added to the
intramolecular energy. It is typically a result of ‘chemical reactions’ – see group replacement
as defined in .rea. Missing zero energy means zero.

number of atoms refers to the number of atoms in the following table.

atoms introduces the table of atoms. The table column are:

i Order number.

a-id Names that the user can give to the atoms. They have no special meaning for program
blend but that they can label atoms in a picture of molecule.

a-type Atom (extended-atom, interaction site) types.

charge (Partial) charge of atom in e.

chir Atom chirality. See Sect. 3.8.6.

nbonds Number of chemical bonds.

bound atoms Indices of atoms bound by a chemical bond.

If there is an asterisk * in the 1st column of the atoms table, the corresponding atom is marked
and can be kept fixed during minimization. See option -k for details. Example:

! i a-id a-type charge chir nbonds bound_atoms

* 4 CA CH1E 0.2500 -1 3 5 2 6

* 5 CB CH3E 0.0000 0 1 4

* 6 C C 0.1400 0 3 7 4 8

4.2 Chemical file format

The chemical file format is again best seen from an example. The extension of the file must be
.che.

4: Description of molecules [Contents] – [Index] 67

dipeptide

parameter_set=charmm21

HC^.35

|

HCv.35-NTn.3:nter-HCv.35

|

CH1Ev.25---CH3E ! ALA

|

C.55-Ovn.55 H.3

| |

NPn.35--------+-Hv.25

| |

| N5Rn.4==C5RE.3

| / |

CH1Ev.1-CH2E-C5R.1 | ! HIS

| \ |

C.14:cter C5RE.1==N5Rn.4

/ \

OC^n.57 OCvn.57

The first two lines have the same meaning as for the mol-file. They must not be separated by
any blank line.

The symbolic atom names must be in uppercase and may contain digits. Numbers mean partial
charges in electrons, negative charge is marked by n or m (because - denotes a bond), positive
optionally (to distinguish the charge from a digit as a part of identifier) by p (e.g., MNAp1). The
circumflex ^ means that the atom goes 1 Å up the plane, v that it goes down; you can use
several v or ^. The field after a colon means optional identifier (column a-id in the mol-file);
if not present, the identifier is derived from atom number and type (e.g., 0-HC).

The bonds cannot bend, they may, however, cross; character + should be used for the crossing
(x is no longer allowed since V 2.1h: use + for crossing of bonds of any direction). Additional
bonds can be added by statement #connect. Example:

...

---S.2:cys

#connect 33-S 44-S 125-S cys

There may be any number of #connect statements, but the total number of id’s must be even
– the id’s are interpreted in pairs. No wildcards are allowed.

Unless changed by option -r, the initial configuration is derived from the layout of atoms on
the paper and the z-coordinates given by ^ and v used; this is not a good initial configuration, it
is, however, sufficient to determine chirality for each chiral atom. (There are two chiral CH1E’s
in the above example; try to check that the absolute chiralities of alpha-carbons in the above
dipeptide are the same as in alanine given is above — see Sect. 4.1). Energy minimization
must follow. Normally one line separation is 1 Å and the character pitch is 0.4 Å. This can be
rescaled by option -enumber (in %). The z-coordinates are not rescaled.

Statement #include file can be used in che-files: file should contain (a part of) molecule
without header, just as included physically to the place of #include statement. The BUG:
#include statements cannot be nested.

4: Description of molecules [Contents] – [Index] 68

An asterisk * in front of atom type is exported to a mol-file and means that the atom will be
kept in place while minimization. Examples:

blendbus -g5 -r2 -e200 AlCl3SCN.che

parameter_set=busing

*ALp3

CLn1:Cl1 CLn1:Cl2

CLn1:Cl3

LIp1

#include "SCN.inc"

To create files in the chemical format, it is recommended to use a text editor that supports
rectangular blocks. As complicated molecules as adamantane C10H16 or fulerene C60 with an
atom in the cavity have been easily prepared using e.g. QEDIT.

If the molecule is given by this chemical format, the corresponding species.mol file is generated
(the old one is backed up as species.mox).

Chapter 5

Output format (ble-file)

The output file contains full description of the mixture of molecules blend-ed together. It
serves as input for MD programs cook*. In addition, it contains a lot of comments (marked by
!) for humans. Alternatively, it may be created by hand to avoid blend stage; this is necessary
for models which are not implemented in blend. The structure of a ble-file is:

<global data>

<table on site-types>

<table ‘nbfixes’ of non-bonded fixes>

<header of molecule 1>

<data of molecule 1>

<table ‘sites’ of molecule 1>

<table ‘bonds’ of molecule 1>

<table ‘angles’ of molecule 1>

<table ‘dihedrals’ of molecule 1>

<table ‘impropers’ of molecule 1>

<table ‘aromatics’ of molecule 1>

<header of molecule 2>

<data of molecule 2>

etc.

A user is encouraged to edit this file, like adding partial charges, deleting unnecessary potential
terms, etc.

5.1 Global parameters

Global data are in get data format (see Sect. 2.4.1). Example:

nspec=2 nsites=8 nnbfixes=3 factor14=0.500000 ;

where

69

5: Output format (ble-file) [Contents] – [Index] 70

distance14 Setting distance14=0 means that any 1–4 terms are missing in the site-site and
nbfixes tables of the ble-file. Note that the value of distance14 is not used by cook at all
(except for distance14=0) – the topological analysis is performed by blend and coded in
particular species as starred neighbor number; with distance14=0, no such term is allowed
(cook* will report an error).

eunit Energy unit used in the ble-file, expressed in Kelvins (kBK). The output of blend is in
kcal/mol, which means that eunit=kcal/Eunit=4184/8.3144598; this is the default.
If you construct a ble-file by yourself, you may use (based on CODATA 2014, see
macsimus/sim/units.h)

eunit=1 For energies/kB in K

eunit=1000/8.3144598 For energy in kJ/mol

eunit=1/1.38064852e-23 For energy in J

factor14 polar comb rule See Sect. 3.2.

nnbfixes Number of non-bonded fixes.

nparms Number of additional parameters (over two basic denoting atom size and energy) for
the site-site interactions. For Lennard-Jones nparms=0. It must match SS PARMS in header
file macsimus/sim/*/sitesite.h, where * denotes the respoective potential version.

nsites Total number of types of interaction sites contained in all molecules.

nspec Total number of molecules blended together. (The name ‘nspec’ originates from
‘Number of (molecular) SPECies’. Though here ‘number of molecules’ just means ‘number
of species’, in molecular dynamics there are many molecules of the same species.)

polar Polarizability version, see also file blend/metamake. Flags can be summed in the
polarizable versions.

polar=0 Standard non-polarizable version

polar&1 Basic dipolar polarizability support (incl. axial and saturated)

polar&2 : No longer used, the functionality can be mimicked by table shellrep

polar&4 : Also intramolecular 1-2 and 1-3 induced dipole–induced dipole terms are
included. Note that then the molecular polarizability is not a sum of atomic
polarizabilities!

The following additional variables are not present in the blend output, but are read and
understood by cook:

a,b,c,x,y,z Auxiliary real (double) variables.

i,j,k,n Auxiliary integer variables.

5: Output format (ble-file) [Contents] – [Index] 71

5.2 Site types

This table lists all site types in all molecules processed. It’s name depends on the site-site
module linked; Lennard-Jones is most usual (subdirectory macsimus/sim/lj), other options
are Busing (macsimus/sim/bus), are Buckingham (macsimus/sim/buck), etc. (The column
headers are similar as in the parameter file. The number of columns depends on nparms (which
should match SS PARMS in macsimus/sim/*/sitesite.h). Example for a typical protein force
field is (nparms=0, polar=0):

Lennard-Jones

!i atom mass alpha Emin RvdW alpha[1-4] Emin[1-4] RvdW[1-4]

2 HC 1.0080 0.044 -0.0498 0.6000 0.0440 -0.02490 0.6000

4 HT 1.0080 0.044 -0.0498 0.9200 0.0440 -0.02490 0.9200

11 CH1E 13.0190 1.350 -0.0486 2.3650 1.3500 -0.10000 1.8100

13 CH3E 15.0350 2.170 -0.1811 2.1650 2.1700 -0.10000 1.7600

14 C 12.0110 1.650 -0.1410 1.8700 1.6500 -0.07050 1.8700

36 NT 14.0067 1.100 -0.0900 1.8300 1.1000 -0.10000 1.6300

43 OC 15.9994 2.140 -0.1591 1.5600 2.1400 -0.07955 1.5600

46 OW 15.9994 0.840 -0.1521 1.7680 0.8400 -0.07605 1.7680

The units are kcal/mol for Emin (if not changed by variable eunit), Å for RvdW, and Å3 for
alpha.

Site-site force fields with nparms>0 have the columns atom mass alpha Emin RvdW parm...parm

alpha[1-4] Emin[1-4] RvdW[1-4] parm[1-4]...parm[14]. GAUSSIANCHARGES version
has the Gaussian width σ as the last additionalparameter parm[nparms-1].

Since V2.8a, cook* accepts missing 1-4 terms if they are identical to the normal non-bonded
ones. If more parameters follow (for POLAR), one = can replace all nparms+2 1-4 terms.

For POLAR force fields (polar>0), four columns are appended:

alphapol Polarizability in Å3 to be used by polar version of cook. Do not confuse with
alpha which serves for the Kirkwood-Slater combining rule; nevertheless, if this column
is missing, alpha is used.

shell Auxiliary charge (‘number of outer shell electrons’) for replacing a point dipole by a
finite-size dipole (in cook). See variable shell in the parameter file and option -@). If
this column is missing, −1000 is used.

Esat Saturation energy, in the units defined by eunit, kcal/mol by default. For the model of
‘saturated polarizability’ only (see Sect. 25).

arep Parameter for the shell-core model (repulsive antipolarization), in e−1. Also denoted κ.

5.3 Non-bonded fixes

This table has exactly the same format as table nbfixes in the parameter file. As it contains
only non-bonded fixes applying to atoms in the blended molecules, it is usually shorter or even
empty. See Sect. 3.4.4.

5: Output format (ble-file) [Contents] – [Index] 72

Since V2.8a, cook* accepts missing 1-4 terms if they are identical to the normal non-bonded
ones.

5.4 Header of molecule

The header consists of keyword species followed by a name that is derived from the name of
the molecular file (species.mol or species.che). At the same time, a summary of energy terms
and a minimization protocol is printed as comments. Example:

!!!!!!!!!!!!!!

species valine

!!!!!!!!!!!!!!

! valine

! mass=117.1485 g/mol

! potential energy summary (in kcal/mol)

! dihedrals: 2.818

! Lennard-Jones: -0.085 bonds: 9197.366 impropers: 21.795

! Coulomb: -33.921 angles: 198.001 aromatics: 0.000

! sum nonbonded: -34.006 sum bonded: 9419.979 total U: 9385.973

! 27 steps of steepest descent:

! 5 : U=9095.6037 h=5.89786e-06

... lines deleted ...

! 95 : U=-100.85253 h=0.000915236

! 100 : U=-100.86482 h=0.000864632

! U0=-100.865

! potential energy summary (in kcal/mol)

! dihedrals: 1.245

! Lennard-Jones: 4.013 bonds: 0.358 impropers: 0.152

! Coulomb: -113.163 angles: 6.530 aromatics: 0.000

! sum nonbonded: -109.150 sum bonded: 8.285 total U: -100.865

Here, U is the potential energy in kcal/mol and h the step size used in minimization.

5.5 One species (molecule) data

The molecular data are in get data format (see Sect. 2.4.1). Example:

i=0 N=5

ns=11 nc=10 nangles=15 ndihedrals=14 nimpropers=3 naromatics=0

ndependants=0;

! 0 dihedrals, 0 impropers, and 0 aromatics zero or not found

! 25 pairs excluded (1-2 and 1-3) 14 interactions 1-4 0 non-bond fixes

! total charge = 0.00

5: Output format (ble-file) [Contents] – [Index] 73

Where

i Species order number

N Number of molecules of the species. The value of option -n is thus passed to MD programs;
it has no meaning to blend because blend is able to process only one molecule of each
species.

config config=1 denotes that table config will be present containing a configuration of
all species. This is generated for blend -n-1, i.e., when one input molecule is split into
clusters (molecules) and these are treated separately by cook. The configuration initializer
of cook then reads this table and ignores the coordinates of table sites.

ns Number of interaction sites (atoms) in the molecule

nc Number of constraints. Unless -h has been specified, this is the number of bonds.

nangles Number of bond angles (those that are not constrained, see option -h).

ndihedrals Number of dihedral torsions; note that terms with different positive periodicities
for the same dihedral angle are merged.

nimpropers Number of improper torsions (does not include aromatics)

naromatics Number of ‘aromatic dihedrals’ used to keep aromatic rings planar

ndependants Number of ‘dependants’. See Sect. 5.10.

naxials POLAR only: number of atom pairs defining the axial polarizability tensor

Details on some tables follow

5.6 Table of sites

The table of sites consists of keyword sites followed by ns lines. An example follows:

sites

!i atom charge x y z # excluded *1-4 chir:nam

0 HC 0.3500 -0.5158 2.4968 0.7781 0

1 HC 0.3500 -1.7505 2.0381 -0.2218 1 0

2 NT -0.3000 -0.7538 2.3600 -0.2184 2 0 1

3 HC 0.3500 -0.5890 3.1709 -0.8336 3 0 1 2

4 CH3E 0.0000 2.1067 2.2152 -0.1489 1 *2

5 CH1E 0.2500 -0.1139 1.1323 -0.6603 5 0 1 2 3 4 +++

6 CH1E 0.0000 1.2201 0.9911 0.0936 6 *0 *1 2 *3 4 5 +??

7 CH3E 0.0000 1.9662 -0.2889 -0.2953 4 *2 4 5 6

8 C 0.1400 -1.1452 0.1554 -0.1754 8 *0 *1 2 *3 *4 5 6 *7

9 OC -0.5700 -2.1028 0.6459 0.4269 4 *2 5 *6 8

10 OC -0.5700 -1.0187 -1.0326 -0.4039 5 *2 5 *6 8 9

The columns are:

5: Output format (ble-file) [Contents] – [Index] 74

i Order number. It is used in other tables to refer to the site.

atom Atom type

charge Partial charge in electrons

x y x Coordinates of the site

Number of exceptional site-site terms

excluded *1-4 List of exceptional site-site terms. Those marked by * are 1–4 interactions,
those without * are exclusions (1–2 and 1–3 pairs that do not interact by bonded forces).
Only sites with indexes lower than i are listed.

chir:nam This field appears for chiral atoms only. The first character is the chirality with
respect to atom numbering (= the chirality that appears in .mol file), the second character
is the alphabetical chirality, the third character is the mass chirality. This field is not
used by MD programs. See Sect. 3.8.6, for details.

5.7 Tables of bonds and bond angles

Tables of bonds and angles have a similar format. Shortened examples follow:

bonds

!i atom i atom K[kcal/mol/A^2] r[A] calc. Upot

10 OC 8 C 455.00 1.2300 1.2187 0.058

9 OC 8 C 455.00 1.2300 1.2349 0.011

... lines deleted ...

angles

!i atom i atom i atom K[kcal/mol] angle[deg] calc. Upot [Kub s]

5 CH1E 8 C 10 OC 85.00 118.5000 120.15 0.071

9 OC 8 C 10 OC 85.00 123.0000 123.72 0.013

... lines deleted ...

i atom Refers to the notation of the table of sites

K The force constant. See Sect. 3.

r Equilibrium bond length

angle Equilibrium bond angle

calc. Calculated values of bond length or angle

Upot The energy of bond or angle potential in kcal/mol

If the angle potential contains the Urey-Bradley term, the force constant Kub and equilibrium
length s appear as extra two columns in table angles.

5: Output format (ble-file) [Contents] – [Index] 75

5.8 Tables of dihedrals, impropers and aromatics

Tables of dihedrals, impropers and aromatics have the same format. Shortened examples follow
(note that the table of aromatics is empty in this example):

dihedrals

!i atom i atom i atom i atom nX n K|K[0] calc.angle Upot angle|K[1]

10 OC 8 C 5 CH1E 2 NT 2 3 -0.100 171.74 0.191

10 OC 8 C 5 CH1E 6 CH1E 2 3 -0.100 54.88 0.196

... lines deleted ...

impropers

!i atom i atom i atom i atom nX n K|K[0] calc.angle Upot angle|K[1]

8 C 9 OC 10 OC 5 CH1E 0 0 100.000 0.72 0.016 -0.0000

6 CH1E 7 CH3E 4 CH3E 5 CH1E 2 0 55.000 -32.57 0.122 -35.2644

... lines deleted ...

aromatics

!i atom i atom i atom i atom nX n K|K[0] calc.angle Upot angle|K[1]

Where:

i atom Refers to the notation of the table of sites

nX Number of matches of wildcard atoms X while looking for this torsion in the tables
of dihedrals or impropers. For negative n (see below), the maximum number over all
periodicities.

n The periodicity number. For nonzero n the potential form differs from that in the
parameter file (see Sect. 3.8.2).

n=0

U(φ) = K(φ− φ0)2

n>0

U(φ) = |K|+K cos(nφ)

n<0 Several dihedrals with different periodicities have been summed and the potential
is

U(φ) =
|n|∑
i=0

Ki cosi φ

K|K[0] If n ≥ 0 then the force constant K in kcal/mol, if n < 0 then the value of K0.

calc.angle The calculated torsion angle

Upot The potential energy in kcal/mol

angle|K[1] n=0 Equilibrium improper torsion angle

n>0 The field is empty

n<0 The values of K1, K2, ... K|n|

5: Output format (ble-file) [Contents] – [Index] 76

5.9 Table of axial polarizability tensors

Applies to POLAR version only.

axials

!i atom-->i atom arep alpha alphazz Esat

3 S 4 C 0.26998 1.7781 5.6704 0.000

5 N 4 C 0.22019 0.8672 0.8005 0.000

alphazz is polarizability in the direction of the pair of atoms, alpha in both perpendicular
directions. For other parameters see Sect. 5.2.

5.10 Table of dependants

A dependant is a massless site which is a linear combination of two, three or four other sites: a
typical example is site M in the TIP4P water model. blend automatically generates dependants
in the following circumstances (D=massless dependant, X=any atom which may be bonded to
more atoms):

linear patterns: X-D-X X-X-D

X-D-X X-X-X

planar patterns: | | (as e.g. TIP4P water)

X D

X-D-X X-X-X

3D patterns: / \ / \

X X D X

blend itself does not use dependant for anything, these are only exported in the ble-file to be
used by cook.

Caveats:

1. It is necessary to mark angles not containing the massless site as constrainable by option
-h or -h-1.

2. Badly determined multiple dependants not not checked. (?? - probably they are in newer
versions)

3. For blend, it is generally necessary to add an improper or other terms to guarantee
planarity/linearity

Field err= in the table of dependants (in ble-file) contains the deviation from linearity/planarity
and should be small (< 1e-12 for free simple molecules as e.g. TIP4P water, < 1e-2 if the group
is a part of more complex molecule). For 3D patterns, err should be always very small (<
1e-12).

NOTES/BUGS:

5: Output format (ble-file) [Contents] – [Index] 77

dependants do not work well in certain ‘nonstandard’ cases like Q-S-Q---C---Q-N-Q, where Q
is supposed to be a dependant

Any site dependent on another dependant is now removed (see #define REMOVENESTED in
blenddep.c)

In the case above, bonds S-C and C-N are missing and should be added by hand from a ble-file
generated with the masses of dependants nonzero (may be small; it is necessary to use parallelly
this ‘mass’ version of the force field also if nmf is calculated)

dependants

!i atom # i atom weight...

2 O5 4 0 H5 0.2041 4 E5 0.2959 3 E5 0.2959 1 H5 0.2041 err=5e-13

This table means that atom O5 (here of TIP5P water) is a linear combination of two H5 sites
and two E5 sites, with weights given (their sum is 1).

blend uses a MC algorithm to determine the weights, the error is printed as err=.

It is also possible to specify dependants in a special file of extension .dep. This cannot be
combined with automatic selection of massless dependent sites! Example of species.dep:

! this is comment

7 8 9 : 11 12 13 14 ! sites 7,8,9 depend on 11,12,13,14 (using site numbers)

H1 : CA1 CA2 CA3 ! site H1 depends on CA1,CA2,CA3 (using atom ID)

Another example – rigid molecule of benzene. The che-file benzene.che is

benzene

HA.1:b1 HA.1 HA.1:b2

| | |

C6Rn.1--C6Rn.1--C6Rn.1

| |

C6Rn.1--C6Rn.1--C6Rn.1

| | |

HA.1 HA.1:b3 HA.1

and using file benzene.dep

* : b1 b2 b3

all sites but b1,b2,b3 are dependent on b1,b2,b3. cook programs then use constrained dynamics
of triangle b1,b2,b3 and all forces acting on other atoms are propagated to b1,b2,b3. See also
utility makedep.c.

5.10.1 Lone (out-of-plane) dependants

Cook now supports out-of-plane (“lone”, from lone electron pair) dependants, based on 3
parents. See Sect. 11.3.5 The extended format of table “dependants” is (not generated by
blend automatically):

5: Output format (ble-file) [Contents] – [Index] 78

dependants

M 3 M6NE 3 2 O6NE 0.60071493 1 H6NE 0.19964254 5 H6NE 0.19964254 e

L 0 L6NE 3 2 O6NE 1.86320976 1 H6NE -.43160488 5 H6NE -.43160488 -1.73602206 0.86801103

0.86801103 0.00000000 0.63064693 -0.63064693 -0.73718021 0.00000000 0.63988055 0.63988055

0.00000000 0.46490043 -0.63988055 e

L 4 L6NE 3 2 O6NE 1.86320976 1 H6NE -.43160488 5 H6NE -.43160488 -1.73602206 0.86801103

0.86801103 0.00000000 0.63064693 -0.63064693 0.73718021 0.00000000 -0.63988055 -0.63988055

0.00000000 -0.46490043 0.63988055 e

R 0 L5 3 2 O5 1.00000000 1 H5 -0.00000000 4 H5 -0.00000000 0.525 e

The “M” lines are the simple (old), “Middle” or linear, dependants
The “L” lines (“Lone”) have another 13 numbers appended after the list of three parents and
weights (See Sect. 11.3.5, for the notation):
x1, x2, x3

y1, y2, y3

wz
tx,1, tx,2, tx,3
ty,1, ty,2, ty,3
Then, letter ’e’ should follow to mark the end of the line.
The “R” lines (“Rowlinson”) have another 1 number (the LO distance) appended; O should be
the 1st site given.

Chapter 6

Examples

The source files of these (and other) examples are in directory examples/.

6.1 Example 1: Protein in water

We want to simulate protein like crambin in water. The structure and 3D coordinates of crambin
are taken from the PDB database (file macsimus/examples/crambin.pdb). By running the
PDB-converter to the charmm21 force field,

pdb -fcharmm21 crambin

we get the following two files:

crambin.plb 3D coordinates of atoms; coordinates of hydrogens are missing.

crambin.mol Molecular file (see Sect. 4.1) in charmm21. Chiralities of extended tetrahedral
atoms are missing.

In addition, we must have a file describing water copied to our working directory:
blend/data/charmm21/hoh.che (or hoh.mol which can be obtained by copying blend/data/charmm21/hoh.rsd).
It will simplify later work if this file is renamed to TIP3P.che.

cp ~/macsimus/blend/data/charmm21/hoh.che TIP3P.che

We have to run blend twice. In the first step (optional -g selects graphics)

blend -c -t6 -g crambin

the following calculations are performed:

1. Files crambin.mol and crambin.plb are read.

2. Missing chiralities are calculated (this step is empty for full-atom force fields like
charmm22). Note that (unknown) coordinates of hydrogens are not required to do this
unless for tetrahedral NP groups, where a warning is issued; if ignored, the system chooses
the conformation at random which is fully OK here because both H of NH2 are equivalent.

79

6: Examples [Contents] – [Index] 80

3. Coordinates of missing hydrogens are filled by (not very good) values.

4. Energy is minimized by 25 steps of steepest descent and 100 steps of conjugate gradient
method. This is the default (see option -m) which is fully sufficient for obtaining good
hydrogen positions. During minimization, positions of atoms with known coordinates
are kept fixed; this is the default action when an unknown atom is found (see option -k

for details). Short value of cutoff -t6, i.e., C1=5, C2=7, is sufficient for filling missing
hydrogens. Detailed behavior depends on the version (UNIX/X11/DOS) and whether
graphics is selected (option -g)

5. If graphics is on (-g), stop showing by pressing . (period) in the graphics window.

6. Files crambin.mol and crambin.plb are rewritten by new ones with chiralities and
hydrogen positions; the old files are backed-up.

In the second step,

blend -o crambinw -m30 -n crambin -h -n999 TIP3P

the following calculations are performed:

1. Files crambin.mol (with correct chiralities) and crambin.plb (with hydrogens) are read.
Since all atom coordinates are now defined in crambin.plb, all atom coordinates are
subject of minimization. 30 steps of the conjugate gradient method are performed, which
is sufficient to fix inaccurate bond lengths and angles from the PDB file.

2. Unless TIP3P.mol and TIP3P.plb are already present, TIP3P.che is read and the water
molecule is energetically minimized (by max 30 steps of the conjugate gradient method).
Files TIP3P.mol and TIP3P.plb are created.

3. File crambinw.ble containing a description of the force field for both crambin and water
is created. It can be used by program cook. Options -n (= -n1) and -n999 define
the numbers of molecules of crambin and water, respectively (these may be omitted and
defined later in MD by cook). Option -h specifies that the TIP3P water molecule will
have the H–O–H angle constrained, that is, it will be treated as hard body.

NOTE: this example is continued by MD simulation in the manual of cook, see Sect. 17.1.

6.2 Example 2: Cluster Na4Cl4

Let us study local energy minima of a cluster of 4 cations Na+ and 4 anions Cl-. Note that
blend can treat this cluster as one molecule. File Na4Cl4.che contains the following definition:

Na4Cl4

parameter_set=charmm21

MNAPp1 XCLMn1

XCLM^n1 MNAP^p1

XCLMn1 MNAPp1

MNAP^p1 XCLM^n1

6: Examples [Contents] – [Index] 81

Figure 6.1: Wurtzite structure viewed along the c-axix. Red: basic cell, blue: doubled cell
matching a rectangular box

First try:

blend -g Na4Cl4

This statement reads Na4Cl4.che, derives 3D configuration from it, and minimizes it
energetically. You should get a cube.

Then, try:

blend -r -g Na4Cl4

Now, the starting configuration is random and you will get different local energy minima, like
a strip 2x4, a ring (octagon), etc. Try to repeat the same calculation several times. If not
converged enough, continue by pressing , (comma), end by .. Use mouse for rotating the
configuration, right button or + - for rescaling.

NOTE: The CHARMM-atoms MNA and XCL are neutral and it is not accurate to use them
with charges. Therefore TIPS-based MNAP and XCLM were added.

6.3 Crystals

Crystals must match to a rectangular box. Thus, monoclinic and triclinic crystals are not
supported.

naclcryst Prepare rotated rock-salt crystals.

ice Prepare ice and clathrate crystals.

plbreplicate To replicate a crystal (not for mixtures)

cook Using init=5 or init="cryst" with optional pins set can create basic crystal structures.

cook A more robust procedure will be explained using the wurtzite-type crystal (assuming
that LiI crystallizes as wurtzite, which is the case in some force fields). A basic wurtzite
cell must be replicated twice to fit into a rectangular box, see fig. 6.1. In the ATM-format,
with ideal tetrahedral angle and atom-atom distance of 1 Å we have (file wurtzite.atm

8

1.6329932 2.8284271 2.6666667 ! \(8/3) \8 8/3

6: Examples [Contents] – [Index] 82

I 0 0 0

I 0.81649658 0.47140452 1.3333333 ! \(2/3) \2/3 4/3

I 0.81649658 1.4142136 0 ! \(2/3) \2 0

I 0 1.8856181 1.3333333 ! 0 \32/3 4/3

LI 0.81649658 0.47140452 0.3333333 ! \(2/3) \2/3 1/3

LI 0 0 1.6666667 ! 0 0 5/3

LI 0 1.8856181 0.3333333 ! 0 \32/3 1/3

LI 0.81649658 1.4142136 1.6666667 ! \(2/3) \2 5/3

Possible script to make a crystal of Li180I180:

bonds wurtzite.atm # make wurtzite.plb (and .mol,.gol)

plbscale wurtzite.plb li180i180.plb "*2.8" # scale close to real Li-I distance

plb2cfg li180i180.plb li180i180.cfg # convert to .cfg (accept WARNING)

blend -o LiI LI I # make force field

sample def-file

cat > li180i180.def <<EOF

N[0]=180 ! Li

N[1]=180 ! I

rho=3280 ! approx. crystal density

tau.rho=2 ! density relaxation time [ps]

cutoff=11.2 ! approx. half box size

LJcutoff=cutoff

L[0]=5*\(8/3) ! box shape (not in scale)

L[1]=3*\8 ! box shape (not in scale)

L[2]=8/3*3 ! box shape (not in scale)

load.n[0]=5 ! cell will be 5x replicated in x

load.n[1]=3 ! cell will be 3x replicated in y

load.n[2]=3 ! cell will be 3x replicated in z

load.N=3 ! tell cookew to ignore N=0 in the input file

init=2 ! will read li180i180.cfg

thermostat="Andersen" tau.T=0.1

dt.plb=1

;

EOF

cat > li180i180.get <<EOF

! cookew LiI li180i180

no=100

rdf.grid=25

rdf.cutoff=cutoff

;

EOF

6: Examples [Contents] – [Index] 83

sample get-file

cookew LiI li180i180

After this step, all load.* should be deleted from li180i180.def. Suggested get-file
follows:

! cookew LiI li180i180

no=10000

LJcutoff=10.95

cutoff=LJcutoff

init=2

thermostat="Berendsen" tau.T=1

bulkmodulus=2e10

tau.P=5

tau.rho=0

rescale="XYZCM"

rdf.grid=25

rdf.cutoff=cutoff

;

Chapter 7

Problems

7.1 Bugs and caveats

1. Special hydrogen bonding potentials (as in old versions of CHARMM) are not supported.

2. Output tables are printed in reverse order than is natural. This is because of a simple
implementation of linked lists.

3. No valence tests are performed on molecules. For instance, a missing hydrogen in “ethane”
CH2–CH3 passes unnoticed.

4. Chirality is explicitly supported only for CH1E etc. in extended atom representation. Bad
configurations around four-bonded tetrahedral atoms pass unnoticed.

5. If nbfixes for 1-4 interactions are present and factor14=1 then 1-4 exceptions are always
present even if it may happen in some cases that they are identical to normal interactions
and some efficiency is lost.

7.2 Trouble shooting

Here we examine several possible sources of problems.

Problem: blend (UNIX, SGI) gives strange error messages which do not resemble anything
described in this manual.

Probable cause: You run a system command of the same name. blend always prints a line
like this:

! ------ MACSIMUS / BLEND 2.0k ------ (c) J.Kolafa 1993-2004 ------

Solution: Use system command which blend to determine which blend are you using. If
this is not the correct blend, change your path (remember that if you want to run blend

from the current directory, you must have the current directory . as the first item in your
path) or rename blend.

——————————————————————–

84

7: Problems [Contents] – [Index] 85

Problem: I get error message “parameter file not found - try set BLENDPATH”

Solution: Set BLENDPATH (see Sect. 2.1). If it does not help, try to specify the parameter
file name (with full path), see Sect. 2.2.2.

——————————————————————–

Problem: I get error message: “bad coordinate - endian?”

Probable cause: You have binary file created on a computer with different endianness, i.e.,
with different order of bytes (like Sun and PC).

Solution: Try option -r with negative argument (see Sect. 2.2.3).

——————————————————————–

Problem: I get error message: “atom coordinate out of range” while minimizing.

Probable cause: High-energy initial configuration, atoms overlap

Solution: Try to run more steps of the steepest descent method before switching to the
conjugate gradients. This is done by giving option -m a negative argument, or by variable
sd when running blend interactively.

——————————————————————–

Problem: I have changed .che file but blend ignores my changes.

Problem: I have changed .che file but blend suddenly reports strange errors.

Probable cause: blend reads .mol and/or .plb files generated in previous runs.

Solution: Try

blend -r2 species.che

Option -r2 forces blend to use 2D configuration from .che file. species.mol file will be
ignored because extension .che is specified.

——————————————————————–

Problem: While using scrolling, text on screen is badly justified and smashed together.

Probable cause: The number of columns on your window is not what expected (usually 80).

Solution: (1) use command $Cnumber to adjust the number of columns; (2) set correctly the
environment variables COLUMNS and LINES; (3) resize your window to 80x24.

——————————————————————–

Problem: Missing lines when using scrolling.

7: Problems [Contents] – [Index] 86

Probable cause: Some screens have that bad habit of eating ends of lines longer than number
of characters/line which does not fit the scroll’s assumptions.

Solution: (1) use command $Cnumber with large number; (2) set correctly the environment
variables COLUMNS and LINES; (3) enlarge your window in x-direction.

——————————————————————–

Problem: I minimize a molecule from random initial configuration (or from rather complicated
2D screen coordinates) and I get unexpectedly high energy though the molecule
configuration does not seem to be squeezed or locked.

Probable cause: Check arrangement of bonds around tetrahedral atoms. There is a local
energy minimum consistent with the values of bond angles in which the four atoms form
a square (instead of vertices of tetrahedron) and the “central” atom lies above or below
this square:

CT

HA- - - - - - - - -HA

/ /

/ /

/ /

HA- - - - - - - - -HA

(CT-HA bonds are not marked)

Solution: (1) Run blend interactively and enter ran=1; to randomize the positions; if it
does not help, try higher values, but be careful. Hot key : works in a similar way. (2)

Edit the problematic groups in the graphic environment (mark atom, press m , move the
atom)

7.3 Frequently asked questions

7.3.1 Free molecules

Q: I want to add several water molecules (protons, ...) to a specified place on a protein.

A: I suppose you have already .mol and .plb files (obtained either via .che file, or using pdb).
Run blend again interactively with -e option. Example:

blend -e -g -s myprotein

You will be prompted for editing commands. Type ? Enter to get brief help and then add
atoms like in this example which places a water molecule close to atom 0-HC:

7: Problems [Contents] – [Index] 87

af W-O OW -.834 0-HC 2

aa W-H1 HT .417 W-O

aa W-H2 HT .417 W-O

end

If you need to add more waters, try input from .edt file instead of typing the commands
interactively.

Now you may need to re-optimize the whole structure again. Either type keep=0 interactively,
or re-run blend without -e option.

In fact, there is command aw available so that the above three command can be simplified to:

aw 0-HC 2

7.3.2 Prevent molecules from evaporating

Q: I have a protein with several water molecules (or ions...) adsorbed. How to prevent them
to ‘evaporate’ to infinity while minimizing?

A: Create the .jet file with artificial ‘bonds’ binding water to protein (See Sect. 3.2, option -j).
Use blend with option -j. If you wish to have these forces (with much smaller force constant!)
also in molecular dynamics, use -j option with -o, otherwise remove -j when the .ble file is
generated by option -o.

7.3.3 One or more molecules?

Q: Is it better to split a ‘molecule’ consisting of parts not connected by bonds using option -n

or treat it as one big ‘molecule’

A: Probably yes. But you must have the corresponding .gol file for show obtained WITHOUT
option -n-1 given to blend.

Part II

Program ‘cook’ version 2.9

88

89

He who believes in evil spirits and ghosts is himself an evil spirit and a ghost (Frantǐsek Rachĺık)

cook stands for a family of sequential and parallel programs for molecular dynamics of mixtures
of molecules described by force fields based on site-site (Lennard-Jones etc.), Coulomb and
bonded interaction. cook understands the description of molecules generated by blend.

Chapter 8

Overview

8.1 Features of cook

• Vibrating bonds or constraint dynamics to keep bond lengths constant (Lagrangian
formalism or SHAKE)

• Free or periodic boundary conditions, rectangular box

• Linked-cell list method or all-pairs method for non-bonded interactions

• Ewald summation (highly optimized code) or cut-off electrostatic

• Attention paid to errors of integration as well as Ewald cutoff errors

• Convergence profiles of important quantities

• Measuring of many quantities, e.g.:

– Electrostatic, internal, kinetic etc. energies

– Virial pressure and pressure calculated by virtual volume change

– Site-site correlation functions

– Dihedral angle distribution

– Bulk conductivity, autodiffusion coefficients

– Shear viscosity

• Autocorrelation and block analysis of measured data

• Nose canonical thermostat, friction (Berendsen) thermostat, Maxwell–Boltzmann ther-
mostat.

• Friction-like isobaric ensemble

• Dipolar polarizability — original method with 2nd order predictor

• Parallelization — shared memory with Linux threads

• Batch and interactive modes

• Sophisticated input data unit including a calculator

90

8: Overview [Contents] – [Index] 91

• Scrolling windows emulation in interactive mode

• Flexible description of force field via program blend

8.2 History

10/1991 Constraint dynamics (Lagrangian and Hamiltonian formalism) * Dept.Chem. *
Northwestern University * Evanston * Illinois * USA

1/1992 Poly(ethylen oxide) * Dept.Math. & Computer Sci. * Odense University * Denmark

4/1992 PEO V1.0, * UTZCHT CSAV * Praha 6 - Suchdol * Czechoslovakia

5/1992 Bug fixes (V1.1) * Odense

7/1992 Compatibility changes to the transputer parallel version (V1.2) * Odense

8/1992 Serial version V2.0, parallel version V0.1 (see ppeo.man) * Odense

3/1993 Easy implementation of different systems (V2.0) * Institute of Chemical Processes *
Prague * Czech Republic

10/1993 PROSIS/COOK Version C0.5 * Odense

11/1994 Linked-cell list method version, free-boundary conditions version (C1.0) * Odense

1/1995 PEO and COOK merged into 1 package * Odense

4/1995 Polarizable dipoles * Odense

6/1995 Isobaric ensemble supported. Cosinus shear stress to measure viscosity * Odense

7/1995 Decoupled inter/intra-molecular friction thermostat * Odense

2-10/1995 Support for shared memory parallel computers (Convex, SGI) * Odense

11/1995 Playback and batch control improved (option -number) (tcfg tprt changed into
dt.prt dt.plb; dt.plb instead of option -y) Packed convergence profile (and playback
soon...) * Evanston

7/1996 Better control over end-to-end distance, cross section, radius of gyration * Evanston

6/1997 MPI parallelization

6-12/1999 New and extended polar version, Busing force field, axial polarizability * Evanston,
Prague

2000 Cluster analysis, conductivity * Evanston, Prague

2001 CHARMM22, GROMOS96 and better manual – version number set to 2.0a. * Evanston,
Prague

2004 ANCHOR, WALL * ICT Prague

2005 Rectangular box (not cube)

8: Overview [Contents] – [Index] 92

2005 Slab geometry, surface tension

2006 Widom insertion particle method

2008 Box scaling, pressure tensor (2.4a)

8.3 Compile-time versions of cook

The cook package allows customizing the executable according to various user requirements.
This is accomplished by editing file simopt.h (see file cook/generic/simopt.h - lot of
comments there!) and the makefile and recompiling (see Sect. ??).

Customizing of the most common versions is simplified by the configurator, script
configure.sh, residing in the cook subdirectory. The projects created by configure.sh must
be placed in subdirectories of cook. Example:

cd ~/macsimus/cook

configure.sh

The following major versions are available:

Ewald summation Standard 3D periodic boundary conditions with Ewald summation to treat
electrostatic interactions (of point charges). See Sect. 11.2. Requested by #define

COULOMB -1 or -2 in simopt.h or during configuration.
WARNING: if LINKCELL is not used, the cutoffs for “optimized water models” must be
shorter than minimum half box minus the O–H distance. See option -x.

NIBC Nearest-image boundary conditions, no cutoff, all pairs considered. Bug: cutoff
corrections not calculated. Suitable for small systems only. NOT TESTED RECENTLY.

Cutoff electrostatic Coulomb forces smoothly cut off to zero. Requested by #define

COULOMB 0 (or 2), also the Fennell–Gezelter version (#define COULOMB 3). See Sect. 15.3.
Recommended executable name: cookcut, cookfg.

Gaussian charges Standard 3D periodic boundary conditions with Ewald summation to
treat electrostatic interactions of Gaussian charges. See Sect. 11.2. Requested by
#define COULOMB -3 (also GAUSSIANCHARGES and QQTAB needed). Tested only
for polarizable models.

LINKCELL Instead of the “all pair” method to calculate the pair (r-space) sums, the linked-cell
list method is used. Compatible with Ewald and cutoff electrostatica, cannot be combined
with FREEBC or POLAR. Since V2.7e, three versions are available:

LINKCELL=0 : Each particle control structure (list item) contains also forces; after the
r-space calculation they are summed to the contiguous arrays where they normally
reside.

LINKCELL=3 : Each particle control structure contains pointer(s) to forces in the
contiguous arrays. This was the only method available in V2.7d and older.

8: Overview [Contents] – [Index] 93

LINKCELL=1 : For serial and PARALLEL=2 this is the same as above. For
PARALLEL=1 the array of forces is duplicated to avoid summing to the same forces
in parallel; the first instance of forces is indirected and the second one placed in the
list item (as for LINKCELL=0).

Which linked-cell version is more efficient depends mainly on the processor and cache
architecture, data size, and parallelism.

PERSUM Cutoff longer than half the box (minimum of all sizes) is allowed. Variable No.molspan
must be set. For NPT, No.molspan must include possible change in box size. Inefficient
code, incompatible with LINKCELL, NIBC. Optimized water models not supported, the
default option -x0 set. Using -x1 is only WARNING because the error is caused by wrong
treatment of Ewald intramolecular corrections; in case of the r-space Ewald potential small
enough at r = box size, the results are accurate. (It would not be too difficult to fix it,
but I’m too lazy.)

FREEBC Free boundary conditions, Coulomb forces 1/r, all-pairs method to calculate pair
interactions. Recommended executable name: cookfree.

STARS The sign of electrostatic forces is changed so that gravity is simulated instead of charges.
Normally with FREEBC. See Sect. 15.4. Recommended executable name: stars.

WALL Simulations at Lennard-Jones walls. See Sect. 15.10. Recommended executable name:
wall etc. Not tested recently.

SLAB Slab geometry and z-density profiles measurement. Also forces needed to keep atoms in
slabs. SLAB=1 turns on some additional forces.

GOLD Simulation at vicinity of metal (ideal conductor) surface. WALL required. See
Sect. 15.10. Not tested recently.

POLAR Polarizable dipoles supported. Can be combined with FREEBC. See Sect. 15.5.

PARALLEL At this moment, two versions parallelized by ‘pthreads’ are available, (1) linked-
cell list site-site interactions + Ewald and (2) real-space and Ewald running in separate
threads. A MPI version was removed. (Other versions are under development, namely,
to be rewritten from from SGI to Linux.) See Sect. 10.

MARK Special to analyze pair energies. See Sect. 15.12. Not tested recently.

ANCHOR Fixes (anchors) one site and measures forces on it. See Sect. 15.11.

PRESSURETENSOR Direct measurements of the pressure tensor. See Sect. 15.6.

SHAKE, VERLET Several versions of the SHAKE algorithm and kinetic energy formula. See
Sect. 11.3.1.

site-site The site-site potential (Lennard-Jones, exp-6, Busing, ...) is selected in the
makefile (better said metamake). The respective code is in (from MACSIMUS home)
sim/XXX/sitesite.h and sim/XXX/sitesite.c, where XXX is the name (e.g., lj, exp6,
busing12...). The same code is used also by blend. The formats of the ble-file changes
accordingly.

8: Overview [Contents] – [Index] 94

LIBRARY Library for energy and forces that can be called from other programs. See Sect. ??.
Removed or not tested recently.

In addition, a lot of compile-time options define “minor” versions, which may improve efficiency
for particular systems and add/remove some extra features—see cook/generic/simopt.h.

8.4 Disclaimer

No warranty is provided on anything. If you do not like this program, just do not use it.

Chapter 9

Running cook

9.1 Where is

On some sites, particular executables (Ewald: cookew, FREEBC: cookfree, ...) may be in
subdirectory bin/ (of MACSIMUS home). See Sect. ??. Cf. Section ‘Where is’ in the manual
for ‘blend’.

9.2 Synopsis

The command line to run any version of cook is:

cook [options] [sysname[.ble]] simname[.get] [plbname[.plb]] [options]

If no parameter is given, a brief help on options is printed.

The parameters can be given in any order, the only exception is that sysname must precede
simname.

Option X is switched on (i.e., set to value 1) by one of -X -X+ -X1 and switched off (cleared to
value 0) by -X- or -X0. The options are case insensitive.

9.2.1 File parameters

sysname Name of the system to simulate. If not given (which is deprecated), sysname=simname
is assumed. Refers to file sysname.ble generated by blend and containing full descrip-
tion of the force field and, if simname.def does not exist, also to the definition file
sysname.def

simname Simulation name. Names of files used in the run are obtained by appending
extensions, see Sect. 9.2.3.

plbname.plb Optional name for the input playback file (used with init="plb" or init<0).
If not given, plbname=simname. This parameter comes with extension .plb and may
refer to file plbname.vlb.

95

9: Running cook [Contents] – [Index] 96

9.2.2 Options

-number Overrides no for the 1st cycle (e.g., if input data are no=3;;no=5; and -10 is
specified, the result is the same as no=10;;no=5;).

-@WHO@WHERE Send e-mail to WHO@WHERE if the job finishes or crashes. Utility mail must
be configured. (The old meaning of -@ is now in the data as No.occup)

-anumber POLAR version: all polarizabilities are scaled by number%. The default is 100%.
Useful for initializing the simulation.

-b Beep, progress, and stop option.

In the batch mode (no option -s):

-bnumber Checks for existence of simname.stp every number-th cycle. If found, finishes
cycle and stops (as if Ctrl-C).

-b-number Checks for existence of simname.stp every [100000*number/(No.s*noint)+1]-
th cycle. The default is -b-2 (stop in roughly a minute).

-b0 Does not check for existence of simname.stp.

In the interactive mode (option -s):

-b0 Does not beep

-b1 Beeps (sends \a to stderr) when finished

-b2 As above and after every ‘get data’ set processed (the default)

-b3 As above and when SIGINT (Ctrl-C) or SIGTERM caught

-b4 As above and prints progress indicator to stderr.

-b-number The same as -bnumber

-c number Method for correcting constraints and measuring constraint errors. See Sect. 11.3.
Sum of flags; the default is -c9 = 1+8:

-c1 This flag applies to the Lagrangian constraint dynamics only (irrelevant for
SHAKE). The conjugate gradient method conjgrad is used to correct constraints
after every integration step (default; denoted as -c4 in versions prior V2.4a).
If not set, a SHAKE-like direct iteration method Scorrect is used to correct
constraints of real configuration after every integration step (denoted as -c3 in
versions prior V2.4a).

-c2 If set, constraint errors are measured before every integration step. Denoted as
“constr err before” in statistics.

-c4 If set, constraint errors are measured after integration step and before Scorrect.
Meaningful with Lagrangian constraint dynamics and Scorrect. Denoted as “constr
err mid” in statistics.

-c8 If set, constraint errors are measured after every integration step. Denoted as
“constr err after” in statistics (default).

-dnumber Check site-site distances.

9: Running cook [Contents] – [Index] 97

-d1 once/‘get data’ set

-d2 once/cycle (and at load)

-d3 once/step (and at load)

The default is -d0 = never.

-enumber Number of items in the convergence profile. The default depends on compiling
switches but can be reduced, or completely turned off by -e0.

-f In the reread mode (option -m0, -m1): calculate energy and forces from each
configuration read. If POLAR, the precision is controlled by scf.epsx,scf.omegax.

-gnumber REMOVED IN V3.0

-hnumber Centers all atoms of given valence to its neighbors. To be typically used as -h4 to
remove wrong pyramidal configurations of methane and other sp3 carbons, or similarly
as -h6 for PF6.

-inumber Ctrl-C interrupt handler option. (EMX : ESC hit handler)

-i-1 Disable Ctrl-C handler.

-i0 Interrupt and ask for the appropriate action, this is the default for the interactive
run (see option -s) in serial versions. Not recommended for the PARALLEL version.

-i1 Finish the running cycle and read the next set of data. This is the default in
interactive run in PARALLEL versions.

-i2 Finish cycle, then save all and stop. This is the default in the batch run.

-i5 Finish step, then save all and stop. Recommended only if the next run will be with
init=2 because some measurements are affected by interrupting the measurement
cycle.

WARNING: OK for unix/linux. System-dependent and sometimes unexpected behavior
otherwise. Can be disabled by deleting #define SIG in main.c. See Sect. 9.2.7.

-jnumber If number > 0, first number molecules are frozen (kept fixed and do not move). This
option is intended for equilibrating water environment around one big macromolecule and
similar. While initializing the configuration (see variable init), the first number molecules
do not rotate nor they move when MC (see variable MC) is selected.

If initializing configuration init=5 is specified, and number = nspec− 1, this also causes
that those lattice positions of species (nspec-1) which overlap (see Emax) with species
0...(nspec-2) will be removed. A warning is printed and the next start of COOK
should use the resulting (lower) number of molecules. Intended for immersing a big
macromolecule into water prepared in advance. See Sect. 13.

BUGS: for nspec>2 the first nspec-1 molecules are placed at random lattice positions
without checking possible mutual overlaps. This lattice site is not used for the last species.

In the POLAR versions, the dipoles in the fixed molecules are not polarizable.

The potential energy is not correct if option -j is used (differs by a constant dependent
on the Ewald parameters, i.e., the Ewald test fails). Forces and thus the trajectory are
OK

9: Running cook [Contents] – [Index] 98

If number < 0 then the initializer (init>=3) does not rotate first |number| molecules
(formerly negative option -q). It is possible to use a big -number to denote all molecules
(e.g., -j-99999999).

-knumber Force constant for keeping (“fixing”) selected sites in place. The units are K/Å2

(not kcal/mol/Å2). See Sect. 15.1.

-lPEGFAVC ASCII dump. EGFAVC stand for decimal digits denoting:

C writes the configuration to file SIMNAME.asc, in Å

V writes the velocities to file SIMNAME.vel, in Å/ps

A writes the accelerations to file SIMNAME.acc, in Å/ps2

F writes the forces to file SIMNAME.for, in kK/Å= 1.3806485e-13 N

G writes the gradient of energy (numerical derivative) to file SIMNAME.gra (to
compare with SIMNAME.for) unit as above (SLOW!)

E The sum of F and G (should be numerical zero)

P POLAR: the Drude amplitude (separation of the Drude charge)

All dumps are in the internal program units, as indicated. The digits denote: digit=0 do
not write, digit=1 denotes the maximum precision in the g-format, digit=2..9: number
of decimal digits in the f-format.

EXAMPLE: -l1003 will dump the configuration (to 3 dec. digits) and forces (in max-
precision g-format)

The six columns of the output file are:

i Consecutive number

mol Species number

x,y,z Vector

|vector| Its absolute value

-morder Integration method.

-m3,-m4,-m5,-m6 The order-value Gear predictor-corrector method is used with
Lagrangian constraint dynamics (if constraints are present). Since V2.9f, also
-m7,-m8 are partly available, see gear.init. The value of -m is called GearOrder

in the source code.

-m2 Verlet integrator (with SHAKE if constraints are present). Requires #define
SHAKE in simopt.h. This is the default.

-m1 Frames from simname.plb are read instead of simulating, cf. dt.plb. See variables
reread.from, reread.to, and reread.by for control which frames to read and
analyze. It is recommended to change the simulation name to avoid overwritten the
files.

-m0 As above except that cfg-files simname.# are read, where # is a decimal number;
cf. dt.cfg. WARNING: not tested recently.

9: Running cook [Contents] – [Index] 99

-m4 is generally recommended for complex molecules with many constraints (especially
with constrained angles, hard bodies, etc.) as a balance between accuracy and stability
problems of higher-order methods caused by some nearly-singular behavior of constraint
dynamics and also noise introduced by cut-offs. Higher order may be better for very
simple molecules.

Verlet/SHAKE is recommended for simple constraints and for the POLAR version.

-n Write velocity playback (.vlb). WARNING: with Verlet/SHAKE, velocity is shifted by
h/2.

-onumber 0 Simulation is started without asking even if the lock file sysname.loc exists.
Use with caution!

1 If the lock file sysname.loc exists, the simulation does not start and an error
message is printed. This is the default.

-pKPC (for POLAR version: K,P,C are decimal digits)

-pC (for nonpolar version) Selects various predictors.

C With Verlet+SHAKE (option -m2): C is the length of the predictor for
calculating the velocities. Applies for the Nosé–Hoover thermostat, otherwise
not used. The higher order, the better time-reversibility and total Hamiltonian
conservation. C=0 is no extra history (v(t) ≈ [r(t) − r(t − h)]/h). The default is
C=2.

With Gear + Lagrangian constraint dynamics (option -m > 2): Order of
predictor for Lagrange multipliers (0=no prediction, default=9=value of -m). Affects
efficiency only, not accuracy. The best results are probably obtained with the same
order as Gear provided that parameter eps is optimized.

P POLAR only: the predictor or method order.

0 Car-Parrinello-like (extended Lagrangian) method. See Sect. 15.5.2.

1 No prediction (previous value).

2 Always stable predictor-corrector. The predictor length is given by K, the
default is K=2. This is the default.

3,4 Higher-order predictors, may be useful with Gear integration.

K Predictor length. For P=2 (ASCP), the higher K, the better energy conservation.

-qnumber Charges are rescaled by |number|%. The default is 100%. Negative number forces
the configuration to be neutralized by adding the same charge to all charged atoms
(uncharged atoms are not charged). Useful if a charged configuration is to be simulated
using the Ewald summation – use -q-100.
POLAR: Drude charges are not changed since V3.1c

-rorder DOUBLECHECK: probably only positive option, stores native format – not float

Record configurations for further analysis (see, e.g., option -f). order is the maximum
order of derivatives (it must not exceed the -m value). The configurations are recorded
in files simname.1, simname.2, simname.3, etc., with the frequency dt.cfg ps. dt.cfg
should be an integer multiple of h*noint.

The configurations are stored in float precision; negative order forces storing in the native
cook real format, usually in double.

9: Running cook [Contents] – [Index] 100

Recommended values:

-r0 Do not record

-r1 Record positions only (default)

-r2 Record also velocities

-r-m where m is the value of option -m: Stores fully restartable configuration.

CAVEAT: Somehow duplicated by the playback, see option -y. The difference is that the
-r function does not record the initial configuration (for t=0) and cannot be used more
often than once in a cycle.

-snumber This option sets the interactive mode: input is keyboard (instead of a get-file),
output the screen (instead of a prt-file). If SCR has been #defined at compile time, you
can use scrolling to watch the previous output. Type $? from ‘get data’ to get help or
see the blend guide for details. number is the buffer capacity in kbytes, missing number
or number=1 means 31 kbytes (DOS) or 80 kbytes (other).

-t Enables detailed runtime measurements (real time, i.e., it depends on the system load).
In the PARALLEL versions sampling via clock() is also available; it reports critical
portions of parallel times.

(In case of compatibility problems, use compile-time option -DCHEAPTIME, and the
time will be in 1 s resolution only. Even if the total time is long, there may be
grid/interference errors if the resulting times are obtained using several cycles.)

-unumber Bonds with the force constant K [in kcal/mol] less than number+0.5 will be
vibrating, bonds with higher force constant will be constrained. (Artificial bonds written
with K=0 are always constrained. These are typically created by blend from bond angles
with hydrogens and it does not make sense to combine constrained angles with vibrating
bonds.) The default is -u0, i.e., all bonds are constrained. See the blend manual for
details.

-vnumber Verbosity level. Sum of powers of 2. The default is 3

-v0 Minimum verbosity. Only basic system+run info printed

-v1 Runtime info, initialization protocols

-v2 Brief statistics (was detailed prior V2.4a; use staprt for detailed statistics), message
‘playback written’, more initialization details; dihedral distribution and similar (if
compiled so)

-v4 Verbose details on site-site potentials and energy terms, copy of input ble-file,
constraint optimization (SHAKE), detailed statistics: for debugging purposes

-v8 POLAR: convergence

-v16 = -v0x10 POLAR: file .pol with some summary

-v32 = -v0x20 POLAR with dV: extensive files with induced dipoles:

.run.pol Running induced dipole moments in program units (0.0117501 D)

.ex.pol Exact (iterated) induced dipole moments in program units. NOTE: this
is an average of the induced dipoles for V+dV and V-dV. dV thus must be small
enough.

9: Running cook [Contents] – [Index] 101

.err.pol Errors in induced dipole moments in program units

-v64 = -v0x40 Protocol on momentum and angular momentum and their setting to
zero. See also variable drift, codes for .cpi and see Sect. 32

-v128 = -v0x80 Raw dump of configuration, charges, and forces (incl. POLAR, after
every evaluation, i.e., during iterations). Huge files of form SIMNAME.#.dump are
created. To avoid problems if used unintentionally, # is limited to 0..9, then the
program stops.

-wnumber Write configuration (simname.cfg).

-w0 Don’t write.
Note that if several sweeps (;;; in the data) are performed, they are started from
the same configuration because a single ; means restart from simname.cfg.
BUG: with (any) predictor (ASPC or Nosé-like), the predicted values are not reset.
This means that the trajectory actually is not exactly the same.

-w1 Always write (default). Before the first write, a backup (simname.cfg~) is made.

-wnumber As -w1 and the available disk space is checked before selected files are written.
If not enough space is available, it waits several minutes (more for the second time)
and then checks again. The available space is compared to a rather pessimistic
estimate of space needed plus number kB added (to be even more pessimistic). -w2
should be enough unless your co-workers often fill the disk in a very greedy way.
The algorithm is not 100% reliable, though. It relies on a system call to df; if this
fails for any reason, it is considered as no space and the program keeps waiting. A
warning is printed after space has appeared again; for apparent reasons, nothing is
printed when the no-space condition is encountered.

Note: -w2 used to mean write only if the configuration has changed, but it become difficult
to determine this condition so that this option was removed.

-xnumber (5; 0 for PERSUM version) Changed in V2.7b. Sum of flags:

1 Use optimized code for registered rigid water models. Not available with POLAR
and LINKCELL and for models TIP5P, NE6. May give inaccurate results with
PERSUM,see Sect. 8.3. Currently supported models are:

TIP3P geometry : TIP3P, HOH (=alternate name for TIP3P), SPC, SPCE

TIP4P geometry : TIP4P, TIP4P05 (=TIP4P/2005),
TIP4PEW (=TIP4P/Ewald), TIP4PICE

ST2 : ST2 (with the switch function, not available with LINKCELL, no pressure
nor pressure tensor available – use the virtual volume change, cf. dV)

Note that a model with name TIP4P will be treated as TIP4P geometry irrespective
of the parameter values (cf. option -x4)
If not set, the general code is used.

2 Keep H-O and H-H water-water Lennard-Jones terms. Missing flag 2 will cause
clearing these interactions. This option is intended for TIP3P and HOH (= other
name for TIP3P) leading to the original version of TIP3P. A warning is printed if
TIP3P is used with H-O and H-H LJ terms, however, no automatic clearing of these
parameters is performed.

9: Running cook [Contents] – [Index] 102

4 Failed doublecheck of registered water models is ERROR (WARNING if -x4 is
unset)

Examples: use -x5 for rigid optimized TIP3P model without H-H and H-O LJ terms; use
-x0 -u9999 to make a normally rigid model of water flexible.
WARNING: if LINKCELL is not used, the cutoffs for “optimized water models” must be
shorter than minimum half box minus the O–H distance. If you cannot guarantee this,
use -x0.

-ynumber Write playback files option.

number=0 Don’t write (even if dt.plb is specified).

number>0 Write playback file(s), number is the number of molecules to write. The
default is “big” which means that all molecules are written (in version prior 2.4g,
this was -y-1). File names are always simname.plb (in version prior 2.4g, there
were single-molecule files simname.p00, etc.). At the same time, molcfg is called to
produce mol and gol files for show unless init=0,1.

number<0 As above but molcfg is not called. (Support for layers of water was removed;
see sim/old+misc/simils-plb.c and man/option-y.tex).

-znumber Seed for random number generator. If -z is not specified, the seed is derived from
time so that it is different for each run. Random numbers are needed for the configuration
initializer and cross section measurements (certain modes only).

-[number Former box load option. Since V2.6h replaced by load.n[], load.N, load.L[],
load.tr (see the data).

-]number (0) Equalize masses (in %), deprecated. Use equalize in the data.

- number (2) Option removed (cf. -p)

-^number (0) POLAR only, changed in V2.7r: nonzero (int)(number/1000) will override the
value of the “shell” (Drude oscillator) charges (as given in the ble-file, all of them to the
same value). Fractional Drude charges cannot be set in this way.
|(number mod 1000)/100| specifies the value of the ASPC mixing (damping) parameter
(can be overwritten by get(scf.omega) in the get data module). The default, (number
mod 1000)/100=0, will set scf.omega to the stability limit of ASPC method of given the
predictor length k (see option -p).

-\number (0) Removed in V2.7f. Use environment variable NSLOTS instead.

-]number (0) To show waters close to a big molecule (protein). -]-1 use all water sites (O,H,
perhaps M; slower), -]is use only given water site (one of O,H,M).

+number (0) Special for debugging with CHECKHEAP==-2: AllocRange, see gen/alloc.h

for details.

9.2.3 File extensions

Two names are specified at the command line. The system name (sysname) refers to
sysname.ble generated by blend and containing full description of the force field. The
simulation name (simname) refers to the specific MD run.

9: Running cook [Contents] – [Index] 103

A list of extensions appended to simname follows. For instance, if simname=crambin1 then
file crambin1.cp contains the convergence profile.

.1 .2 .3 ... Recorded configurations, see option -r and variable tcfg

.anc ANCHOR: measured forces. See Sect. 15.11.

.asc Ascii dump of the configuration, see option -l

.box File for controlling the box size during simulation, see variable tau.rho.

.cfg Configuration. Contains the whole configuration and some additional information.

.cp Convergence profile. Record of total, potential, and bonded energies, pressure,
temperature, and optionally more. Note that the term “convergence profile” here means
just time dependence of quantities, not running averages of any kind.

.cpa Ascii dump of (block-averaged) .cp file. Generated by showcp, in some special cases
directly by cook.

.cpi Input file of optional additional items to be recorded in the convergence profile (.cp)
and statistics (.sta) Example:

! atom-atom distances will be recorded:

! atom1 atom2 [name]

1 123 CC1 (this is comment, too)

1 124 CC1_nbr

! additional variables will be recorded:

elst

LJ

+Lz

In the convergence profile only the first 4 letters of the name are used (e.g. CC1 nbr is
truncated to to CC1). If the third column is missing, names ss1, ss2, ... are used.

If + is placed in front of the name or site-site pair, the variable will be also recorded in the
statistics (this is redundant because this statistics can be always calculated by showcp).

The second form now accepts the following keywords:

Epnc Potential energy without cutoff corrections, [J/mol]

Ep0 Potential (bonded+LJ+elst+zero energy) energy of first No.first molecules,
[J/mol]

EpX Cross potential energy (first No.first molecules vs. rest), [J/mol]

Ein Intramolecular energy, [J/mol] (NB: in V2.8c removed as the 4th column)

elst Electrostatic energy of the configuration (POLAR: excl. self-term), [J/mol]

el0 Electrostatic energy of the first No.first molecules (POLAR: excl. self-term),
[J/mol]

elX Cross electrostatic energy (first No.first molecules vs. rest; POLAR: excl. self-
term), [J/mol]

9: Running cook [Contents] – [Index] 104

LJ ? Lennard-Jones energy, [J/mol]

LJ0 ? Lennard-Jones energy of first No.first molecules, [J/mol]

LJX Cross Lennard-Jones energy (first No.first molecules vs. rest), [J/mol]

bond Bonded terms (bonds, angles, dihedrals, impropers) (cf. Eintra), [J/mol]

bon0 Bonded terms for first No.first molecules, [J/mol]

Eext Extended degrees of freedom energy (Nosé–Hoover, barostat; pot+kin), [J/mol]

U Internal energy = Epot + Ekin + cutoff corrections, [J/mol]
(It differs from the total energy, provided in the 1st column Etot of the convergence
profile, so that it does not contain the extended degrees of freedom, Eext)

Unc Internal energy = Epot + Ekin without cutoff corrections, [J/mol]
(It differs from the total energy, provided as the 1st column of the convergence
profiles, so that it does not contain the extended degrees of freedom)

H Enthalpy = Epot + Ekin + pV + cutoff corrections, [J/mol]

Hnc Enthalpy without cutoff corrections, [J/mol]

fix The potential keeping selected sites in place, [J/mol]

Pnc Pressure without cutoff corrections, in Pa

|CM| Center-of-mass distance from the origin (FREEBC) or box center in Å

CMdr Center-of-mass distance from the origin (FREEBC) or box center in Å– drift to
correct

|lM| Linear momentum [prog.u.]

lMdr Center-of-mass (linear) velocity drift to correct [ps/Å]

|aM| Angular momentum w.r.t. the origin (FREEBC) or box center [prog.u.]

aMdr Angular velocity w.r.t. the origin (FREEBC) or box center to correct [ps-1], see
Sect. 32

Tpol POLAR: for Lagrangian (Car-Parrinello-like) polarizability, kinetic energy of the
additional degrees of freedom, in K

pstd POLAR: running error of induced dipoles (predicted minus corrected/iterated),
standard deviation; the statistics is called “polar one-step stderr”

pmax POLAR: running error of induced dipoles (predicted minus corrected/iterated),
maximum; the statistics is called “polar one-step maxerr”

Pstd POLAR: error of induced dipoles calculated (in a cumbersome way) in measureP()
(see variables dV, scf.epsx), standard deviation; the statistics is called “Polar
stderr”. Note that dV must be small because (to spare one evaluation) a mean
of V+dV and V-dV is used.

Pmax POLAR: as above, max error

rate POLAR: averaged convergence rate, makes sense with measureP() (? - average
over the run + iterations)

iter POLAR: number of iterations

Pvxx,Pvyy,Pvzz,Pvyz,Pvzx,Pvxy PRESSURETENSOR: Components of the virial
part of the pressure tensor, in Pa

9: Running cook [Contents] – [Index] 105

Pkxx,Pkyy,Pkzz,Pkyz,Pkzx,Pkxy PRESSURETENSOR: Components of the kinetic
part of the pressure tensor (site-based)

PKxx,PKyy,PKzz,PKyz,PKzx,PKxy PRESSURETENSOR: Components of the kinetic
part of the pressure tensor (molecule-based)

Ptxx,Ptyy,Ptzz,Ptyz,Ptzx,Ptxy PRESSURETENSOR: Total pressure tensor

Lx,Ly,Lz Sizes of the simulation box, in Å

Jx,Jy,Jz Current density (components of the vector) [Ampere/m2]

NHxi Nosé–Hoover degree of freedom ξ = log(s), dimensionless

NHdx Time derivative of Nosé–Hoover degree of freedom ξ̇, in 1/ps

zsh slab center as determined by “autocenter”, in the units of Lz

Wcl dG/dσ, reversible work per unit interface area, in K/Å2

clz0,clz1 centers of cleaving walls, in the units of Lz

clf0,clf1 forces to the cleaving walls, in K/Å

X hf High-frequency susceptibility by the direct response to an external field

Variable No.first = number of molecules in the first group should be in input data.
No.first needs also cache=1 and no LINKCELL, with Ewald only r-space.

Notes:
see sim/simmeas.c, variable CPItab; it is quite easy to add a new variable of type double.
plot (called by showcp) supports max 26 columns; to show more columns, use mergetab

.cpz Convergence profile in packed format (see variable CPnbit). Use utility cppak to convert
it to .cp (and vice versa). Utility showcp understands the cpz-files as well so that the
analysis of convergence profiles is transparent.

.def System definition (or defaults). If simname.def is not found, sysname.def is tried. The
file should contain 1 set of input data (see Sect. 9.2.5). Note that numbers of molecules
(species) N[*] can be given here, but not in .get file or by keyboard input. In addition,
this file is read twice so that you cannot modify the program default here (e.g., the cook
default is h=0.001, but h*=2 in this file would lead to h=0.004).

.dih DIHedral angle distributions, binary.

.dia DIhedral angle distributions, Ascii dump.

.dcp Dihedrals Convergence Profile. The dihedral values, in degrees, are printed every cycle
to simname.dcp as ASCII. Which dihedrals are dumped is selected by simname.ddh
and variable dih.dcp in input data. Must be compiled with DIHHIST=-1, applies to
species=0 only.

.ddh

.mar Define DiHedrals (species=0 only). Must be compiled with DIHHIST=-1. Selects
dihedrals to dump to simname.dcp and record (in simname.dih and .dia). If does
not exist, all dihedrals are dumped (lot of data!). File of lines as, e.g.:

1 156 phi = -154.04 C5 - N6 - Ca10 - C15

2 145 psi = -124.77 N6 - Ca10 - C15 - N16

0 141 omega = -177.79 Ca10 - C15 - N16 - Ca20

9: Running cook [Contents] – [Index] 106

The first column is irrelevant provided that it is nonzero (lines with 0 are ignored), so
are lines beginning by ‘!’. The second column contains the dihedral number, as from the
sysname.ble file, numbered from 1 to ndihedrals. The rest of the line is irrelevant.
For the peptide backbone, angles phi,psi, the output of ramachan (the sysname.mar file)
has exactly the correct format and can be renamed to simname.ddh. (ramachan uses the
ble-file to derive this information).

.dpr Density profile, binary. Requires SLAB defined.

.fix To fix certain atoms. See Sect. 15.1.

.for Ascii dump of the forces, see option -l

.g For .g extension, see rdfg in the utilities manual.

.g1, .g2, ... Alternate names of input files (instead of simname.get). See options -g and
-f (see Sect. 9.2.2).

.get Input data. simname.get contains one or more sets of input data (see Sect. 9.2.5) ended
by ‘quit=1;’ or EOF. Irrelevant if -k or -s are specified (input from keyboard).

.loc A lock-file to prevent running two instances of cook with the same simname. Normally
removed when cook finishes by any controlled way (incl. ERRORs and Ctrl-C). Remains
if cook (or computer) crashes or is killed by kill -9. It should be then removed before
restarting cook.

.pol POLAR: Summary info, requires option -v16

.run.pol

.ex.pol

.err.pol POLAR: Extensive tables of induced dipoles, see option -v32

.prt Output protocol. Irrelevant if -d or -s are specified (output to display), changed to
.prtx if option -f is given

.prtx Output protocol for measurements while reading playback (typically autodiffusion,
conductivity, clusters, cross sections, structure factor). Prior V3.0 called .sfd

.rdf Radial distribution function(s), binary, see rdfg in the utilities manual.

.s-s List of atom types and groups for measuring radial distributions functions. See Sect. 14.7.

.sfr Structure factor (radial or sphericalized), see option -f. Note that the k-vectors are
‘circular’, i.e., they mean a number of waves in 1 Å multiplied by 2π.

.sfsd Structure factor (full 3D), see option -f. Note that the k-vectors are ‘circular’, i.e.,
they mean a number of waves in 1 Å multiplied by 2π.

.sfd Prior V3.0: Output protocol with option -f (Structure Factor and autoDiffusion)

.sta Statistics. Contains measurements recorded for autocorrelation and error analysis
(module statics)

.stp See option -b

9: Running cook [Contents] – [Index] 107

.* Backups. Most of output files (.cfg,.sta,.rdf,.dih...) are backed up before writing; this
is done every data set. The .prt file is backed up once when cook is started. Files .cp,
.plb, .pol ... are never backed up—they are appended. Backup names are created by
appending .

.wid Results for the Widom method (WALL only). Not tested recently.

.z Density profiles in ASCII, as generated from .dpr.

9.2.4 Program flow

(out-of-date)

1. Options are analyzed.

2. Files sysname.ble and sysname.def (or simname.def) are read and force field tables are
constructed.

3. A set of input data (each set is ended by ;) is read from simname.get or from console.
If quit=1 is specified, or EOF is reached, the program stops.

4. if not option -f nor -m1 (normal mode) Either the initial configuration is generated
(if init>=3) or it is read from file simname.cfg (if init<=2)

if option -f or -m1 (special mode) Configurations (simname.plb or simname.1,
simname.2, ..., are read, quantities (autodiffusion and structure factor for -f, other
selected for -m1) are calculated, and then the program stops.

5. Ewald only: Unless el.test=0 or el.test=-10, the control switches to another module
that tests the Ewald summation and sets the parameters. This module accepts another
data (see Sect. 11.2) but one of them is el.test: once el.test=0 is specified, this module
is abandoned and the control continues by the next step.

6. The specified number of steps (given by variables no and noint) is performed unless

interrupted by pressing Ctrl-C .

7. The configuration is stored to file simname.cfg. Files with statistics, convergence profile,
etc., are closed. The protocol file .prt is flushed.

8. Control continues by step 4.

9.2.5 Input data

The input data are in get data format that has been described in details in the manual for
blend. Briefly, it consists of a set of assignments ended by a semicolon; expressions can be
written at the right hand sides of the assignments. A string with a mnemonic value can be
used instead of an integer switche; e.g., thermostat="Nose" is the same as thermostat=2.

The following list contains all variables that can be used either in sysname.def (one set of data
containing the defaults), or in simname.get or interactive input from keyboard. The values in
parentheses are the default values.

9: Running cook [Contents] – [Index] 108

WARNING: sysname.def is parsed twice so that you cannot modify the program default here
(e.g., the cook default is h=0.001, but h*=2 in sysname.def file would lead to h=0.004).

Example (of simname.get):

thermostat="friction"

no=10 tau.T=0.01; ! 10 cycles of fast cooling

no=20 tau.T*=5; ! 20 cycles of 5*slower cooling

Note: in case of errors as e.g.:

ERROR data:bad identifier or syntax

ERROR data:bad number or expression

it may be difficult to say where the error occurred. Command ?= in the input data may help.
Note also that there may be wrong data in the ble-file. E.g., WARNING in the ble-file prevents
its correct reading.

Any declared variable except array can be used on the right-hand side in an expression. To
enable calculations, there are the following auxiliary variables declared:

double a,b,c,aux,x,y,z;

int i,j,k,n;

In addition, pi = π is available.

Example:

x=0.01 ! auxiliary, to mean cycle in ps

noint=6 ! steps/cycle

h=x/0.001 ! timestep in ps

no=20/(h*noint)+0.5 ! simulation length 20 ps

Note that no is integer while expressions are calculated in double. In conversion double to
integer, the result is rounded down (truncated), and that is why +0.5 is added.

box.max14 (0) LINKCELL version only:
The linked-cell list algorithm searches for 1–2, 1–3, and 1–4 exceptions only in radius
box.max14 around sites. No check is made whether this distance is sufficient: if not, the
affected 1–2, 1–3, 1–4 interactions will be calculated incorrectly! The default box.max14=0
means that an automatic setup will be used instead, see variable box.over14 below.
However, box.max14 should be set manually if numerical derivates are needed; e.g., for
normal mode analysis.

box.over14 (8) LINKCELL version only:
The linked-cell list algorithm searches for 1–2, 1–3, and 1–4 exceptions only in a certain
radius around sites. If box.over14 is set, this radius is dynamically adjusted during the
run: box.over14 is the factor by which the estimate of the change (between MD steps)
of the max 1–2, 1–3, 1–4 distance is multiplied. (It has more effects, see lc.c for details).
The speed gain is small, though.
Negative box.over14 selects the debug mode: also prints distances and speeds of their

9: Running cook [Contents] – [Index] 109

changes. box.over14=3 is safe enough in most cases. If the algorithm runs close to its
safety limits, a warning is printed, and box.over14 is automatically increased. If this
happens too often (let us say more than twice during a moderately long run), use larger
box.over14.

box.over14=0 with unset box.max14 will set box.max14=cutoff (backward compatibil-
ity).

WARNING: Not suitable for normal mode analysis.

(Called only over14 in V2.7g and older.

box.rmin (0) For LINKCELL only: all coordinates are normalized to be > box.rmin.
(Without LINKCELL always > 0). This is to prevent unnormalized configurations
with Gear or box change, or with “lone dependants”, or when numerical derivatives are
calculated (ad for the normal mode analysis). The default is box.rmin = 0 = automatic
setup (recommended, but working only during standard simulation). box.rmin < 0 forces
box.rmin = 0 even with Gear or box change (not recommended).

bulkmodulus (0) An estimate of bulk modulus (inverse compressibility) in Pa. It is used in
the Berendsen-like NPT simulation (see tau.P), van der Waals radius fitting and similar.
If not set, an ideal gas approximation is adopted. Hint: for water bulkmodulus=2.2e9.

No bulk modulus applies for the MTK-style barostat, thermostat="NPT".

If used for particle size adjustment (see tau.sig), and the σ-like parameter has a meaning
of inversed size (as in the Buckingham or Busing force fields), bulkmodulus must be
negative.

cache (64) This option rearranges the pair (r-space) sums. Void with the LINKCELL
version.

cache=0 Recursive triangulation (fractal) algorithm, efficient for large systems of
polyatomic molecules (with long cutoff, otherwise LINKCELL may work better).

cache=1 The simplest pair forces in 2 nested loops, good for small systems.

cache>1 The pair (r-space) sum is rearranged into pair sum of blocks over cache×cache
molecules. In case of a simulation with a lot of small molecules, the program runs
faster because the number of cache-memory transfers is decreased. The typical speed
gain is 20% on x86 for 1000 water molecules.

cl.format (1) The same as keyword format in file simname.cli (see Sect. 14.8.3).

cl.maxn (20) The same as keyword maxn file simname.cli (see Sect. 14.8.3).

cl.maxcluster (12) The same as keyword maxcluster in file simname.cli (see Sect. 14.8.3).

cl.mode (0) cl.mode is a sum of bits:

cl.mode=1 Turn cluster calculations on.

cl.mode=2 The same as keyword clusters in file simname.cli (see Sect. 14.8.3).

cl.mode=4 The same as keyword configurations in file simname.cli (see Sect. 14.8.3)

cl.mode=8 The same as keyword bonddynamics in file simname.cli (see Sect. 14.8.3)

NOTE: All cl.* variables require #define CLUSTERS at compile time.

9: Running cook [Contents] – [Index] 110

center.K (0) FREEBC only: removed in version 2.9f (see below)

center.r0 (0) FREEBC only: removed in version 2.9f (see below)

center.K[*] (0) Harmonic (and optionally shifted) central force constants, separately in
x, y, z coordinates. The force is to the center of the box (in periodic b.c.) or to (0, 0, 0)
(if FREEBC).
BUG: in FREEBC, the number of degrees of freedom as well as drift corrections are not
set automatically. Use variables conserved and drift!!!

center.r0[* (0)] Periodic b.c.: offsets from the center of the box, separately in x, y, z
coordinates. The potential is:

u =
∑

w=x,y,z

hw(w), where hw(w) = Kw

(w + r0w)2, for w < −r0w
0, for |w| < r0w
(w − r0w)2, for w > r0w

(x, y, z) is the distance from the respective center,
→

K = center.K[] is in the internal
program units; i.e., in K.

If center.r0=0, this is the harmonic oscillator: A free molecule will exhibit harmonic
vibrations with period

τ = C ×
√

m

nKw

,

where m is the mass in g/mol, n is the number of sites, and C = 2π× 0.776 ps = 4.88 ps.

Example: for water, center.K=1, m = 18 g/mol, n = 3, and thus the period is
approximately 12 ps.

These forces are intended with nonzero center.r0 to keep molecules in the selected area;
outside this area, accelerations acting to molecules of different masses differ and motion
is affected by a torque. Consider also center.cmK below.

WARNING: the potential is not spherically symmetric unless all center.r0 are zero and
all center.K are the same. Set variables conserved and drift manually!

center.cmK[*] (0) The same harmonic force (pointing to rc = (0, 0, 0) in case of FREEBC,
or to rc = (Lx/2, Ly/2, Lz/2) = center of the box in the periodic b.c.) is added to all
particles. The potential of the force is∑

i=x,y,z

Ki(rCM,i − rc,i)2

where CM is the center-of-mass. This force causes the whole configuration (typically the
slab for Kz = center.cmK[2] > 0) to move to the center of the box, but there is no
force to keep the slab together. The force applies to the first center.cmn molecules
only (excl. those fixed by option -j). Centering and removing velocity drift should be
turned off for the selected coordinates (see drift); e.g., drift&4 and drift&32 should
be zero if center.cmK[2]>0). The typical usage is to keep a configuration (slab) in place
if other forces (fixed atoms) are present. A suitable force constant cmK may be from 100

to 10000. The correlation time in ps is τi =
√
m/2/Ki = 0.7755

√
M/Ki), the period is

2πτ . (The mass is in the program units; m = M ∗ 0.831446, where M is the total mass
of all molecules in g/mol.)

9: Running cook [Contents] – [Index] 111

center.cmn (0) Number of molecules to which the central harmonic force (see center.cmK)
is added. A number greater than the number of molecules N is equivalent to N .

conserved (-1) The number of conserved degrees of freedom (e.g., momenta and angular
momenta or additional constraints with ANCHOR, but not energy). If conserved=-1
(default), it is determined from drift. WARNING: the automaic setup does not work
with ANCHOR. See also drift.

corr (3+16; with PERSUM 3+16+32) Selects which corrections will be included by summing
up the following flags. (See Sect. 11.4 for the potential cutoff.)

1 Homogeneous cutoff corrections (of Lennard-Jones and similar interactions) are
included in the final results for pressure, energy, enthalpy, etc.; for the exception,
see corr=2 below. Some quantities (components of the pressure tensor, quantities
requested in a cpi-file) are still recorded without these corrections.

If this bit is 0, the cutoff corrections are not included; nevertheless, they are
calculated and reported (so that they can be added manually).

2 Homogeneous cutoff corrections are included in the pressure used by barostat.
Turning off this feature is useful for maintaining a selected pressure component
as Ptzz = Pzz.

4 Finite-size correction Nf0/Nf (see (15.5)) is included (default since V2.6m). This
applies to the atom-based pressure tensor (standard calculation) and atom-based
virtual volume change calculation. The value can be combined with 1 or 2.
WARNING: Not suitable for NPT and pressure components in the slab geometry
(e.g., vapor pressure from Pzz). In the NPT ensemble (thermostat="NPT"), Nf0 is
modified so that this term is correct unless corr&16 is turned off. Be careful and
check Nf0 (No.f4P in the prt-file) vs. Nf (No.f).

8 As above, except that the degrees of freedom are molecule-based (w.r.t centers of
mass) Suitable for pressure calculated via molecule-based rescaling. This value can
be combined with 1 or 2.

16 Finite-size correction (corr=4) is set at job start unless a barostat (thermostat="NPT")
is used, too.
WARNING: This automatic setting fails if the thermostat/barostat is changed within
one run (after ; in the data); then, corr should be set manually. See also corr&4

above.

32 In calculating the cutoff correction and RDF, the number of pairs of equal atoms
is set to N2/2 instead of N(N − 1)/2. This guarantees identical results when the
configuration is periodically repeated (useful with PERSUM), but violates the strict
NVT definition of RDF.

64 In the calculation of the number of the degrees of freedom with NVE (no-thermostat)
and Berendsen thermostat, 1 is subtracted to account for energy conservation. This
was the default for V3.1m and older. See Table 12.1 for further explanation and
discussion.

NOTES: corr=4,8 are new in V2.6m. These corrections are small for bulk liquids and
solids but important for gases. Some finite-size effects ≈ C/N are still present, but these
corrections decrease substantially the constant C.

9: Running cook [Contents] – [Index] 112

CPnbit (0) If 1<CPnbit<24 (1<CPnbit<16 for DOS) is given, packed file .cpz will be created
for the convergence profile instead of normal .cp one. CPnbit is the number of bits for
coding the min-max range of each recorded variable (i.e., there are 2^CPnbit levels). Use
utility cppak to convert it to .cp (and vice versa). Recommended value is CPnbit=12, the
file is then packed typically by 70%. Don’t use with small no. Utility showcp understands
the cpz-files as well so that the analysis of convergence profiles is transparent.

cutoff (0) Real-space cutoff in Å. Unless PERSUM is #defined in simopt.h, cutoff must
not be shorter than LJcutoff and longer than half the box size (for the LINKCELL
version this limit is weaker). The default of 0 means the automatic setup:

• With the Ewald summation, cutoff will be selected to half the final (reference) box
for small systems (< 1000 charges), otherwise to const×N1/6.

• With cutoff electrostatics, it is set to min(half the box,12 Å).

• With FREEBC and NIBC, it is set to 9e9 (“infinity”)

Note that cutoff also defines the range for calculating the radial distribution functions
(this does apply also for the FREEBC version) unless modified by rdf.cutoff.

diff.mode (0)] Normally in the reread mode (options -m0 or -m1). See also plb2diff.
Sum of flags:

diff.mode=1 Calculate mean square displacements (over species) and diffusivities.

diff.mode=2 Calculate square charge displacements and the conductivity.

dih.grid (0) Grid for measuring the dihedral angle distributions. See also #define DIHHIST

in simopt.h. The full angle of 360 deg is divided into dih.grid subintervals. dih.grid=0
turns off measuring. Cannot be combined with dih.res. WARNING: in versions 2.0h and
older, angle 180 was divided into dih.grid subintervals and the sign of the dihedral angle
was not honored. The results are stored in binary file with extension .dih; at the same
time, ascii dump .dia is printed.

dih.res (0) Resolution for measuring the dihedral angle distributions, in degrees. Cannot
be combined with dih.grid.

dih.cp (-1) -1 Average of all gauche or cis counts recorded in the convergence profile

>0 Dihedral # dih.cp is recorded. (For the numbers, see the output .prt file) NOTE:
from V2.0j, dihedrals (and dih.cp) are numbered from 1

dih.dcp (0) Must be set (dih.dcp=1) to enable dihedral dump. See file extensions .dcp and
.ddh for details. DIHHIST=-1 required, species=0 only.

drift (4096) This variable affects the way how the momentum, center of mass, and angular
momentum are corrected for numerical errors. In addition, number of conserved degrees
of freedom is derived from drift as the default (with conserved=-1). It is a sum of:

drift=1=01 Place the x coordinate of the center of mass to center (FREEBC) or box
center (periodic b.c.)

drift=2=02 Place the y coordinate of the center of mass to center (FREEBC) or box
center (periodic b.c.)

9: Running cook [Contents] – [Index] 113

drift=4=04 Place the z coordinate of the center of mass to center (FREEBC) or box
center (periodic b.c.)

drift=8=010 Correct the x-component of the linear momentum (velocity drift)

drift=16=020 Correct the y-component of the linear momentum (velocity drift)

drift=32=040 Correct the z-component of the linear momentum (velocity drift)

drift=64=0100 Correct the x-component of the angular momentum (rotation)

drift=128=0200 Correct the y-component of the angular momentum (rotation)

drift=256=0400 Correct the z-component of the angular momentum (rotation)

(drift&1536)=(drift&03000)=0 Corrections will be performed at start (init/load) and
every cycle (default)

(drift&1536)=512, (drift&03000)=01000 Corrections will be performed at start
(init/load) only

(drift&1536)=1024, (drift&03000)=02000 Corrections will be performed at start
(init/load) and every step

(drift&1536)=1536, (drift&03000)=03000 Corrections will be performed at start
(init/load) and save

drift=2048=04000 For molecules with ‘dependants’ (like site M in TIP4P water), the
dependant positions are recalculated after every cycle (of noint steps). The default
is that the dependants are calculated when necessary only (=before force calculation
and saving cfg- or plb-files).

drift=4096=010000 Requests automatic determination of all components 1..256. This is
the default. However, it may fail at certain combinations (like configuration anchored
by a few atoms, combination of anchoring with walls, etc.)

drmax (0.2) Maximum displacement allowed in one integration step, in Å.
Positive: applies with init>=3 (initialization) and thermostat only, irrelevant for init<3
and constant energy/enthalpy (no thermostat).
Negative: |drmax| applies unconditionally (may be useful with init<0 which ignores
drmax>0; drmax should be then set to 0 after a sweep).
Useful while initializing when forces are large and would cause the integrator to crash.
Equilibration with this option turned off (drmax=0 or |drmax| large enough) should follow.
Should not be used in productive runs! For compounds containing hydrogen at ambient
temperatures, drmax=0.125 works fine, drmax=0.2 OK with longer timesteps. If drmax is
used, Emax can be larger (about 10000, but usually not more than 100000), which makes
the initializer faster.
(V3.0e: thermostat checks added)

dt.cfg (0) Frequency of writing configurations to files simname.1, simname.2, ..., in ps.
dt.cfg=0 switches off the function, so does -r0. dt.cfg should be an integer multiple of
h*noint.

dt.plb (0) How often to write playback, in ps. See also option -y (the default is to record the
whole configuration). dt.plb should be an integer multiple of the timestep h, otherwise
the configurations will not be written in regular time intervals. dt.plb=0: writes once
after every sweep (data set ended by ;) finishes (or is interrupted). In both cases the
initial configuration (at t=0) is included (even if t=0 is a consequence of init=2).

9: Running cook [Contents] – [Index] 114

CAVEAT: or post-processing (as diffusivity and conductivity calculations), shlould be
written in the def (not get) file.

dt.prt (0.001) Frequency of printing protocol (in ps). dt.prt=0 switches off printing,
dt.prt=tiny value causes every cycle to be printed.

dV (0) Fool-proof independent pressure calculation by virtual volume change, also for area-
change for surface tension 15.7. For debugging and checking purposes—normally the virial
of force as calculated in cook from all pair forces is more accurate. Uses the formula:

PdV = kTρ− 〈dU/dV 〉

where the derivative in the ensemble average is calculated numerically by scaling the
volume exp(dV) and exp(-dV) times and taking the difference.

Turned off by dV=0 (default).

With rescale&8 set ("CM" in the mnemonics, e.g. rescale="xyzCM"), a molecule-based
calculation is selected: Positions of centers of mass of the molecules are scaled by a factor
given by the cube root of the volume ratio. The shape and size of the molecules are
unchanged. In the above formula, ρ is the molecule number density and kTρ becomes
2Ekin−inter/3V , where Ekin−inter is the translational kinetic energy of whole molecules
(of their centers of mass). Can be used also with constraint dynamics, but fails if the
molecules are of sizes larger or comparable with the box size/2.

If rescale&8 = 0, atom-based calculations are selected. Positions of all sites are scaled
by a factor given by the cube root of the volume ratio. In the above formula, ρ is the
atom number density and kTρ becomes 2Ekin/3V . Should not be used with constraint
dynamics, i.e., cook -u99999 should be used.

Reasonable dV is around 0.001, according to the accuracy of calculations (Ewald with
truncated potential needs larger dV). The pressure, called PdVa (atom-based) or PdVm

(molecule-based), is recorded in column 4 in the convergence profile.

For Ewald summation, the atom-based pressure PdVa is the same as the true virial pressure
with small numeric deviation caused by finiteness of dV and sampling at different time.
The ensemble average of the molecule-based pressure PdVm is also the same (irrespective
of the system size).

For cutoff electrostatic, see Sect. 15.3, this is no longer true because of the truncate-and-
shift errors. However, both pressures are the same in the thermodynamic limit and large
cutoff.

For POLAR, see scf.epsx determining the accuracy of the self-field. dV should be
relatively large, perhaps up to dV=0.001, even though this may lead to systematic pressure
error. Note that the pressure error is proportional to dV2 because a second order difference
method is used to calculate the energy over volume derivative.

For POLAR, the accurate (=iterated to precision scf.epsx) induced dipoles are compared
to those generated by the integrator (predictor-corrector). However, to spare, the
reference induced dipoles are calculated as average of the values for volumes V+dV and
V-dV so that dV must be small enough.

Other boundary conditions (NIBC) have not been tested.

Bug: simple implementation, requires by one evaluation of forces more than necessary.

9: Running cook [Contents] – [Index] 115

E (0) Total (potential+kinetic) energy, i.e., the value of the Hamiltonian, to be kept constant,
in Kelvin. If the Nose ensemble is used, then the extended Hamiltonian. If the isobaric
ensemble is used, then the enthalpy. See also tau.E

Eelst[*] (0,0,0) External electrostatic field
→

E = (Ex, Ey, Ez) ≡ (E0, E1, E2), in V/m. It is
recommended to use only the z-part, e.g., Ez = Eelst[2] = 3e7.

For dipolar systems:
If Eelst[i] is set, i = 0, 1, 2, the component M[i] instead of total dipole moment |M| is
reported in the convergence profile.

MACSIMUS reports Mz (or M[2]) in “program dipole units” (1 p.u. = 0.0117501 D =
3.9194115e-32 C m). The dielectric constant (relative permittivity) is then computed from
averaged Mz = Mz, see Appendix 29, eq. (29.4).

For ionic systems:
Can be used for NEMD determination of conductivity. To measure the electric current
density, you must specify lag.cond (e.g., lag.cond=lag.err). Note that energy
conservation is lost. MACSIMUS reports the current density in A/m2 so that the
conductivity in S/m is simply κ = Jz/Ez.

el.alpha Ewald (and Fennell–Gezelter): The separation parameter, in 1/Å. See also el.test.
It is set automatically if el.test=-10, otherwise el.alpha=0.2.

FREEBC: irrelevant.

Cutoff electrostatics: the cutoff is smooth in the interval [alpha*cutoff,cutoff],
alpha=0.7 (the default) is recommended. (NOTE: larger values, as e.g. 0.9, cause artifact
angular correlations for small molecules as water).

el.centroid (0) This option make sense only for ionic systems (charged molecules).
If set to 1, the dipole moments of ions are calculated with respect to charge centroid
(center of squared partial charges). The total dipole moment of the simulation cell then
is not a sum of the partial dipole moments. (The total dipole moment calculate during
the Ewald summation is anyway.)
If set to 0 (default), no transformation is made; the dipole moments of individual molecules
do not make sense.
(To be changed in future.)

el.corr (0) Extended slab dipolar correction [19]. Sum of flags:

1="x" Correct the x-component. Probably not useful.

2="y" Correct the y-component. Probably not useful.

4="z" Correct the z-component. Good for the z-slab geometry used by (the SLAB
version of) cook. This is the slab correction by [19]: In the z-slab geometry, the
interaction of the z-components of the slab dipole moments is compensated. For
systems with no free charges, this is (almost) equivalent to a system periodic in x, y.
el.corr="z" is recommended for slabs of dipolar fluids. It cannot be used for ionic
systems because of a jump in forces.
IMPORTANT: See also variable corr, see Sect. 15.8.

8="CM" Corrected Measurement only. The above corection is not included in forces but
affects the electrostatic energy, pressure, and the selected diagonal components of
the pressure tensor (cf. Sec. 15.8). Energy conservation is violated. Useful, e.g., for
determining vapor pressure of ionic liquids.

9: Running cook [Contents] – [Index] 116

el.corr=7="xyz" is equivalent to el.epsinf=0, which can be interpreted as the zero

electric induction (because
→

D = ε′
→

E = 0).

Former el.slab or negative el.epsinf was equivalent to el.corr=4

el.diag (0) (to be reconsidered)

el.diag=1 Calculate and include to the electrostatic energy the diagonal k-space
correction [21]. Useful for molten salts.

el.diag=0 Calculate, but do not include the diagonal correction for Ewald electrostatic
energy [21].

el.diag=-1 Do not calculate the diagonal correction at all.

el.diff (0.05) Relative error of box size change (any coordinate) before a warning “***
box has changed by >el.diff (log-scale) and k-vectors remain unchanged” is printed. Note
that the number of k-vectors is not adjusted with the box because it would lead to a jump
in energy.

el.epsfast (1) for Electronic Continuum Approximation – EXPERIMENTAL

el.epsinf (3e33 for Ewald, 1 for cutoff electrostatics) The relative dielectric con-
stant ε′r of surrounding continuum for the Ewald summation.
WARNING: since V2.7f, el.epsinf=-1 does not mean the dipole slab correction (cf.
el.corr).

el.epsk (0.5) Ewald only: Accuracy of k-space Ewald sums, in K/Å. el.epsk is the
maximum allowed k-space cutoff error in force on one charge. See Sect. 11.2. (Prior
2.4e called only epsk)

el.epsr (0.05) Ewald summation: Accuracy of r-space Ewald sums (see Sect. 11.2) [? or
approximation of 1/r in cutoff electrostatics (see Sect. 15.3)], in K/Å. el.epsr is the
maximum allowed cutoff error in force on one charge. (Prior 2.4e called only epsr)

el.grid Grid to calculate functions (splines) needed for real-space Ewald sums (also
COULOMB=2 – deprecated). The default depends on the splines used (32 for cubic, used
with Gaussian charges, 512 for standard point-charge Ewald summation).. Not available
for FREEBC version.
WARNING: in special cases, a small el.grid may cause inaccuracies. For water the
error in pressure caused by intramolecular Ewald r-space terms calculated via splines
is 2e13/el.grid3 Pa; thus, at least el.grid=1024 is needed. It is recommended to use
COULOMB=-2 with Ewald to use a more accurate erfc for intramolecular terms. This is not
possible with LINKCELL, thus, el.grid=1024 is the minimum.
(Called erfcgrid prior 2.4e)

el.kappa (0.2 [Ewald], 0 [Cutoff electrostatics]) The reciprocal space cutoff pa-
rameter in [1/Å]: maximum integer k-vectors are Kx=el.kappa*L[0], Ky=el.kappa*L[1],

Kz=el.kappa*L[2] in the respective directions. More precisely, the absolute value of vec-

tor (Kx/Lx, Ky/Ly, Kz/Lz),
→

K ∈ Z3, is bound by el.kappa. Note that these k-vectors
mean the number of waves in a unit of length (1 Å). The k-vectors used in the structure
factor calculations are multiplied by 2π. See also el.test. For the Cutoff electrostatics
version, el.kappa=0 should be used.
HISTORY: in old cubic-box versions, dimensionless parameter K=el.kappa*L was used.

9: Running cook [Contents] – [Index] 117

In non-rectangular-box versions prior 2.4e, this K meant Kz and Kx,Ky were scaled ac-
cordingly.

el.minqq (1) Minimum charge-charge distance, in Å. This value serves for two purposes:

1. For point charges: The error of splines for the r-space part of the Ewald sums
is reported for this distance, see Sect. 11.6. (GAUSSIANCHARGES: always from
zero)

2. With POLAR: ERROR is reported if the distance of the Drude particle from the
central atom exceeds el.minqq.

(Called minqq prior version 2.4e)

el.Perr (1e6 for Ewald, 1e7 otherwise) Maximum difference between pressure calcu-
latd from the virial theorem (elst. energy = −virial) and trace of the pressure tensor
before a warning is printed. For Ewald of point charges, this indicates the Ewald preci-
sion. Does not apply for Gaussian charges (the virial theorem does not work here).

el.rplus (2.5) Additional range to erfc splines (former ERFCPLUS): the real range usable
without index out of range is cutoff+el.rplus. Needed for optimized water models, does
not hurt if unnecessarily large. Not needed for POLAR (the cutoff test is based on the
distance of central atoms.)

el.rshift (3) Sum of flags:

1 The r-space spline [of eru(r) = erfc(r)/r for point charges] for the r-space
electrostatic energy is shifted to avoid the jump at the cutoff.

2 As above for the forces

4 DEBUGGING: Print file simname.ertest with eru(r), erd(r), and numerical
derivative of eru(r)

el.rshift=3 is recommended at very low temperatures and especially for normal mode
calculations.

el.sat (0) The desired saturation of dipole moment of the cell. Void if tau.sat=0. See
Sect. 29.3.

el.sf (0) Applies for cook* -m0,-m1 (re-read mode).

el.sf=1 : Calculate a sphericalized structure factor (for a cubic box box only)

el.sf=3 : Calculate the full 3D structure factor.

el.test (Ewald: -10, cutoff electrostatics: 0) Unless el.test=0 or el.test=-10,
the control switches to a module that sets and tests the electrostatic forces accuracy and
Ewald parameters. See Sect. 11.2.

Ewald only: The default value el.test=-10 means automatic selection of el.alpha and
el.kappa based on default accuracies el.epsk and el.epsr.

BUG: out of order for polarizable molecules with no or small charges (yet it makes sense
to calculate, e.g., in elst. field).

el.test=0 means no automatic selection (the values of el.alpha and el.kappa remain
unchanged).

9: Running cook [Contents] – [Index] 118

Emax (10000) The energy limit for inserting one molecule when the configuration is initialized
(init>=3), in Kelvin. See also drmax.

eps (1e-6) Accuracy for calculating the Lagrange multipliers, See Sect. 11.3. With option
-l, the step for numerical gradient. (the default was 1e-5 prior V 2.0d)

epsc (1e-6) Accuracy of correcting constraints, See Sect. 11.3. The default is changed to
epsc=0.05 for conjugate gradient method of correcting constraints (unset bit 1 of -c).
(default was 1e-5 prior V 2.0d) Special: For |SHAKE|=1, epsc>=1 determines a constant
number of iterations; omegac must be set by hand.

epsp,epspx,epspq Changed into scf.eps, scf.epsx, scf.epsq – see there.

equalize (0) Redistribute masses of atoms; also option -] (deprecated).
0 (the default) = use the original masses.
1 = masses of all atoms in a molecule are equal.
The formula:

mi :=
1

ns

ns∑
j=1

mj ∗ equalize +mi ∗ (1− equalize)

Equalizing masses (especially of hydrogens) enables longer timesteps, however, kinetic
quantities are affected. E.g., while h=0.001–h=0.0015 ps is recommended for water (with
normal hydrogens) to guarantee equipartition error less than 1 K, h=0.002 ps is acceptable
if the masses are equalized. Dependants are not equalized (if there is a dependant with
mass, it is distributed to nearby sites.)

Available in the def-file only
CAVEAT: Since equalize is read from data before the ble-file is read, not all variables
are available to be used in formulas. The following variables are available: no, noint,

h, E, rho, L[], tau.T, T Examples of data:

noint=5 h=.01/noint equalize=0.8*(h>0.0015) ! allowed, equalize=0.8

center.K=5 equalize=center.K>1 ! equalize=0: WRONG - no error reported

BUG/FEATURE: cannot use constructs as rho+=1 in the .def file (if rho is the default
value)—would be executed twice!

gear.C[] (-9e9,-9e9,..) GEAR DEVELOPMENT:
Gear’s coefficients to be changed, applies only with with gear.init>0. The array
is initialized to large negative values indicating that the coefficient should be left as
initialized by option -m and gear.init>0.

gear.init (-1) GEAR DEVELOPMENT:

init=-1 Use the old code from 90’s. It is optimized for GearOrder=4, change of
parameters is not supported. Set the Gear parameters C for the ‘velocity’ versions
of the integrator (coefficient C0). This is the traditional default.

init=-2 As above but use the ‘no-velocity’ versions of the integrator (good for rhs not
dependent on velocities).

init=# Use the new development code with the Gear’s ‘no-velocity’ coefficients
corresponding to order #. The order must be at most GearOrder defined by option
-m. It is possible to change the predictor (array gear.P[]) and corrector (array
gear.C[]).

9: Running cook [Contents] – [Index] 119

init=0 Not to be set by a user: init=0 is set after initialization with positive init.

gear.P[] (1,1,..) GEAR DEVELOPMENT:
Gear’s predictor to be changed, applies only with with gear.init>0. Each i-th column
of the predictor matrix is multiplied by gear.P[i]. The default values of gear.P[i] are
unities, which is the standard Taylor-expansion predictor.
Setting gear.P[i] for i>=GearOrder does not have any effect.
Changing gear.P[i] for i<GearOrder decreases the method order.

Example: Option -m5 with gear.init=4 and gear.P[4]=0 is equivalent to using -m4

and init=-2.

h (0.001) The integration step in ps. Example (1 cycle = 0.01 ps):

noint=6 h=.01/noint

init (0="continue") The initial OBkey:

0 "continue" or "cont" Continue the run from the point stored on disk, all
measurements the convergence profile and playback will be appended. Some
measurements like CPU times are not stored and are initialized for each run. This
is the default for every cycle (after every cycle init is set to 0 with the exception of
tau.sat<0).

1 "append" As above but the measurements are initialized; only the convergence profile
and the playback files will be appended.

2 "start" As above but also the convergence profile will be initialized.

3 "random" Everything will be initialized included the configuration. Random shooting
algorithm used. See also MC. FREEBC: the first molecule (molecule 0) is always
centered, other molecules are shot according to Gaussian distribution. See Sect. 13.

4 "slab" Cheap way to make a liquid slab. The same as init=3="random" with a bias
to the center of the box (in the z-direction). The initial slab is quite diluted, but
it condenses. The box should be longer in the z-direction and the initial cooling
should be intensive (otherwise the slab expands instead of condensing to the center).
Tested for water with thermostat="Berendsen" tau.T=0.1.

(In versions prior 2.4n init=4="rawrandom" meant not correcting constraints of
input configurations.)

5 "crystal" or "lattice" Everything will be initialized included the configuration.
Initial configuration is a regular lattice. See pins for available crystal structures.

10 "asc" Reads configuration from file simname.asc (see option -l for its format.) incl.
box size.
This option is not not equivalent to standard read of binary .cfg file (init=0,1,2).
Some information is lost, most load options not available).

11 As above + also velocities are read from simname.vel.

12 As above + also accelerations are read from simname.acc. Useless for normal runs
(because accelerations are calculated), usable for debugging Ewald summation.

init<0 Reads playback, frame |init|, then as if init=2. Symbolically init=-1="plb".
Velocities are assigned randomly (as if initvel=big number). If the plb-file contains

9: Running cook [Contents] – [Index] 120

zero box size (any of Lx,Ly,Lz), the box size is copied from cook initialization (given
by values of rho and L[]). If the box size in the plb-file is nonzero, it overrides the
cook initial values; however, some initializations (Ewald, cutoff corrections) are kept
from cook initializations. Thus, it is recommended to save the configuration (after
no=0) and then continue or restart cook.

(Since version 2.6b it is possible to rewrite the plb-file after reading. Utilities plb2cfg
and cfg2plb can be also used for mutual conversion.)

999 "convert" Obsolete. Reads simname.1, simname.2 ... simname.no and writes
frames to the playback file(s); nothing is calculated. The last configuration treated
has number no

Any init except 0,1 sets the running simulation time t to zero.

initrho (0) The initial density in kg/m3. Applies for initializing the configuration
(init>=3). The value of 0 (default) means that initrho=rho. Example of input data to
obtain a random initial configuration for, e.g., water solution:

initrho=700 rho=1000 tau.rho=1

init="random" pins=0 Emax=1e5

noint=5 h=0.01/noint no=100 ! 1 ps

thermostat="Berendsen" tau.T=0.1;

initvel (0) Re-assign the velocities of the first initvel molecules according to the Maxwell–
Boltzmann distribution with current T. It is done just once (initvel=0 is set after
assignment). (Formerly option -j with negative arg).

key (0) A “command” to execute (immediately; i.e., do not use ; after the command):

0="run" No command. This is the default which is re-set after any other command is
finished (This means that a simulation is (re)started after data input is ended by ;.)

1="sort+x"

2="sort+y"

3="sort+z"

-1="sort-x"

-2="sort-y"

-3="sort-z" OUT OF ORDER, use sort="z" and similar. The molecules (of each
species separately) are sorted according to increasing values of given coordinate of
the center-of-mass; the versions with + in the increasing order, version with - with
the decreasing order. May be useful, e.g., for selecting some molecules.

4="cp" Show the convergence profiles: calls showcp -99

5="show" Show the trajectory: calls show

6="rdf" Show the rdfs: calls rdfg pu

7="cn" Show the coordination numbers: calls rdfg u;plot :1:4 NAME.*.*.g

8="shell" Calls the shell

9="quit"="exit" Exits cook

9: Running cook [Contents] – [Index] 121

L[*] (0) Box sizes (3D array). If rho=0 is set, these values are taken literally and are used
in configuration initializer as well as target size (if tau.rho is specified).

With nonzero rho, the box is rescaled to reach given rho (i.e., L[*] specifies only ratio
L[0]:L[1]:L[2]). If one, two or three of L[] are missing (i.e., = 0), and rho is given
(> 0), the missing L[]s are calculated to reach given rho; if more than one L[] are, they
are the same. E.g., if all L[*] are missing and rho is given, a cubic simulation cell is
created.

L[] and rho are ignored if the configuration is read (init<=2 from file and tau.rho=0 is
specified. This default behavior can be changed by variable load.L[].

LJcutoff (-3) Cutoff for the Lennard-Jones interactions. If negative, then (except sign) in
the reference molecule size. It is the potential minimum (van der Waals sigma). For
Lennard-Jones, van der Waals sigma = sigmaLJ × 21/6.

lag.err (32) Lag for the statistical analysis of time-correlated data, in the number of cycles.
In every cycle, one item of data is recorded. See Sect. 14, for details. (One cycle is noint
integrations steps). Applies only to certain more important variables.

lag.n (14) Blocking (sub-averaging) by the factor of 2 to the block length of 2lag.n.

lag.v (0) Lag for the velocity-velocity time autocorrelation functions. Active for #define
RGYR only. From these functions the diffusivities can be calculated. (There is an
equivalent method based on the Einstein relation, see plb2diff.c 21.22.) WARNING:
slow for too long lag.v and/or too many molecules lag.nv.

lag.dim (3) Number of coordinates (vx, vy, vz) recorded.

lag.nv (big number) Velocity-velocity time autocorrelation functions recorded for lag.nv

molecules.

lag.cond (0) Lag for the time autocorrelation functions of the current density. From these
functions the conductivity can be calculated. (There is an equivalent method based on
the Einstein relation, see plb2diff.c 21.22.) The names of variables are jx,jy,jz (can
be specified in SIMNAME.cpi) Negative lag.cond means that partial currents (by ion
types) are not recorded in statistics

lag.visc (0) Lag for the time autocorrelation functions of the off-diagonal components of
the pressure tensor. From these functions the viscosity can be calculated. Small noint
is recommended, and the total lag noint*h*lag.visc at least several ps for common
non-complicated liquids. See Sect. 14.4.3 for EMD viscosity calculations.

load.L[*] (0,0,0) Box size strategy: the box may be specified in the input data (.def or
.get files, either directly, or calculated from rho and N[]) or loaded (from .cfg, not .plb):

load.L[i]=0 The loaded box size is used (i=0,1,2). This is the default.

load.L[i]=1 L[i] is taken from data only if the data value is larger (so that no overlap
may occur)

load.L[i]=2 L[i] is taken from data only if the data value is smaller (i.e., only if the
box shrinks, which may result in overlaps).

load.L[i]=3 L[i] is taken from data unconditionally (the box may shrink or swell)

9: Running cook [Contents] – [Index] 122

Example: You have a periodic cubic box of size 31× 31× 31 Å and want to use it as an
initial configuration for a slab of size 30× 30× 75 Å: while in the input data you should
have

drift=4+8+16+32 ! center slab in z, remove drift in x,y,z (8+16+32)

el.epsinf=-1 ! slab dipole correction - Ewald only

L[0]=30 L[1]=30 L[2]=75 rho=0 ! box size fixed

load.L[2]=1 ! L[2]=75 will be used

tau.rho=1 ! how fast to reach the box

L[0]=30 L[1]=30 will be slowly reached because of tau.rho=1

HINT: if you wish to recenter the configuration, use array shift[] in the input data.

load.N (0) Change the number of molecules. Not good for mixture components.

load.N=0 Default: If the specified (in the def- or ble-files) number of molecules does not
match the loaded one (from the cfg-file), this is an error and the program stops.

load.N=1 If the specified number of molecules > the loaded one, the missing molecules
are inserted randomly; the opposite inequality is an error. It is recommended to use
pins=0 to avoid box scaling.

load.N=2 If the specified number of molecules < the loaded one, the overflow molecules
are omitted; the opposite inequality is an error.

load.N=3 Either of load.N=1,2 applies.

load.n[*] (1,1,1) Periodically repeat the cell while loading. Useful for simulating fluids
of small molecules. To use this feature, prepare first a small configuration of the same
name (unless you use a plb-file: see variable init<0). Then prepare a def-file of the new
configuration (its N[] should contain the NEW [large] numbers of molecules) and run
with load.n[] and and init=2 in the input data. It is then recommended to randomize
velocities by specifying initvel=999999, otherwise all the copies will develop in the same
way (they are identical incl. velocities) until tiny rounding errors cause the trajectories
to diverge. See also utility plbreplicate.

load.reverse (0="no") Removed in V2.7a.

load.tr (0) Specifies a transformation (swapping, rotation) of the initial box while loading.

1="xy" x <-> y

2="yz" y <-> z

3="zx"="xz" x <-> z

4="zyx" z -> y -> x -> z

5="xyz" z -> x -> y -> z

WARNING: may interfere with L specified in the data. Example: to immerse a crystal
of NaCl into water, prepare the crystal (use order of species Na Cl water; e.g., N[0]=108,
N[1]=108), add water (e.g., N[2]=800), then specify a larger box size in the data
(may be done indirectly via rho=1050) and run cook with load.L[0]=1 load.L[1]=1

load.L[2]=1 load.N=1. The original (smaller) crystal of NaCl will be placed into a
large box and surrounded by water molecules.

9: Running cook [Contents] – [Index] 123

maxscale (1.03) Maximum allowed scaling of box or R. If larger scaling is requested, warning
is printed and scaling is reduced to range [1/maxscale,maxscale].

MC (0="no") WARNING: deprecated unless special requirements. It is recommended to use
MD minimization with drmax turned on, and large Emax.

For init=3 only. Adds MC Metropolis Monte Carlo sweeps (attempted moves for
every molecule) at temperature T after initializing the configuration. Pressing ^C (and
selecting 1, see option -i) interrupts MC and (after finishing a sweep) continues by MD.
MC=-1="forever" selects running MC until all pair energies fall below Emax (or until ^C).
In addition, molecules are not checked for mutual overlaps (given by the energy limit
Emax) when they are inserted; however, if option -jnumber is specified, then overlaps
with first number molecules are checked. One MC step is with probability 1/3 a shot
to a random place, with probability 1/3 a random displacement (the length is adjusted
during the run) and with probability 1/3 a random rotation (the angle is adjusted during
the run). Note that the k-space Ewald contribution (if any) is not included in the MC
energy.

FREEBC: central force (see center.K) is included into the MC energy.

WARNING: uses a table of pair energies and therefore requires a lot of memory for many
small molecules.

mirror (0) For mirror=1, mirror inversion is added to a random orientation of a molecule.
Applies for the Widom insertion and random initial configuration.

N[*] Number of molecules. Available in simname.def only. The format is:

N[species number]=number of molecules

The number of molecules passed from blend (option -n) and written to sysname.ble can
be thus changed. Note that species are numbered from zero: the ‘first’ species is referred
to by N[0], e.g., N[0]=500 to simulate 500 molecules.

nm.ampl (0.3) Max. amplitude of harmonic motion in visualization. Applies if also nm.modes

given.

nm.dr (0) Normal mode analysis, see Sect. 14.9. Step to calculate the numerical derivative
of forces.

nm.dr=0 No analysis (default).

nm.dr>0 Second-order central formula for the 1st numerical derivative of forces. Two
evaluations of forces are needed for one gradient.

nm.dr<0 Fourth-order central formula for the 1st numerical derivative of forces. Four
evaluations of forces are needed for one gradient.

The calculation is performed after a simulation cycle is finished. The configuration
must be well minimized (simulated annealing with T=0). With polar, scf.epsx=0 is
recommended (maximum precision). The Ewald calculations should be accurate (esp.
small el.epsr and longer el.grid), in addition, el.rshift=3 is strongly recommended
to avoid small jumps in the potential and forces at cutoff.

Recommended values of nm.dr are around 1e-4 to 1e-5 or -1e-3 to -1e-4 without
polarizability and Ewald. The accuracy of frequencies is better than 1e-8.

9: Running cook [Contents] – [Index] 124

With both dipolar polarizability via large Drude charges (shell = −1000) and Ewald,
careful choice of parameters (el.epsr<0.001, el.grid>1000, scf.epsx=0) and nm.dr

in the range 1×10−3 to 3×10−3 guarantees the final relative accuracy about 3×10−5 THz
(0.001 cm−1) and the precision of Tν better than 1×10−5. Since the error ∝ nm.dr2, the
δ2 extrapolation may improve the precision by one order of magnitude. Negative nm.dr

may be larger (in abs. value), but the calculation is slower.

WARNING: with LINKCELL, set box.rmin to a bit more than needed (for models
without “lone dependants” at least nm.dr and set box.max14.

BUG: not correct for general constraint models with bond constraints connected by a
non-fixed angle. Good for rigid models (as water).

nm.eps (1e-9) Normal mode analysis: accuracy (of the Jacobi method). Negative nm.eps

selects the verbose mode (iterations and some other technical info is printed).

If the accuracy is finer than the numerical noise, the additional code is usually able to
interrupt iterations without too much loss of efficiency (especially for the non-constraint
variant where the convergence is quadratic); however, if the numerical noise (with
constraints) is larger than sqrt(eps), the algorithm would run forever.

Pressing Ctrl-C or signalling SIGINT (kill -2 PID) breaks the iterations. WARNING:
The CPU time scales as N4; the estimated CPU time for about 1000 atoms may be hours.

Typical relative errors in the averaged vibrational temperature are 1×10−6 for
nonpolarizable models and 1×10−5 for polarizable models.

nm.frames (7) Normal mode analysis: number of frames in the generated trajectories to
visualize the harmonic motions. Positive = cos-like motion, negative = linear motion
(not recommended). The higher value, the smoother motion.

nm.key (0) Additional control of convergence, use in case of problems. For verbose mode,
use nm.eps<0.

0 Standard end of iteration criterion used (checks speed of convergence and one-step
error).

key>0 In addition, stops if the error during key consecutive iterations increase. Useful to
avoid infinite loop in case of problems (note also that the iterations are interruptable

by SIGINT (Ctrl-C).

-1 Stops if the first eigenvalue becomes negative. The accuracy of the results is
somehow compromised, but in case of problems, the iterations are interrupted as
soon as possible.

nm.mem (13) Maximum memory which can be requestes for matrices (only the largest terms
terms ∝ N2 are counted), in GiB (1 GiB = 10243 B). The default 13 GiB is suitable for
a computer with 16 GiB RAM provided that no other memory-consuming programs are
running. Note that this is the peak; during diagonalization unused arrays can be swaped
out.
BUG: the arrays are freed at the end of the routine, not when no longer needed.

nm.method (0) Version of the method to calculate normal modes of vibration.

0 For models without constraints. The matrix to diagonalize is symmetric, the Jacobi
method is used.

9: Running cook [Contents] – [Index] 125

1 For rigid molecules (or molecules with rigid parts connected by flexible bonds).
The constraint matrix is constant. The matrix to diagonalize is not symmetric, the
generalized Jacobi–Schur method is used.

2 For general bond constraints. The constraint matrix is not constant. The matrix
to diagonalize is not symmetric, the generalized Jacobi–Schur method is used.

3 As above, slow fool-proof algorithm (for debuging purposes). Use nm.method=2

instead.

8 Flag to be added to methods 1,2,3: call Octave to calculate the eigenvalues instead
of the Jacobi–Schur method. Faster but memory consuming.

nm.modes (0) Normal mode analysis: number of fundamental modes visualized. Positive
= modes are counted from the lowest ones (corresponding to translations/rotations),
negative from the highest frequencies, 0 means that the eigenvectors are not calculated.
BUG: the algorithm is very slow for larger systems (a few hundred of atoms).

nm.zero (3 or 6) Normal mode analysis: number of modes which are treated as zero for the
calculation of the Helmholtz energy of a crystal. The default is 3 for the periodic b.c.
(three zero translations) and 6 for free b.c. (3 translations + 3 rotations; this is incorrect
for a linear molecule!).

no (10000) Number of cycles to be performed. Note that you can interrupt the calculations
before no cycles gracefully by Ctrl-C or signaling kill -2. See also option -number.

No.cell[*] (0) Only for LINKCELL version: number of subdivisions of the simulation box
in each dimension. Default No.cell=0 means automatic selection according to the number
of sites in one simulation cell, No.percell.

No.first (0) Energy of No.first molecules (without Ewald k-space part, if any) used as the
4th column of the convergence profile in NVT. (REMOVED in 2.8c: When No.first=0

(default) then the ‘intramolecular’ energy of all molecules is recorded.) Not supported
for LINKCELL. cache=1 required (from V3.0h, cache>1 no longer supported!).

No.molspan (0) Version PERSUM only: maximum span (min–max if any rotation) of the
molecule (and something more for NPT). This value serves for determining the number
of images around an atom that guarantees that no interaction within cutoff is lost. The
default is for monoatomic molecules! The formula is (for each coordinate separately):

nimg
x = 1 + int

[
cutoff + 2 ∗ No.molspan

Lx

]
To enhance speed with a small decrease of precision (some interactions close to the cutoff
lost), No.molspan maybe a bit less than the maximum span; for monoatomic molecules
it may be negative.

No.occup (0) Applies to the LINKCELL version only: Histogram of cell occupancies is
calculated and printed in every step. If No.occup>1, then max number atoms in a cell
are recorded, for No.occup=1 certain default is chosen. For debugging purposes.

No.percell (5) Only for LINKCELL version: Calculates No.cell[*] so that there are about
No.percell sites per each cell and the cells are (approximately, if not possible exactly)
cubic.

9: Running cook [Contents] – [Index] 126

noint (10) Number of steps per one cycle. There are (noint-1) steps performed without
measurements, and 1 step with the measurements included. Note that measurements are
quite expensive so that do not use too low noint.

nomax (0) The simulation stops if the total number of measured cycles reaches or exceeds
nomax. nomax=0 turns off the check (the simulation runs until all data sets are processed
or quit=1 or EOF is specified). See also stop.

norm (0) REMOVED: see drift and conserved.

nshift (No.N) With shift and vshift: number of affected molecules. The default is a large
number = all molecules.

>0 The shift (push) applies to the first nshift molecules only.

<0 The shift (push) applies to the first No.N+nshift molecules, the remaining -nshift

molecules are shifted (pushed) in the opposite direction.

omega (0) Not implemented in the current version! The relaxation parameter for the
directiter method for calculating the Lagrange multipliers.

omegac (-1.2) The relaxation parameter (mixing iteration parameter) for the Scorrect

method for correcting constraints or for SHAKE. If negative, automatic optimization
is performed (use option -v&4 to get detailed protocol). See Sect. 11.3, for details.

P (1e5) Pressure to be kept constant (if tau.P is nonzero), in Pascal.

pins (0.01) Insertion probability and more.

init=3,4 0<pins<1 Lowest acceptable probability for inserting molecules while the
configuration is initialized. If the insertion probability falls below pins, the density
is decreased (box size increased) and a new attempt to fill the simulation box with
molecules is made.

init=3,4 -1<pins<0 As above with |pins|; in addition, if the insertion probability is
higher than sqrt(|pins|), a new attempt is made with a higher density. Thus, after
several iterations, a density with an insertion probability in (|pins|,sqrt(|pins|))

is found.

init=3,4 pins=0 Does not change density while initializing, i.e., continues in shooting
molecules even if very unsuccessful; it’s user’s responsibility to choose a suitable
initrho.

init="crystal" pins="auto"

init=5 pins=0 Automatic selection of the lattice (minimum number of vacancies)

init="crystal" pins="sc"

init=5 pins=1 Simple cubic lattice (with possible vacancies at random positions)

init="crystal" pins="bcc"

init=5 pins=2 Body-centered lattice (with possible vacancies)

init="crystal" pins="fcc"

init=5 pins=3 Face-centered lattice (with possible vacancies)

init="crystal" pins>3

9: Running cook [Contents] – [Index] 127

init=5 pins>3 (NOT TESTED RECENTLY, See Sect. 6.3) Structure contained in file
with name cfgns.pins, where ns is the number of sites per molecule and pins the
number of molecules, will be used and, if necessary, periodically copied; if the total
number of molecules is not an integer^3 multiple of pins, then vacancies will be
present. The box size will be derived from the box size stored in the file. The
configuration file can be created using option -l by cook, it only must be renamed.
May be combined with option -j

poteps (-1e-5) Accuracy for fool-proof internal check of site-site (non-bonded) potentials
and forces. Note that internally cook macroizes these functions in two versions – with
and without measurement (of virial and energy). This test compares all these versions
and also the derivative of minus the potential energy and forces. The active accuracy
is a sort of relative accuracy times poteps for numerical derivative, otherwise poteps2

applies.

If -v4, tables of potentials and detailed debug info are printed. (Was switch SS DEBUG
in V2.7t and older.)

poteps=0 The test is turned off.

poteps<0 The test is done only once at job start.

poteps>0 The test is done every batch (data set), and if potential adjusting is on
(tau.sig, see Sect. 12.3.4), then also whenever σ changes. (WARNING: heavy
output with option -v4!)

quit (0="no") Deprecated: quit cook, start a shell, debug. Use key instead.

1 "yes" Quits the program cook. The same as if EOF is encountered (or Ctrl-D from
keyboard).

-1 "debug" Debug mode: enables printing distances of selected sites.

-2 "paste" Paste molecule: enables replacing a configuration of a selected molecule by
data given on input (3-column ascii x y z format)

-3 As -1 and -2 simultaneously.

-4 "shell" Starts a shell (UNIX: csh, OS/2: cmd.exe, DOS: command.com). After
exiting the shell, the control returns back to ‘get data’.

reread.by (1) In the read mode (options -m0 or -m1), the stride of the loop. (New in V3.0a.)
You should change the simulation name to prevent rewriting your simulation results!
Example of usage:

cook SYSNAME SIMNAME # simulation - SIMNAME.plb generated

cp SIMNAME.def SIMNAME2.def # not if SYSNAME.def used

cp SIMNAME.cfg SIMNAME2.cfg

cp SIMNAME.cpi SIMNAME2.cpi # if needed

NPLB=‘plbinfo +f SIMNAME.plb‘ # number of frames

cat > SIMNAME2.get <<EOF

reread.from=1

reread.by=1

reread.to=$NPLB

init="start";

9: Running cook [Contents] – [Index] 128

EOF

cook -m1 -f SYSNAME SIMNAME2 SIMNAME.plb # recalculate energies, pressure etc.

reread.from (1) In the read mode (options -m0 or -m1), the first frame or configuration
read; the first frame is 1. (New in V3.0a.)

reread.to (0) In the read mode (options -m0 or -m1), the last frame read (incl.). New in
V3.0a.

rescale (15="xyzCM") Mode for box rescaling used by a barostat (see tau.P), density/box
rescaling (see tau.rho), and virtual volume (area) method (see dV), and the MTK
barostat (see thermostat="NPT"). Sum of powers of 2:

1 x coordinates are rescaled; "x" in the mnemonics below.

2 y coordinates are rescaled; "y" in the mnemonics below.

4 z coordinates are rescaled; "z" in the mnemonics below.

8 Rescaling is based on the molecular center-of-mass (default), "CM" in the mnemonics
below. This is the preferred choice for models with fixed (constrained) bonds unless
the MTK barostat (thermostat="NPT") is used.

16 Pressure tensor components are calculated and used separately; (#define PRES-
SURETENSOR=3 is required). All specified dimensions of the box fluctuate in-
dependently; thus, this choice is suitable for crystals and inapplicable to fluids.
Denoted by uppercase "X","Y","Z" in the mnemonics below.

If this bit is not set, and a barostat is used, the isotropic virial pressure is used to
calculate the rescale factor or rescale dynamics; #define PRESSURETENSOR is not
required. Consequently, all specified dimensions of the box fluctuate synchronously
(their aspect ratio is kept, a cube with rescale=7 is always a cube). This is the
default suitable for isotropic systems (fluids).

This flag is irrelevant with box control (see tau.rho).

New in V3.1i: with barostat (tau.P), the affected box sizes are included in statistics.
In order to include the respective convergence profiles, Lx,Ly,Lz should be given in
the .cpi file (do not use +Lx,+Ly,+Lz, the box statistics would be diplicated).

32 x and y scalings are made the same; with a barostat this is equivalent to using
(Pxx + Pyy)/2 to calculate scaling in both the x- and y-directions. Denoted by "XX"

in the mnemonics below. Useful only with rescale=16 because otherwise the scaling
is already isotropic.

64 All x, y, z scalings are made the same; "XXX" in the mnemonics below. Useful only
with rescale=16 because otherwise the scaling is already isotropic1

In principle, 1+2+4 and 1+2+4+16+64 denote the same uniform box rescaling. In

the latter case, Tr(
↔

P)/3 (as calculated from the pressure tensor) is used instead of
the virial pressure. Although both values should be the same, they are not exactly
the same because of inherent algorithm inaccuracy. With Ewald summation the
error is small (usually a few MPa), however, it is large with cutoff electrostatics, the
pressure-tensor value being usually more accurate.

Examples:

1That is why there is no rescale="xxx" mnemonic.

9: Running cook [Contents] – [Index] 129

• rescale="ZCM" tau.P=10 P=1e6 corr=3 will maintain Pzz+Pcutoff corr./3 = 1 MPa
by changing Lz only. Time constant of the Berensen barostat would be 10 ps in the
ideal gas approximation, shorter in condensed phases (see bulkmodulus).

• rescale="zCM" or rescale=12 selects molecule-based rescaling (good for small
molecules) of z-coordinates only

• rescale="xyzCM"=15 selects molecule-based rescaling (all coordinates).

The full list of available mnemonic codes is:
"x", "xCM", "y", "yCM", "xy","xyCM", "z", "zCM",

"xz","xzCM", "yz","yzCM", "xyz", "xyzCM",

"X","XCM", "Y","YCM",

"XY","XYCM", "Z","ZCM", "XZ","XZCM", "YZ","YZCM",

"XYZ", "XYZCM", "XX","XXCM", "XXZ","XXZCM", "XXX","XXXCM"

rho (0) The reference and target density in kg/m3. If tau.rho is specified, this density will
be reached and kept constant. The box is rescaled so that its shape (L[0]:L[1]:L[2]) is
the same. See also L[*]. If one or two of L[] are missing, and rho is given, the remaining
L[] are calculated. If rho=0, all three L[0],L[1],L[2] must be given and are used without
rescaling.
See also initrho.

rdf (structure) Variables controlling measurements of the radial distribution functions
(rdf.grid, rdf.cutoff, rdf.onefour), See Sect. 14.7.

rg.cp (0) #define RGYR required. Warning: radii of gyration are calculated for molecules,
this should be extended.

rg.cp >= 0 Radius of gyration and end-to-end distance of molecule number rg.cp

recorded in convergence profile. rg.cp=0 is recommended for e.g. a protein in water:
only Rgyr of the protein will be recorded.

rg.cp = -1 Averaged radius of gyration and end-to-end distance over all molecules
recorded in convergence profile. rg.cp=-1 is recommended for bulk pure molecular
fluid.

The value of rg.cp does not affect statistics which is recorded for each species separately
(if possible by the values of rg.end)

rg.end[0 (0)] Head atom for measuring the “end-to-end” distance. Negative value means
ns+rg.end[0], where ns is the number of sites. For instance, rg.end[0]=-1 is the last
atom in the molecule.

rg.end[1 (-1)] Tail atom for measuring the “end-to-end” distance. See above.

scf.E (0) POLAR only: virtual el. field that is applied to a in order to calculate the optical
permittivity of a polarizable model. The SCF accuracy and convergence are controlled
by scf.epsx,scf.omegax. See scf.Estride below. Note that the el. field changes sign
and coordinate every sample.

scf.Estride (0) POLAR only: how often to perform the sampling of the optical
permittivity, in the unit of cycles by noint timesteps (1=every cycle, 2=every second,
etc.). Zero turns off the feature. See scf.E.

9: Running cook [Contents] – [Index] 130

scf.eps (1) POLAR only: Controls SCF iterations/accuracy during the simulation.

scf.eps> 0 The accuracy of induced dipoles (in one iteration), in program units (1 p.u.
= 0.0117501 Debye = 0.0024463 eÅ). This value is used during MD simulation. If
ASPC is used, scf.eps should be large enough to guarantee one iteration per MD
step. (Called epsp for V<2.6f). See Sect. 15.5.

scf.eps ≤ −1 Fixed number of iterations given by |scf.eps|.

For more (less useful here) options see scf.epsx below.

scf.epsx (3e33) POLAR only: Accuracy of induced dipoles outside MD (as P measured by
virtual volume change, normal mode frequencies, etc.).

scf.epsx=3e33 This default implies certain value which can be reasonable for the virtual
volume/area change algorithms. Generally it is recommended to try several values
to resolve the speed/accuracy tradeoff.

scf.epsx ≤ −1 Fixed number of iterations given by |scf.epsx|.

scf.epsx > 0 Accuracy (of one iteration) in the internal program units (1 p.u. =
0.0117501 Debye = 0.0024463 eÅ).

−1 < scf.epsx < 0 “Maximum precision” algorithm, useful with normal modes
calculations and similar. The iterations are stopped when the following three
conditions are met:

1. at least 1+scf.maxit/20 iterations have been calculated

2. the one-step error is below |scf.epsx|

3. for the first time the one-step error increases

The last condition happens when the SCF error is about the same as the numerical
error. However, convergence problems may pass unnoticed.

scf.epsx=0 Similar as above with the following two conditions:

1. at least 2+scf.maxit/5 iterations have been calculated

2. for the first time the one-step error increases

The optimum scf.epsx depends on dV or nm.dr and Ewald setting. For predicted force
field and one iteration/step, one should have scf.epsx � scf.eps. For integration
methods with full iteration of the self-field, both scf.eps and scf.epsx should be small
enough.

The course of iterations can be monitored by flag 4 in option -v (-v7 incl. the default
-v3).

(Called epspx for V<2.6f).

scf.epsq (0.8) POLAR only:

0<scf.epsq<1 scf.eps*(1-scf.epsq) will be used as the actual error limit EPSP in the
1st step, instead of scf.eps. In subsequent steps,

EPSP := EPSP*scf.epsq + scf.eps*(1-scf.epsq)

is performed after every step so that after some time scf.eps is reached. After every
data set (ended by ;) read, scf.epsq is made negative and this function is turned
off. This is because the history for the predictor IS saved across batches.

9: Running cook [Contents] – [Index] 131

scf.epsq<=0 turns off this function and EPSP=scf.eps is always used.

scf.epsq>=1 is invalid

scf.maxit (30) (POLAR only) Maximum number of iterations to calculate the induced
dipoles. Applies both to the simulation and virtual volume change. If not enough to
reach the predefined accuracy, it is doubled with verbose output on. (To use a constant
number of iterations, use negative scf.eps)

scf.omega (POLAR only) The mixing iteration parameter for iterations of the self-consistent
field during simulation. Can be also given in % as option -^. (Called omegap for V<2.6f).

scf.omegax (0.95) The mixing iteration parameter for iterations of the self-consistent field
for virtual volume change. The optimum values are slightly below unity.

shear (0) For measuring the shear viscosity: Only if compiled with #define SHEAR. See
Sect. 15.13.

shift[*] The whole configuration (or a part of it – see nshift) is shifted by this 3D vector
before the first MD step. The vector is given in Å. This vector is then set to zero so that
no shift is performed in the next data set (unless specified again). The maximum allowed
shift in periodic b.c. is ±L (no check!).

SI (1="yes") 0="no" Energies (e.g., potential energy Epot and internal energy Ein), are
given in kcal/mol. Applies to both statistics and convergence profile

1="yes" Energies are given in J/mol. Applies to both statistics and convergence profile

WARNING: do not change SI during the run!

The following forces are active in the SLAB version only: (in version 2.6h called center.*)

slab.ext.center (0)

slab.ext.span (0)

slab.ext.zero (0) For removing the stacking error of the surface tension, see Sect. 31.3.
In the postprocessing stage, the cutoff corrections are calculated from the calculated z-
profiles. In addition, the z-profiles are extended by replicating some bins in both phases
and the corrections recalculated. Autocenter (see slab.sp) is required. This feature is
turned on by a positive slab.ext.span.

Example of bin replication scheme for 26 bins with slab.ext.span=2,

slab.ext.zero=4, slab.ext.center=6. Spaces are added for readability.

ABCDEFGHIJKLM NOPQRSTUVWXYZ ->

ZABY ABCDEFGHIJKLM MNOLMN NOPQRSTUVWXYZ

slab.grid (0) SLAB version only (see Sect. 15.7). The grid of the z-profile in the number
of points per 1 Å (if slab.zmax is specified) or Lz (rescaled to 1). May be a real number
(slab.grid=0.5 gives the histogram bin width of 2).
(Called densprof.grid in versions 2.6h and older.).

9: Running cook [Contents] – [Index] 132

slab.K (0) Fourier transform slab cutoff correction (FTSCC), new in V2.8h. Incompatible
with the homogeneous cutoff corrections, i.e., corr=0 is needed in input data2. See
also slab.range, see Sect. 31.1. Wave number slab.K is not included (C-style); thus,
slab.K=1 is error. Recommended values are from 3 to about 10.
Uses the initial box size to set up the correction coefficients. Thus, NVT (or NPT with
small fluctuation of box sizes) is supported.
BUG: Cannot be combined with any method which changes the initial box; e.g., load.L[],
load.n[].

slab.Kz[*] (0) Harmonic potential constant in the z-direction, see slab.n[].

slab.Lx[4] (0)

slab.Ly[4] (0) Box sizes for the “zone melting” ensemble, given as polynomials in
temperature:

Lx =
3∑
i=0

slab.Lx[i]T i

SLAB & 1 must be #defined (8 prior V2.8c). See tau.L for details, see Sect. 17.2.7,

slab.mode (0) (Called densprof.slab in versions 2.6h and older.). Sum of:

1 The system is assumed to be in the slab geometry and surface tension is calculated
from previously recorded components of pressure tensor and virial pressure. Slab-
based cutoff corrections are calculated from the z-density profile (post-processing),
see Sect. 31.2. It is recommended to use corr=0, although the correct results can be
extracted even if corr&3 is set. See also slab.K.

3 If slab.mode&2, and dV and rescale are set appropriately, the test area method is
used instead of virial pressure (see Sect. 15.7). Also slab.mode&1 must be set.

4 (Used internally for calculating the stacking correction to surface tension – see
slab.ext.*, do not set manually!).

8 POLAR only: Drude-dipole is rescaled to a dipole of z-length given by the z-profile
grid. To be used for too short Drude dipoles.

slab.n[*] (0) Number of molecules selected for adding forces in the z-direction.

Example:

slab.n[0]=800 slab.n[1]=200

slab.Kz[0]=100 slab.Kz[1]=100

slab.z[0]=20 slab.z[1]=-20

slab.z0[0]=10 slab.z0[1]=2

slab.ns[1]=2

Molecules 0..799 (the first 800 molecules: we number form 0 as in C) are kept in a slab
centered at z=Lz/2+20 and 20=10+10 wide. First 2 sites of molecules 800..999 are kept
in a slab centered at z=Lz/2–20 and 2 wide.

slab.ns[*] (0) Affected sites are: slab.ns[*]=0 all, slab.ns[*]>0 only first slab.ns[*]

sites, slab.ns[*]<0 only last |slab.ns[*]| sites. See slab.ns[].

2Since specifying corr&3 does not affect the trajectory, it is still possible to extract the uncorrected results
for many variables.

9: Running cook [Contents] – [Index] 133

slab.sp (big number = no centering) Automatic slab centering for the measurements of
the z-density profiles. It affects the measurement only, not trajectory.
slab.sp≥ 0 specifies the species number used for centering (from 0 to nspec-1).
slab.sp< 0 means that all species from number 0 to |slab.sp| (incl.) are used.
The centering is based on the best fit of function A cos(2πzi/Lz + φ) (actually the first
sin and cos components of the Fourier series are calculated.)
(Called densprof.sp in versions 2.6h and older.).

slab.prt (15=all) Controls which density profiles will be printed. The printouts are
generated from the data stored in SIMNAME.dpr. Sum of flags:

1 Molecule density profiles (for centers of mass) and the sum in the number density
units Å−3, ext=.cm.AA-3.z

2 Molecule density profiles (for centers of mass) and the sum in the mass density units
kg m−3, ext=.cm.kgm-3.z

4 Site density profiles and the sum in the number density units Å−3, ext=.site.AA-3.z

8 Site density profiles and the sum in the mass density units kg m−3, ext=.site.kgm-3.z

16 Charge density profile (molecule-based and the sum) in the units of eÅ−3,
ext=.q.eAA-3.z

slab.range (8) Range of integration over z-periodic slab, in Lz. Another useful value is 0.5.
See also slab.K, see Sect. 31.1.

slab.T (-1) Separate thermostat for particles with z-coordinates in the range [slab.Tz0*Lz,
slab.Tz1*Lz). Requires Verlet/SHAKE and Andersen/Maxwell thermostat (incl. center-
of-mass versions). For instance, to partly melt a crystal in a slab, you may try slab.T ≈
2T and tau.T in the range 0.1 to 1.

CAVEAT: Not fully implemented with the Berendsen thermostat. The algorithm just
changes the velocity scaling factors in both slabs using the global temperature (it does
not determine the temperatures separately in both slabs). In turn, if the heat conduction
is too slow (compared to tau.T), the difference of both temperatures grows to more than
T vs. slab.T. Nevertheless, even this partial algorithm may be useful. For instance, to
melt a crystal in a slab, you may try tau.T ≈ 2T and tau.T=1 or more (depending on
the system size) and watch the melting process.

slab.Tz0 (0.25)

slab.Tz1 (0.75) Defines range of z-coordinates (in the units of Lz) to apply a separate
thermostat (see slab.T).

slab.wall.sig (3)

slab.wall.epsrho (0) For SLAB=4 only. See also WALL.
WARNING: drift not set automatically!!!
Rather inconsistent LJ wall force at z=0. slab.wall.epsrho = energy density in K/Å3 of
the Lennard-Jones ε:

ULJ−wall(
→
r) = −2περσ3

[
1

3

(
σ

z

)3

− 2

45

(
σ

z

)9
]

where ρ is the particle number density (in Å−3). All particles interact in the same way.
The minimum is at z = σ/ 6

√
2.5.

9: Running cook [Contents] – [Index] 134

slab.z[*] (0) The center of the force, with respect to the box center in the z-direction
(L[2]/2)

slab.z0[*] (0) The added energy term is zero for z ∈ [z-z0,z+z0]. (NOTE: in older
versions, this was called slab.r0)

slab.z1[*] (0) A ‘bias function’ is added:

_________ __________

|\ /| ^

| \ / | |

| \ / | Kz

| _____/ | _|_

A B C D E

This function (actually quadratically smoothed) is selected by slab.z1!=0, where
|BC|=|CD|=slab.z0 and |AC|=|CE|=slab.z1, and slab.Kz = height of the outside part
from bottom (bottom=potential 0).
Notes:
With slab.Kz<0, and a slab placed at B..D, there are molecules with a higher probability
∝ exp(−slab.Kz/RT) outside the slab. Note that the meaning of slab.Kz differs from
the standard (U-shape) case for slab.z1=0.
Since V2.8c always active for SLAB (used to be #define SLAB 1).

slab.zmax (0) Max. z recorded. slab.zmax=0 means the density profile is calculated in the
range divided into slab.grid bins.
(Called densprof.zmax in versions 2.6h and older.).

sort (0="none") If one of 1="x", 2="y", 3="z" is specified, the molecules (of each species
separately) are sorted according to increasing values of given coordinate of the center-of-
mass. If one of 1="-x", 2="-y", 3="-z" is specified, the sort order is decreasing. Sorting
is performed once before writing a cfg-file (or asc), then sort=0 is set. May be useful,
e.g., for selecting some molecules.

stop (0) Stop simulation if the time since (re)start, i.e., last init>=2, exceeds stop ps. Note
that nomax applies to the number of measurement, i.e., also last init=1. If init=1

is not used and the cycle length does not change (see h and noint), then nomax and
stop=nomax*noint*h are equivalent.

T (300) Temperature for the thermostat in K. tau.T is the correlation time to keep the
temperature constant

T is also the approximate initial kinetic temperature (init>=3).

t (0) The simulation time (in ps) can be changed directly. Normally do not use; may be
useful with rho<0 (instead of shifting time in simname.box).

tau.E (0) The correlation time to keep the energy (Hamiltonian, extended Hamiltonian, or
the enthalpy) constant, in ps. 1/tau.E is the friction coefficient. tau.E=0 turns off the
function (infinitive correlation time or zero friction coefficient). Cannot be combined with
any thermostat. Implemented via velocity rescaling once a cycle.

9: Running cook [Contents] – [Index] 135

tau.i (0)

tau.j (0) Atom type indices (numbered from 0) for for Berendsen-like Lennard-Jones σij (or
similar) adjustment, see Sect. 12.3.4.

tau.L (0) For SLAB & 1 #defined: Berendsen-style correlation time to maintain the values
of x and y box sizes (see box.Lx[], box.Ly[], and see Sect. 17.2.7).

tau.P (0) Time constant for a barostat, canot be combined with tau.rho. If thermostat="NPT",
this is the approximated oscillation time of the MTK-style barostat, otherwise the expo-
nential correlation time of the Berendsen (friction)-style barostat (see Sect. 12.3). The
Berendsen-like barostat uses the ideal-gas bulk modulus unless bulkmodulus is set (see
there).

tau.P=0 Isochoric ensemble.

tau.P>0 thermostat="NPT": approximated oscillation time of the MTK-style barostat.
Other thermostat: the exponential correlation time of the Berendsen (friction)-style
barostat (see Sect. 12.3). The box is rescaled before every step, the scaling factor is
calculated at the end of the preceding cycle and is kept the same for all steps in the
cycle (new version, should be more stable, though biased). Variable noint should
not be too large (let us say, max. 10). If dV is set, pressure based on the virtual
volume change method is used in the barostat, if dV=0 (default), the virial pressure
calculated directly for pair forces is used. See variable dV for details.

tau.P<0 thermostat="NPT": not supported.
Other thermostat: The box is rescaled at the end of every cycle using the current
value of virial pressure (this is the old version). Interaction with dV is unknown (=
not recommended unless checked).

With PRESSURETENSOR=3 (or more) and appropriate value of rescale), applies to diagonal
components of the pressure tensor independently in each coordinate (suitable for crystals).
Virtual volume/area is not supported.

tau.rho (0) tau.rho=0 The box size (density) does not change.

tau.rho>0 The correlation time to reach the desired density (given by rho) or
box sizes (rho=0 and L[]; see rho and L[] for details). In case of
initialization the initial density is initrho. Time needed to reach rho

is abs(ln(rho/initrho))*tau.rho. The number of cycles needed is then
no=1+abs(ln(rho/initrho))*tau.rho/(noint*h); this formula can be directly
written to input data.

tau.rho=-1 The box size is controlled by file simname.box, which contains two columns:
time in ps and the density in kg m−3, see Sect. 12.3.3.

tau.rho=-3 The box size is controlled by file simname.box, which contains four columns:
time in ps and the box sizes in Å, see Sect. 12.3.3.

tau.sat (0) Turns on the module for automatic calculation of the electrostatic field Eelst

(if one component set to a positive value) or the dielectric constant of the surrounding
continuum (if Eelst=0) ε′r =el.epsinf, see Sect. 29.3.

tau.sat=0 Autoset is off.

9: Running cook [Contents] – [Index] 136

tau.sat > 0 The correlation time to reach the desired saturation el.sat of the cell
dipole moment.

tau.sat < 0 As above with |tau.sat|; in addition, after the sweep is finished, the
averaged value of el.epsinf (if no field) or Eelst (if field) is assigned, tau.sat is
cleared, and init=1 is set (instead of usual init=0). Note that you must first perform
at least one (shorter) sweep with tau.sat>0 and then one (longer) with tau.sat<0;
just starting (init=2) a simulation with tau.sat<0 will cause convergence profile
error (missing header).

(Warning if there are free ions)

tau.sig (0) Correlation time for Berendsen-like Lennard-Jones σ (or similar) adjustment,
see Sect. 12.3.4.

tau.T (0) The correlation time for the thermostat. See thermostat and see Sect. 12.2.
Recommended values are 0.2–5 ps, in most cases 0.5–1. For simulated annealing
(minimizing energy as T → 0), much longer times are needed to cool slowly to escape
from local minima. However, close to the minimum, shorter times (comparable to the
periods of typical motions) are more efficient; e.g., for water ice, the fastest relaxation to
zero is obtained with tau.T=0.12.

For extreme rates of cooling or heating using friction thermostat, the friction term is
bounded by +-1/tau.T. Therefore T=0 can be safely used.

thermostat The selection of thermostat. See Sect. 12.2.

0 "none" No thermostat—the MD NVE ensemble.

1 "friction"

1 "Berendsen" Simple friction thermostat, see variables tau.T and T.

2 "Nose" The Nose canonical ensemble.

3 "Andersen" Velocities of randomly chosen atoms are replaced by those drawn from
the Maxwell–Boltzmann distribution. The mean time of updating the same atom
is tau.T. Not good with constrained dynamics. The averaged kinetic temperature
difers from T by an error of the order of O(h2) unless VERLET=3 version is used.

4 "Maxwell" Velocities of all atoms are replaced by those drawn from the Maxwell–
Boltzmann distribution in the regular period of tau.T. The same conditions as above.

5 "AndersenCM" Velocities of randomly chosen molecules (their centers of mass) are
replaced by those drawn from the Maxwell–Boltzmann distribution. The mean time
of updating the same atom is tau.T. May be used with constrained dynamics. Note
that the actual relaxation time is longer because energy must be equipartioned
with internal degrees of freedom which may be slow. Not suitable for fast initial
cooling/heating. The averaged kinetic temperature difers from T by an error of the
order of O(h2) (irrespective of the VERLET version); this is the consequence of
equipartition error proportional to O(h2).

6 "MaxwellCM" As above, in regular period of tau.T.

7 "Langevin" Langevin thermostat for atoms. Not good with constrained dynamics.
Perturbs the Gear predictor and leads to equipartition errors (and averaged kinetic
temperature error) of the order of O(h). Should be used with long enough tau.T

only.

9: Running cook [Contents] – [Index] 137

8 "LangevinCM" Langevin thermostat for molecules (centers of mass). Can be used
with constrained dynamics. Perturbs the Gear predictor, therefore only long enough
tau.T are acceptable.

11 "BerendsenCM" The friction thermostat applies for the translational motions of the
centers of mass only.

12 "BerendsenIN" The friction thermostat applies for the intramolecular (vibra-
tional+rotational) motions only.

13 "frictions" The translational and intramolecular+rotational degrees of freedom
are thermostated separately. See also T tr in.

22 "NPT" NPT ensemble: thermostat + barostat [34], via velocity predictor (see Nose)
and box predictor (for constraints). Also "MTK". See Sect. 12.3

See also variable corr: NPT requires corr&16 unset. The default is correct, however, it
does not change automatically if you also change the thermostat!

Tstop (0) If nonzero, the simulation stops when the kinetic temperature reaches Tstop

(whether while cooling or heating)

T tr in (1) Applies to thermostat=13="frictions" only. The translational and in-
tramolecular+rotational temperatures to be kept constant are different with ratio
Ttr/Tin=T tr in. The total kinetic temperature is kept to T.

vshift[*] Velocities of the whole configuration (or a part of it – see nshift) are changed
by this 3D vector (before the first MD step). The vector is given in Å/ps = 100 m/s.
This vector is then set to zero so that no push is performed in the next data set (unless
specified again).

xs.freq (0) How often to measure the cross section (CHANGED in V2.7o).

0 Do not measure.

1 Measure every cycle (of noint steps) during simulating. Measure for every frame
in the reread playback mode,

> 1 Measure every xs.freq-th cycle during simulating (data in the convergence profile
will repeat the last calculate value). Not recommended in the reread playback mode
(use reread.by instead and xs.freq=1).

< 0 Measure every cycle |xs.freq|-times. Makes sense with modes using random
orientations, xs.mode=0,1,4. More samples = higher precision.

xs.grid (10) Grid for calculating the cross-section, in number of points per 1 Å. The method
places the molecule on a rectangular mesh, projects all atoms and counts the number of
mesh points. Note that there is a limit for the size of this mesh (see xs.sizelimit), the
default is enough with xs.grid=10 for most cases but choosing a finer mesh could cause
exceeding this limit.

xs.maxs (-1) Molecule mode: number of SPECIES included.
Whole configuration mode (xs.mode&8): number of SITES included.
0=all SPECIES or SPECIES
Does not apply for clusters (xs.mode&16): see xs.mincluster.

9: Running cook [Contents] – [Index] 138

xs.mincluster (0) CLUSTERS only: Minimum cluster (number of molecules) for which
cross-section will be calculated.

xs.mode (0) Only if compiled with #define XSECTION: method of calculating the cross
sections.

0 "gauss" Uses 16 sample projection directions for each measurement, corresponding
to 32 of the vertices of a regular dodecahedron and inscribed icosahedron with
weights giving the Gaussian integration formula3 The orientation of the polyhedron
is random.

1 "one" One random projection direction per measurement.

2 "shear" Three directions measured separately: (x + y), (x − y), and z. Suitable for
testing possible orientational order caused by shear stress.

3 "xyz" Three directions measured separately: x, y, z. Suitable for monitoring melting
a crystal and similar.

4 "three" Three sample orthogonal projection directions for each measurement, rotated
by a random orientational matrix as in xs.mode=0.

8 If combined with the above: The cross-section will be calculated for the whole
configuration (otherwise for all molecules separately, which is not what you want for
a water cluster).

Use uppercase mnemonic codes: "GAUSS", "ONE", "SHEAR", "XYZ", "THREE".
("SHEAR", "XYZ" do not have too much sense.)

16 CLUSTERS only: calculate cross-section for clusters. Exclusive with bit 8. In
this mode, clusters ≥ xs.mincluster are analyzed and their cross-sections (in Å2)
printed. The maximum cluster cross-section (by the number of molecules) is recorded
in variable Xsection[max.cluster] and in column Xsec of convergence profile.

Note that modes 0,1,4 give the angle-averaged cross-section while modes 2,3 give cross-
sections in specified directions.

xs.Rscale (2^(-1/6)) For cross section measurements, the atoms are represented by spheres
of radii given by xs.Rscale*(RvdW+xs.Rvdw), where RvdW is the van der Waals radius of
the atom being measured and xs.RvdW of the testing particle in a scattering experiment.
The default is the same as using half Lennard-Jones sigma. (NOTE: old name =
xs.scaleR).

xs.RvdW (1.4) Van der Waals radius of the testing particle in a scattering experiment. 1.4
corresponds to Helium.

xs.sizelimit (228) Max number of bytes that can be used for the cross-section grid. (This
is the upper limit, only the necessary memory is allocated.) If exceeded, a warning is
printed and outer parts of the molecule are ignored; the parts which are farthest from
the origin are more likely to be cut off. Thus, if this happens for one molecule in free
boundary conditions (FREEBC) which contains parts which can be released and fly away
(like water molecules), these water molecules will be simply ignored.

wall.* (structure) WALL (and GOLD) version: See Sect. 15.10.

3probably from book A.H. Stroud, The Approximate Calculation of Multiple Integrals, (Prentice Hall,
Englewood Cliffs, New Jersey, 1971), see gen/sphint.c

9: Running cook [Contents] – [Index] 139

9.2.6 Interactive and batch control

cook runs in both batch and interactive modes. To turn the interactive mode on use option
-s. This also enables scrolling (if compiled so).

The ‘get data’ input module, the use of scrolling and error handling are the same as in program
blend — see the manual for blend!

9.2.7 Interrupt

If not turned off by option -i-1, pressing Ctrl-C (or signalling kill -2 or kill -INT, on
some systems also kill -15 or kill -TERM) causes the program to be interrupted and you can
select (in interactive mode and a serial version from keyboard, in PARALLEL version and/or
batch mode by option -i):

0 = (r)esume: continue calculations Continue running as without interrupt.

1 = (i)nterrupt: finish cycle then save all and read next data In interactive mode
just the running cycle will be finished and you will be prompted for other data. Not so
useful for the batch mode because the data are read from a file.

2 = (.)stop: finish cycle then save all and stop Stop cook gracefully (both in
interactive and batch modes). Default for the batch mode.

5 = (j)ump to stop: finish step then save all and stop (incomplete cycle!) Stop
cook less gracefully. The configuration will be saved but measurements will not be
recorded in proper intervals (one per a cycle). To be used if you want to start cook

again with init=2.

-1= (e)xit immediately (nothing saved!) Kill cook.

9 = (s)croll (then type ? for help) Enter scrolling; once prompt $ appears, type a
scroll command or ? for help.

NOTE: You can disable the Ctrl-C handler totally by deleting #define SIG from main.c.
See comments there!

Chapter 10

Parallelization

MPI support was removed at cook V 2.5a. Now there are two shared memory versions
implemented using POSIX threads (“pthreads”).

10.1 Compiling

The version is determined by compile-time switch PARALLEL (#define PARALLEL) in
simopt.h. Several options are possible (see below). The pthread library is linked by option
-lpthread.

Script configure.sh takes care about all settings.

10.2 Running

The number of threads is given by the environment variable NSLOTS. See more below.

If cook is submitted using SGE qsub, the number of requested cores (“slots”) is specified by
parameter -pe shm NUMBER; it is passed in the form of environment variable NSLOTS to the
node. Example:

qsub -cwd -b y -q sq-8-16 -pe shm 2 ./cookewslcp0P2 polwater slab -t

10.3 Linked-cell list and Ewald parallelized

#define PARALLEL 1 : This version is suitable for simulation of large periodic systems.

The Ewald k-space part is parallelized in the natural way by splitting the sums over charged
sites into parallel threads.

The linked cell list method is parallelized by slabs (2D arrays of cells) in the x-direction. There
are No.cell[0] such slabs; it should be an integer multiple of the number of threads, otherwise
a bad load-balancing occurs.

If you are running cook on your own machine, it may be advantageous to specify No.lcth.
It will split the Ewald k-space part into given number of threads while the r-space sums into
No.cell[0] threads (more than processors).

140

10: Parallelization [Contents] – [Index] 141

10.4 Ewald k-space and r-space running in parallel

#define PARALLEL 2 : This version is suitable for smaller systems. It uses two processors, in
one the Ewald k-space part is calculated and in the other and the other the r-space part (of
Ewald plus Lennard-Jones). It is good to set the Ewald parameters (in the standard situation
for el.test=-10 this means trying several values of cutoff) so that the time spent by both
parts is the same, otherwise load-balancing will be lost. The r-space part may be either all-pair
or linked-cell.

10.5 Pair sums for a single big molecule parallelized

WARNING: not implemented now

#define PARALLEL 3 : This version is suitable especially for 1 big macromolecule in
free boundary conditions (version FREEBC). All pairs in the pair-sum are considered and
parallelized as in the following scheme:

1-0

2-0 2-1

Thread 1

3-0 3-1 3-2

4-0 4-1 4-2 4-3

5-0 5-1 5-2 5-3 5-4

Thread 2

6-0 6-1 6-2 6-3 6-4 6-5

7-0 7-1 7-2 7-3 7-4 7-5 7-6 Thread 3

The amount of ”lines” is determined in such a way that the amount of work is approximately
the same for each thread. The algorithm allocates a copy of forces (though not of the full length
in all cases) for each thread.

BUG: measurements of radial distribution functions and dihedral angle distributions are not
supported.

Chapter 11

Algorithms and parameters

There are many parameters that control the accuracy end efficiency. Most of them have
reasonable defaults that will work at least fairly well in most typical cases. But one is never
watchful enough. You must be able to recognize that something is getting wrong, so do not
skip this chapter completely!

11.1 Accuracy

From the technical point of view, there are four sources of inaccuracies in the generated
configurations:

• Integration errors. They are controlled by the integration method used (option -m) and
the timestep h.

• Cutoff errors. These (in periodic b.c.) consist of the site-site (Lennard-Jones) cutoff errors
and electrostatic cutoff errors. For Ewald summation, the latter consist of the k-space
and r-space errors.

• Constraint errors. These are caused by different phenomena and must be corrected to
some low value.

• Inaccurate calculation of charge-charge interactions (r-space sums). Normally negligible.

• Inaccurate ensemble. E.g., serious problems may arise when the friction thermostat with
short correlation time is used for small molecules (they will rotate faster than corresponds
to the temperature).

From the physical point of view, there may be many reasons why things go wrong. A few
typical reasons follow:

• Long correlation times of crossing large energy barriers. For instance a convergence to
equilibrium between cis and trans conformations may be slow.

• Small coupling between different degrees of freedom, e.g., slow coupling between fast
bond vibrations and translations/rotations. That is why constrained bonds may be
more accurate/efficient than simulating a fully flexible model. Slow convergence of Nose
thermostat is of similar nature.

142

11: Algorithms and parameters [Contents] – [Index] 143

• Finite size effects. Especially important for systems close to a critical point. Increasing
system size not only slows down the simulation algorithm but also increases the correlation
times.

The following quantities serve to observe inaccurate sampling of the phase space:

• Conservation of integrals of motion. The most important is the total energy
(Hamiltonian), in free b.c. the angular momentum

• Translational and intramolecular (+rotational) temperatures (called Ttr and Tin) can
reveal a possible wrong equipartition (e.g., the “flying ice cube problem” of the Berendsen
thermostat)

• Errors of constraints

• (POLAR only) Errors in self-consistent field

11.1.1 Errors of constraints

The following quantities are available to observe the accuracy of the constraints:

cerr.r1 Error of constraints of predictor; reported as ”constr err 1” in statistics.

cerr.r2 Error of constraints after integration step.

cerr.r3 Error of constraints (of true configuration, i.e., after correcting constraints).

cerr.v1 Error of velocity constraints of predictor; reported as ”v constr err 1” in statistics.

cerr.v2 Error of velocity constraints after integration step

cerr.v3 Error of velocity constraints (of true configuration)

All these quantities are normalized to be dimensionless.

Generally, cerr.r1 should be several times higher than cerr.r2 which should be several times
higher than cerr.r3 and similarly for cerr.v’s (with the exception of cerr.v1/cerr.v2

which is rather high anyway). If all cerr.r’s are comparable (ratios less than 2), the
constraint dynamics is solved too inaccurately and epsc and/or eps should be decreased. If
cerr.r2/cerr.r3 or cerr.v2/cerr.v3 is too high (say, > 100), epsc is unnecessarily low and
efficiency is lost.

11.1.2 Energy conservation

The total energy should be in principle constant. The exception is the friction thermostat (and
friction-like isobaric ensemble and similar) which spoils in principle the energy conservation
— even if you wish to use the friction thermostat, try once a while a short microcanonical
run to check the energy conservation! But even in the true microcanonical ensemble, various
inaccuracies cause both statistical fluctuations and systematic secular drift in the total energy
(the Hamiltonian).

11: Algorithms and parameters [Contents] – [Index] 144

1. Integration errors cause cooling (energy decrease) for the 4-value Gear method for 2nd-
order equations which is the case of cook with the default value of option -m. In other
cases they cause heating.

2. Cutoff errors (i.e., small jumps or peaks in the potentials and forces) cause heating (energy
increase)

3. Inaccurate constraint dynamics causes heating

The first reason usually is (and should be) most important.

For the Nose canonical ensemble the drift does not matter because it means only some rescaling.
The drift, of course, must not be too high: the good criterion is not the drift during the entire
(possibly very long) simulation but the drift during a typical correlation time (say, 1ps) which
should be set according to the demanded accuracy. The same holds true for the statistical
fluctuations of the total energy.

The situation is not so simple for the microcanonical ensemble where energy drift causes cooling
or heating. To avoid this, set tau.E to a typical correlation time (at least 1ps) and energy E will
be conserved; the difference of E-<measured Etot> as well as sqrt(Var Etot) (both quantities
are measured and statistically analyzed) is then the equivalent measure of the quality of the
simulations.

The problems are usually smaller for the Verlet integrator (with SHAKE for constraints) which
is time reversible so that (if there are no other sources of errors) there is no energy drift. In
addition, the Verlet integration can be treated as exact integration of a perturbed Hamiltonian
so that the errors are bound. (To be exact, this holds true only for certain class of continuous
potentials with derivatives. Typical potentials like Lennard-Jones with singularities for particle
overlaps exhibit energy increase. This phenomenon is for typical timesteps usually negligible.)

11.1.3 Self-consistent field accuracy

Applies to POLAR version only. The reported errors, selffield maxerr (maximum found in
the configuration) and selffield stderr (standard deviation) of induced dipole moments are
in the program units (one program unit is 0.0117501 D, or see units.h for details). See also
the explanation of scf.eps variable and paper [4].

11.2 How to set Ewald parameters α and κ

Both α = el.alpha and κ = el.kappa depend on the r-space cutoff (cutoff). It must not
exceed half the box size L/2 (to be precise, a tiny overflow is accepted; in addition cutoff

may exceed half box if the linked cell list method is used, but this method becomes efficient for
large systems so that using cutoff>L/2 is not recommended. For small systems (say, number
of sites < 1000), half the box size is the optimum value. For larger systems a lower value is
optimum. If you select cutoff<0 (this is the default), cook calculates a value that should work
fairly well in typical cases (it uses the final density rho to calculate the final box size). But if
you want to optimize the run, you should try several values of cutoff and measure the time.

11: Algorithms and parameters [Contents] – [Index] 145

11.2.1 Simple way

It follows from the formulas in Appendix 24 that the main term of the r-space error is
erfc(αcutoff) ∝ exp[−(αcutoff)2] whereas the k-space error is exp[−(πκ/α)2]. Let ε be the
desired accuracy. Then the estimated parameters are

α =

√
− ln ε

cutoff
, κ =

α

π

√
− ln ε.

Usually ε = exp(−π2) ≈ 5.2× 10−5 is a reasonable choice. Then

κ = α = π/cutoff

Example of code:

el.test=0 ! no automatic setting of alpha,kappa

el.alpha=pi/cutoff ! simple estimate

el.kappa=el.alpha ! simple estimate

11.2.2 More accurate way

As the default (parameter el.test=-10), cook implements approximate formulas [21] based
on the assumption that charges in the system are distributed randomly. The value of the r-
space cutoff is here a free parameter and el.alpha and el.kappa are calculated to satisfy
the accuracy requirements given by errors el.epsr and el.epsk.

But be aware that approximate error formulas are used. They tend to overestimate the k-
space cutoff errors for large systems without free charges (i.e., if all charges are parts of small
electroneutral groups). In addition, the k-space cutoff errors are both positive and negative
and do not cause any violation of energy conservation. Hence, el.epsk may be several times
higher than el.epsr.

11.2.3 Most accurate way

Since only approximate formulas are used for the cutoff errors, I recommend to check them
against the actual errors. This is done in a special module that is entered by specifying el.test

different from 0 and -10. The following data are available:

el.alpha As in the main get data module1

el.kappa As in the main get data module2

cutoff As in the main get data module; must be positive.

eps As in the main get data module; the original value is restored automatically when the
Ewald testing module is left.

1in addition, el.alpha<=0 restores the original value valid before the Ewald testing module has been
entered—probably does not work as expected

2in addition, el.alpha<=0 restores the original value valid before the Ewald testing module has been
entered—probably does not work as expected

11: Algorithms and parameters [Contents] – [Index] 146

el.epsk As in the main get data module

el.epsr As in the main get data module

el.grid As in the main get data module

el.test Control:

el.test=0 Leaves Ewald testing module Ewaldtest

el.test=1 Calculates forces and energy and, if reference is set, errors

el.test=2 Calculates forces and energy and store them as a reference for evaluating
errors in next steps, sets el.test=1

el.test=-1 Calculates el.alpha and el.kappa from cutoff el.epsr el.epsk and
performs el.test=1

el.test=-2 Calculates el.alpha and el.kappa from cutoff el.epsr el.epsk, per-
forms el.test=2 and sets el.test=-1

el.test=-3 Calculates el.alpha and el.kappa from cutoff el.epsr el.epsk and
waits for further data

el.test=-10 Calculates el.alpha and el.kappa from cutoff el.epsr el.epsk,
works silently and quits Ewaldtest afterwords.

el.minqq As in the main get data module

No.cell As in the main get data module

quit quit=1 quits the program immediately.

Testing should not be performed using the initial configuration which is very artificial — it
should be at least a little bit condensed and equilibrated. An example follows:

eps=1e-9 ! sufficiently high accuracy for calculating the Lagrange

! multipliers (not to introduce other inaccuracies!)

epsc=1e-9 ! sufficiently high accuracy for calculating constraints

LJcutoff=6 ! cutoff in the module should not fall below cutoff

scf.eps=1e-8 scf.omega=0.95 ! if POLAR: iterate to high precision

el.test=-2 ;! switch to the Ewaldtest routine (step 7. of ‘program flow’

! above) and select automatic setting of alpha and K

!

el.epsr=1e-4! sufficiently high accuracy for real-space errors

el.epsk=1e-4! sufficiently high accuracy for k-space errors

el.test=-2; ! 1) alpha,kappa determined from epsr,epsk

! 2) accurate forces and energies are evaluated and stored as

! "reference" benchmark values

!

el.epsr=.05 ! working accuracy

el.kappa=.5 ! working accuracy

el.test=-1; ! 1) alpha,kappa determined from epsr,epsk

! 2) errors (from the reference) calculated

!

el.test=0; ! abandon Ewaldtest; remember to return the changed variables!

11: Algorithms and parameters [Contents] – [Index] 147

11.3 Constraint dynamics

The constraint dynamics comes in two versions, one using Lagrange multipliers for calculating
the constraint forces, and the SHAKE algorithm. The SHAKE algorithm is based on the second-
order Verlet integration method while the multiplier method allows higher-order integrators (see
option -m). The multiplier method requires a step correcting the constraints.

11.3.1 The SHAKE algorithm with Verlet integration

Several versions of SHAKE are available differing in efficiency only marginally.

undefined Shake is not implemented (only Gear+Lagrangian constraint dynamics is
available).

#define SHAKE 1 Simple update in sweeps. This is the default in configure.sh.

#define SHAKE 2 Information on moved sites is kept and only the bonds between sites that
have moved in the previous step are updated. May be slightly more efficient in some cases

#define SHAKE -1

#define SHAKE -2 As above and a more complicated algorithm taking into account the angle
between the old and new constraint is used. Some more tests are added. Might be slightly
better for diatomics. Not tested recently.

The velocity algorithm comes in four compile-time flavors. The trajectory is the same and
given by the Verlet algorithm with SHAKE. The velocity algorithm affects the kinetic energy
and kinetic part of the pressure tensor. It does not affect the .vlb file which always corresponds
to VERLET=0 (shifted by h/2). The differences in speed are small.

#define VERLET 0 The simplest, fastest, and least accurate O(h) version, v(t) = [r(t+ h)−
r(t)]/h. Essentially, velocity is shifted by h/2 from positions. Correct averaged energy of
the harmonic oscillator. Good enough with friction (Berendsen) thermostat. (Added in
V2.4a)

#define VERLET 1 Compromised speed, velocity accurate to O(h2): v(t) = [r(t + h)− r(t−
h)]/(2h). Averaged energy of harmonic oscillator has error O(h2). (Added in V2.4a) This
is equivalent to the velocity Verlet algorithm.

#define VERLET 2 Best energy conservation (exact for harmonic oscillator but with O(h2)
error), slowest, v(t)2 = [r(t)−r(t−h)]/h·[r(t+h)−r(t)]/h. (The off-diagonal components
of the pressure tensor are approximated as average of both possible h/2-shifted terms).

#define VERLET 3 Compromised speed, velocity and energy conservation accurate to O(h2)
(slightly worse than for VERLET=1), but with correct averaged energy of harmonic
oscillator. Energy and pressure tensor components are averages of both shifted values
v(t) = [r(t+h)− r(t)]/h and v(t) = [r(t)− r(t−h)]/h. This is the recommended default.

SHAKE is controlled by two parameters, omegac and epsc. The first one is the relaxation
(mixing iteration) parameter: omegac=1 means direct iterations, omegac>1 overrelaxation,

11: Algorithms and parameters [Contents] – [Index] 148

and omegac<1 underrelaxation (mixing with the previous iteration). In most cases, values
around omegac=1.2 are optimum. ANCHOR version (see Sect. 15.11) may require omegac<1.
Parameter epsc is the required relative accuracy of constrained bonds.

Since V2.4a, a negative value of omegac causes automatic determinantion of the optimum
omegac, separately for each species. The optimization starts from the absolute value, but it is
not stored (is done again even if init=0 is selected). Use option -v&4 to get detailed protocol
on the process of optimization.

The numbers of needed SHAKE iterations are recorded and statistically analyzed in variable
nitc and reported as corr constr it separately for the 1st molecule and averaged rest.

11.3.2 Constraint dynamics with Gear integrators

An alternative to SHAKE is the Lagrangian formulation3 of constrained dynamics [36]
implemented with the Gear integrators. The algorithm follows; see also the comments in
constrd.c. The Newton equations of motion are modified by adding the constrained forces:

→̈
r i =

1

mi

(
→

f i +
→

f
c

i). (11.1)

The constrained forces are in the direction of constraints,

→

f
c

i =
∑
a

ga
∂ca
∂
→
r i
,

where ca denotes the a-th constraint. For a bond constraint between atoms ia and ja it holds

ca =
1

2
[(
→
r ia −

→
r ja)

2 − l2a], (11.2)

where la is the bond length. In order to write equations for the unknown multipliers ga, let us
take the second time derivative of ca’s:

ċa =
∑
i

→̇
r i ·

∂ca
∂
→
r i

c̈a =
∑
i

→̈
r i ·

∂ca
∂
→
r i

+
∑
i,j

→̇
r i ·

∂2ca
∂
→
r i∂

→
r j
· →̇r j.

The constraints are fixed, so c̈a = 0. By inserting
→̈
r i of (11.1) into the above c̈a, we arrive at

equation (in matrix form)
Mg +G = 0, (11.3)

where M is an nc × nc matrix (nc = No.c is the number of constraints)

Mab =
∑
i

1

mi

∂ca
∂
→
r i
· ∂cb
∂
→
r i
, (11.4)

Ga =
∑
i

→

f i
mi

· ∂ca
∂
→
r i

+
∑
i,j

→̇
r i ·

∂2ca
∂
→
r i∂

→
r j
· →̇r j. (11.5)

3The older versions of cook supported also the Hamiltonian formulation, however, this procedure suffered
from growing momenta.

11: Algorithms and parameters [Contents] – [Index] 149

To evaluate the above formulas for bond constraints (11.2), we easily calculate

∂ca
∂
→
r i

= (
→
r ia −

→
r ja)(δi,ia − δi,ja). (11.6)

The diagonal elements are:

Maa =

(
1

mia

+
1

mja

)
(
→
r ia −

→
r ja)

2.

A nondiagonal element is nonzero only if constraints ca and cb share a common site; for bond
constraints, at most one such site exists. E.g., if ia = ib then

Mab =
1

mia

(
→
r ia −

→
r ja) · (

→
r ia −

→
r jb).

Matrix M is sparse and coded as a list (type M t in simglob.h). The set of linear equations is
solved by the conjugate gradient method4; the multipliers g are predicted between time steps.
Matrix M is also needed for normal modes calculation, See Sect. 14.9.2.

11.3.3 Constraint forces by Lagrange multipliers

The conjugate gradient method is used to calculate Lagrange multipliers and then the constraint
forces. The algorithm is described in constrd.c. The method is controlled by one parameter,
eps, which is the maximum relative (dimensionless) error. If eps is too high, you will get into
troubles with correcting constraints (see Sect. 11.1.1).

Another guide to optimization is the number of iterations: nit, or Lagr mult it, (the number
of iterations of the conjugate gradient method needed to calculate the Lagrange multipliers)
should not exceed (too much) the number of bonds; if it does, eps is unnecessarily small (or
there is something seriously wrong like bad cutoffs etc.).

11.3.4 Correcting constraints

Integration and cutoff errors and inaccurately calculated Lagrange multipliers cause errors in
constraints. It is necessary to correct these errors, otherwise they cumulate and the algorithm
explodes. The constraint errors are—and must be—corrected every integration step.

The correction to be added to particle positions is

∆
→
r i =

∑
a

εa
1

mi

∂ca
∂
→
r i

where εa solves equation
Mε+ E = 0, Ea = ca

Similarly, the velocities are corrected by adding the following velocity components perpendicular
to the constraints

∆
→
v i =

∑
a

νa
1

mi

∂ca
∂
→
r i

4Optionally, Cholesky preconditioning can be turned on by #define PRECOND, with a marginal impact on
efficiency

11: Algorithms and parameters [Contents] – [Index] 150

where νa solves equation

Mν + V = 0, Va =
∑
i

→̇
r i ·

∂ca
∂
→
r i

Two methods are available to correct the constraints.

Scorrect is a SHAKE-like iteration method. The inverse-mass weighting ensures that the total
momentum is conserved (within machine precision). This method is selected by unset bit 1
in option -c (was -c3 prior V2.4a). It is controlled by two parameters, epsc and omegac.
epsc is the maximum relative error of the constraints and omegac is the relaxation parameter:
omegac=1 are pure SHAKE-like iterations. Usually, small overrelaxation (omegac=1.1-1.2)
is more efficient. The number of iterations is recorded and printed (separately for the 1st
molecule and average for the rest). Scorrect is more efficient than the following method
for simple constraints provided that good values of the parameters are set. It may become
inefficient for molecules with many small cycles and/or bond angle constraints.

conjgrad uses the same conjugate gradient method and the same (inverse-mass weighted)
matrix that has been used for calculating Lagrange multipliers for the constraint dynamics,
hence, the total momentum is conserved as above. The method is selected by bit 1 in option -c

(-c4 prior V2.4a). It works fairly well for both simple and complex constraints. It is controlled
by one parameter epsc and it seems that the value epsc=0.05 (default) is OK if the order of
multiplier predictor is the same as of the method (see options -m and -p). However, it requires
more memory than Scorrect above.

For as complex systems as proteins a pessimistic choice of eps, epsc, or omegac affects the
efficiency only slightly because calculating the force field is most time consuming anyway. See
the discussion on cerr above.

Note that for conjgrad the conjugate gradient method in the Lagrange formalism is called
twice (once for length constraints and once for velocity constraints).

For Scorrect, the number of iterations depends on omegac. If it is too high, conjgrad should
be used instead of Scorrect.

Summary:

• eps about 1e-5..1e-6 should work (for -m4 and -p4)

• use Scorrect, epsc=eps and omegac=1.2 for simple molecules

• use conjgrad and epsc=0.05 for complex molecules (omegac is irrelevant)

• conjgrad requires more memory than Scorrect. If Scorrect is to be used also for
complex molecules, it is recommended to adjust omegac to get the minimum value of the
number of iterations. (This is automated since V2.4a)

11.3.5 Dependants

A dependant is a massless site which is calculated from other sites (parents). The configuration
of the parents must be rigid (constrained). Forces on dependants are distributed back to parents
before constraint dynamics.

There are two types of dependants:

11: Algorithms and parameters [Contents] – [Index] 151

M “Middle” dependants are a linear combination of the parents. The forces are distributed
back using the same coefficients. Example: site M in the TIP4P water model.

L (New in cook V2.5f): “Lone” dependants are based on three atoms, but they lie out of
the plane defined by these three atoms. Example: site L in ST2 or NE6 water models.

There may be several mechanically separated dependants (of both types) in one molecule.

Data for the dependant mechanics are collected in table “dependant” in the ble-file. The
“Middle” dependants are calculated by blend. For water models, utility waterdep is available.

Lone dependant mechanics: Rigid reference

A position of this “Lone”-type dependant is derived from a rigid triangle (for water HOH). The
lenghts and angles must be constrained! The dependant may be in any relative position to this
fixed triangle.

Let us denote the positions of the three parents as
→
ra, a = 1, 2, 3. The calculations need a local

orthonormal coordinate system (x̂, ŷ, ẑ), where vectors x̂, ŷ are in the plane of the parents and
ẑ is perpendicular:

x̂ =
∑
a

xa
→
ra (

∑
a

xa = 0),

ŷ =
∑
a

ya
→
ra (

∑
a

ya = 0),

ẑ = x̂× ŷ.

Constants xa, ya are defined in the ble-file, table “dependants”. Particularly for water (models
POL4D, NE6) it holds (as calculated by waterdep):

xL = −1/c, xH1 = 0.5/c, xH2 = 0.5/c for c = |OH| cos(HOH/2)

yL = 0, xH1 = 0.5/c, xH2 = −0.5/c for c = |OH| sin(HOH/2)

The dependant position is

→
r =

∑
a

wa
→
ra + wz ẑ (

∑
a

wa = 1) (11.7)

where again wa and wz are defined in the table “dependants”. Particularly for water it holds:

wz = ±|LO| sin(LOL/2)

wH1,2 =
−|LO| cos(LOL/2)

2|OH| cos(HOH/2)
wL = 1− 2wH1,2

To distribute force f on the dependant back to the parents, we first calculate its components
in the local coordinate system,

fx = x̂ ·
→

f, fy = ŷ ·
→

f, fz = ẑ ·
→

f.

11: Algorithms and parameters [Contents] – [Index] 152

The force on parent a, a = 1, 2, 3, is

→

fa = wa
→

f + (tx,afx + ty,afy)ẑ.

The ‘torque constants’ tx,a, ty,a are again defined in the table “dependants”. For water:

tx,L =
±|LO| sin(LOL/2)

|OH| cos(HOH/2)
, tx,H1,2 = −tx,L/2

ty,L = 0, ty,H1 =
±|LO| sin(LOL/2)

2|OH| sin(HOH/2)
, ty,H2 =

∓|LO| sin(LOL/2)

2|OH| sin(HOH/2)

Pressure tensor calculation The force-calculating module also calculates the virial of
force and optionally also components of the pressure tensor, see Sect. 15.6. For the “Lone”
dependants, a correction must be made because of force redistribution,

V∆
↔

P =
∑
a

→

fa(
→
ra −

→
r) =

∑
a

(tx,afx + ty,afy)ẑ(
→
ra −

→
r)− wz

→

f ẑ

where we used (11.7) to simplify the expression. The virial of force correction is the trace,

V Tr∆
↔

P =
∑
a

(tx,afx + ty,afy)ẑ · (
→
ra −

→
r)− wzfz = −wzfz

because the torque part (in the sum) has a zero trace.

Note that the pressure tensor corrections are zero for the “Middle” dependants.

Rowlinson-type dependant mechanics: Flexible reference

This site is perpendicular to a (generally flexible) tringle at a point. The example is a
“Rowlinson” site L in water models: LO is perpendicular to the HOH plane and at a fixed
distance. The triangle may be flexible.

Because of flexibility, the weights cannot be pre-calculated; an example for water follows. To
calculate the dependant position, we must calculate a vector perpendicular to the molecule
plane

→

l =
→

h1 ×
→

h2 (
→

hi =
→
rHi
− →rO, i = 1, 2)

Then
→
rL1,2 = rO ± |LO|

→

l /|l|.
To distribute forces, we calculate the torque (moment of force):

→

M =
→

l ×
→

fL

We have to decompose
→

M to components perpendicular to vectors
→

h1,2; it is easier to decompose

a perpendicular (but sign) vector to vectors
→

h1,2. Thus we calculate a perpendicular vector
proportional to M lying in the HOH plane:

→

M
p

=
→

l ×
→

M

The decomposition should be
→

M
p

= a1

→

h1 + a2

→

h2

11: Algorithms and parameters [Contents] – [Index] 153

so that

a1 =
(
→

M
p

·
→

h1)h2
2 − (

→

M
p

·
→

h2)(
→

h1 ·
→

h2)]

h2
1h

2
2 − (

→

h1 ·
→

h2)2

a2 =
(
→

M
p

·
→

h2)h2
1 − (

→

M
p

·
→

h1)(
→

h1 ·
→

h2)]

h2
1h

2
2 − (

→

h1 ·
→

h2)2

Then the equivalent forces to both hydrogens, Hi, i = 1, 2, are ai
→

l /l2, i = 1, 2, to Hi (and

subtract both from the oxygen). The total force on oxygen is thus
→

fO =
→

fL − (a1 + a2)
→

l /l2.

11.4 Site-site potential cutoff

Let u(r) be an interatomic potential at atom-atom separation r. This non-bonded potential
normally includes repulsive and attractive (London) forces, but not Coulomb interaction of
(partial or full) charges, which are treated elsewhere, see Sect. 24 or 15.3.

Let u(r) be the interatomic potential at atom-atom separation r. In the simulation, we use a
truncated and smoothed (but not shifted) potential uMD(r),

u(r) = uMD(r) + ∆u(r),

where the correction ∆u(r) = 0 for r < C1 and C1 is the inner cutoff. Particularly, in the
MACSIMUS implementation (see Sect. 11.4)

uMD(r) =

u(r) for r < C1

A(r2 − C2
2)2 for C1 < r < C2

0 for C2 < r

(11.8)

where C2 = LJcutoff is the real cutoff (so that uMD(r) = 0 for r > C2). Constants A and C1

are calculated from the potential and the cutoff C2 so that function uMD and its derivative are
continuous, see Fig. 11.1.

The most typical site-site potential is that of Lennard-Jones,

uLJ(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
= ε

[
(RvdW/r)

12 − 2(RvdW/r)
6
]
,

see Sect. 3.1. If C2 � σ (for Lennard-Jones or any potential with van der Waals r−6 limiting
behavior) it holdsC1 ≈ 0.775 ∗ C2.

The homogeneous cutoff corrections are calculated by numerical integration (hence, any
potential can be easily implemented) using the assumption that g(r)=1 for r>C1 and are
included in the final values of energy and pressure (not for FREEBC). Note that the correction
in energy is En.corr/V and in pressure En.corr/V 2, where En.corr is a single correction value
calculated.

About 3 LJ sigma for LJcutoff seems to be sufficient for liquid phase (but not for fluids close
to the critical point!). This is the default: LJcutoff=-3 in input data means that the real
cutoff for each pair of interacting sites will be just 3 times their LJ sigma. For small systems
cutoff=LJcutoff=L/2 is OK. (L is the smallest box size).

11: Algorithms and parameters [Contents] – [Index] 154

5 6 7 8 9

r/Ang

-40

-30

-20

-10

0
p
o
te

n
ti
a
l/
(K

 k
B
)

C2

C1

∆u(r)

uMD(r)

u(r)

5 6 7 8 9

r/Ang

-40

-30

-20

-10

0

10

fo
rc

e
/(

K
 k

B
/A

n
g
)

C2

C1

∆f(r)

fMD(r)

f(r)

Figure 11.1: The enlarged tail of the original and truncated potential (for the Lennard-Jones
argon and C2 = 7 Å)

11.5 The timestep

The errors (total energy drift and fluctuation, with caution also cerr’s) are proportional to
higher powers of the timestep h (with the exception of the Verlet drift, see Sect. 11.1.2). If
they do not scale with these higher powers once h is changed it means that other errors (e.g.,
r-space cutoff errors) spoil the energy and constraint conservation.

For Ewald, the r-space cutoff errors (see Sect. 11.2) should be comparable with the integration
errors. Check it: an increase of el.epsr (or explicitly decrease cutoff or increase el.alpha)
or an increase of h should worsen the conservation of energy while a decrease of el.epsr or
decrease of h should not significantly improve it.

The optimum timestep size generally depends on the complexity of molecules and the
temperature and pressure. Good h in normal conditions is around 0.002 ps if there are no
explicit hydrogens but h=0.001 if there are hydrogens; the latter pessimistic value is the default.
Vibrating bonds (see option -u), especially for hydrogens, require h=0.0005.

11.6 Functions for r-space Ewald sums

The following functions are needed to calculate the r-space part of Ewald sums:

eru(x) = αe(α
√
x)

erd(x) = −α3e′(α
√
x)/(α

√
x)

where

e(y) =
erfc(y)

y

e′(y) =
de(y)

dy

erfc(y) =
2√
π

∫ ∞
y

exp(−t2)dt

11: Algorithms and parameters [Contents] – [Index] 155

They are approximated by hyperbolic splines (functions A + B/(x + C), no jumps in the
derivative). These simple functions are extremely fast to evaluate, however, large tables are
required to reach a good accuracy. The accuracy is controlled by el.grid which means that
unity in the argument (= squared distance) is divided into el.grid subintervals. Max error
occurs at the minimum distance el.minqq (the value of this variable affects the reported
accuracy only, you can call eru and erd for any distance from 0 to cutoff2). By default,
cook has el.minqq=1.0. Since this minimum distance occurs normally for constrained bonds,
the error in eru/erd in el.minqq is constant too and cannot affect energy conservation. A
minimum intermolecular distance is longer, errors lower but more relevant.

If requested so by #define COULOMB -2 (former EXACTERFC) in simopt.h, cook uses a more
accurate erfc formula for 1–2 and 1–3 distances (and auxiliary charges in POLAR version) so
that larger el.minqq applies. Also POLAR implies COULOMB=-2.

Low el.grid may include some systematic errors into calculations because of large errors for
short distances (note that the r-space terms must be evaluated also for bonded atoms). High
el.grid may slow down the calculations (consider the cache memory!). The default 256 should
be OK in most cases. In the 16-bit Turbo C/DOS version, lower values must be used because
otherwise the table exceeds the 64KB limit.

For ambient TIP4P water, a typical error with the default el.grid=256 caused by omitting
COULOMB=-2 (e.g., in LINKCELL) is 10kPa in pressure and 1J/mol in energy per particle. These
errors are constant (for the same trajectory). A trajectory is not affected because all imprecise
forces are constrained and are removed.

Chapter 12

NVT and NPT ensembles

12.1 Kinetic temperature

The kinetic temperature is

Tkin =
Ekin
1
2
knf

where nf is the number of the degrees of freedom,

nf = 3N − nbonds − ncons,

where nbonds is the number of bonds and similar mechanical constraints (as keeping selected
atoms in place). ncons is the number of conserved degrees of freedom (as momenta in periodic
b.c.), optionally including energy conservation.

12.1.1 Should we subtract 1 from nf for energy conservation?

In the Nosé–Hoover thermostat (and combined methods), there is one additional degree of
freedom (nf+=1) and one Hamiltonian conservation (ncons+=1) which cancel out; then, it is
proven[8, 9] that the system is canonical. There is a question whether to include consistently
the energy conservation also in the NVE ensemble (and similarly the Berendsen thermostat)
into the number of conserved quantities, ncons. The NVE and Berendsen results are subject to
O(1/N) errors anyway so that the question actually is, which option is more accurate? But
this question is not well formulated either: Should we prefer the fastest convergence to the
thermodynamic limit, or the best match with NVT (with the same N)?

Based on simulations with N = 32, see table 12.1, we conclude for NVE that:

• For liquid and solid argon, nf = 3N − 3 (energy conservation not included in ncons) is
better for both kinetic temperature and pressure.

• For dense gas, nf = 3N − 3 is slightly better (both nf = 3N − 4 and nf = 3N − 3 are
likely the same for ideal gas), but for pressure nf = 3N − 4 is better.

Similarly, the averaged temperature for Berensen differs from the thermostat temperature, so
that it is not clear which temperature should be used for comparison (cf. the last lines of Table
12.1. Anyway, we observe that

156

12: NVT and NPT ensembles [Contents] – [Index] 157

Table 12.1: Argon simulations; unless given otherwise, N = 32, h = 4 fs, cutoff = LJcutoff =
7.85 Å, VERLET = 3. Pressure correction (corr&4) is used, nf = 3N − 3 unless marked∗.
cookewps is used because cutoff > (half box size). Potential and internal energies are per atom.

method parms Tkin/K Epot/ J mol−1 U/ J mol−1 P/kPa

gas T = 150 K, ρ = 500 kg m−3

Nose as below, N = 256 149.994(9) −1872.46(15) −9.08(21) 7500(4)

Nose T = 150 K, τ = 0.2 ps 149.981(11) −1777.87(13) 34.20(21) 7307(6)

NVE∗ U = Nose 150.914(8) −1769.53(9) 34.21(0) 7352(5)

NVE U = Nose 149.304(8) −1769.67(10) 34.21(0) 7175(5)

Ber τ = 1 ps 149.770(4) −1772.41(12) 37.10(11) 7247(5)

Ber∗ τ = 10 ps 149.653(4) −1774.73(13) 13.93(12) 7114(5)

Ber τ = 10 ps 149.662(4) −1769.28(11) 38.94(10) 7237(5)

Ber Gear m = 4 149.661(3) −1769.29(11) 38.91(12) 7244(4)

Nose T = TBer 149.654(12) −1779.37(12) 28.75(21) 7248(6)

liquid T = 100 K, ρ = 1350 kg m−3

Nose as below, N = 256 99.983(9) −4905.10(5) −3663.02(12) 34213(12)

Nose T = 100 K, τ = 0.2 ps 99.985(11) −4926.79(8) −3718.78(14) 27251(15)

NVE∗ U = Nose 100.984(6) −4925.70(8) −3718.74(0) 27844(15)

NVE U = Nose 99.903(5) −4925.76(6) −3718.74(0) 27531(11)

Ber τ = 1 ps 99.606(5) −4928.39(7) −3724.96(5) 26914(14)

Ber∗ τ = 10 ps 99.570(5) −4937.44(9) −3747.38(6) 25090(18)

Ber τ = 10 ps 99.568(5) −4928.52(10) −3725.55(7) 26878(19)

Ber Gear m = 4 99.570(5) −4928.53(8) −3725.53(6) 26880(16)

Nose T = TBer 99.576(12) −4930.53(8) −3727.46(17) 26396(17)

fcc crystal T = 50 K, ρ = 1851.27 kg m−3

Nose as below, N = 256 50.000(5) −6992.84(4) −6371.69(3) 229780(6)

Nose T = 50 K, τ = 0.2 ps 50.003(5) −7010.80(5) −6406.66(2) 225278(10)

NVE∗ U = Nose 50.526(4) −7010.52(5) −6406.64(0) 225565(10)

NVE U = Nose 49.993(4) −7010.66(5) −6406.64(0) 225327(10)

Ber τ = 1 ps 49.769(4) −7013.14(5) −6411.83(1) 224650(11)

Ber∗ τ = 10 ps 49.746(5) −7019.29(6) −6424.73(1) 223167(11)

Ber τ = 10 ps 49.755(3) −7013.45(4) −6412.31(1) 224566(8)

Ber Gear m = 4 49.745(4) −7013.36(5) −6412.34(1) 224585(10)

Nose T = TBer 49.763(4) −7013.57(4) −6412.34(2) 224525(8)

∗ nf = 3N − 4 (additional 1 degree of freedom “for energy conservation” deducted from
“standard” nf = 3N − 3 in periodic boundary conditions.)

12: NVT and NPT ensembles [Contents] – [Index] 158

• nf = 3N − 3 is better except for gas potential energy where nf = 3N − 4 wins.

Therefore, from cook* version V3.2, the default is not to deduct 1 for energy conservation. The
old option is available by corr&64 flag.

12.2 Constant temperature simulations

The thermostat is turned on by selecting variable thermostat. The value of tau.T is then the
typical correlation time to keep the temperature constant, irrespective of the method.

There are three kinds of thermostats available, the friction (Berendsen) thermostats, the Nosé–
Hoover canonical ensemble, and the Maxwell–Boltzmann thermostats.

Special effects are obtained by decoupled inter- and intramolecular friction thermostats, selected
by non-zero thermostat>10.

12.2.1 The Berendsen (friction) thermostat

The friction method, attributed to Berendsen, is based on the idea of velocity rescaling. In its
crudest version the velocities are rescaled in every step so that the desired kinetic temperature is
recovered or gradually approached. The differential form is equivalent to differential equations
with friction term:

→̈
r i =

→

f i
mi

− 1

2τT

→̇
r i ln

Tkin

T
,

where

Tkin =
1

nfkT

∑
i

miṙ
2
i

and T is the desired temperature and τT the typical time (it equals the correlation time for
ideal gas or when the heat capacity is given by that of ideal gas with nf degrees of freedom).

For tau.T=h the crude rescaling method is approximately recovered. In order not to spoil
trajectories, tau.T should be comparable to the typical correlation time in the system and
much longer than h, at least 1 ps for common biochemical systems.

The above formulation can be used also for constraint dynamics.

Advantages of the friction thermostat:

• Exponential convergence, for reasonable choices of tau.T usually fast.

• Simplicity, suitable also for Verlet/SHAKE

Disadvantages:

• Flying icecube problem – artifacts for rotating molecules not sufficiently coupled to the
rest of the system. In this case, the rotational degrees of freedom are systematically
hotter. Thus, problems are expected for fluids of small and weakly interacting molecules
(hydrocarbons) while large molecules and with care (tau.T>=1) also water is OK. Note:
this affects also one molecule in free boundary conditions, however, the system sets the
angular momentum to zero. These artifacts can be observed via variables Ttr and Tin,

12: NVT and NPT ensembles [Contents] – [Index] 159

which should be the same if the system is well equipartitioned. (They may both differ
from the kinetic temperature Tkin by not more than 1/nf , where nf = number of degrees
of freedom).

• Does not generate the canonical ensemble. If tau.T is long enough, then some distribution
with T=<Tkin> is obtained, the fluctuations, however, differ from the canonical values
(heat capacity cannot be obtained from fluctuations of internal energy). If tau.T is not
long enough, the results are undefined.

• The energy is no longer constant – this strong test that our simulation is OK is lost.

I would like to stress that the above method is something different than the method used to
correct energy drift introduced by the integrator (by using tau.E) because errors of h^(order
of the method) are corrected. The velocities are rescaled by values that are of the order of the
integration errors that occur anyway so that no additional errors are introduced. The energy
conservation criterion is replaced by the difference between E and measured total energy but
it is not lost.

The friction thermostat is selected by thermostat=1 or thermostat="friction" or
thermostat="Berendsen".

12.2.2 Decoupled translational and intramolecular thermostats

The translational thermostat affects only motions of molecular centers-of-mass, the intramolec-
ular thermostat affects only relative motions with respect to the center of mass (incl. rotations).

The decoupled thermostats should be used for smaller compact molecules with intramolecular
motions weakly coupled with the rest of the system. Be aware that the improvement is to some
extent only optical because the coupling remains week. You will get the correct average kinetic
temperature, but the distribution of intramolecular kinetic energy may be incorrect.

12.2.3 The Nosé–Hoover canonical ensemble

The second approach by Nose [8, 35] adds one additional degree of freedom to the system is
such sophisticated way that (provided that the system is ergodic) the true canonical ensemble
is obtained.

The equations of motion follow. This form is directly used in the program (only constraint
dynamics has been added). It was obtained from [8] by using his ‘time transformation’ and
ξ = ln s instead of s, [9, 35].

→̈
r i =

→

f i
mi

− →̇r iξ̇ (12.1)

ξ̈ =
1

τ 2
T

(
Tkin

T
− 1

)
(12.2)

Here, ξ is the additional degree of freedom. Note that f = 3N − 3 for N atoms in periodic
boundary conditions: there are 3N + 1 degrees of freedom (ξ included) and 4 constraints, 3 for
conserved total momentum and 1 for the (generalized) Hamiltonian; for constraint dynamics
the number of constraints has to be subtracted.

12: NVT and NPT ensembles [Contents] – [Index] 160

If fi/mi is omitted and the equations are linearized, we get a harmonic oscillator of the form
(schematically)

v̈ = − 2

τ 2
(v − v0)

I wrote “If fi/mi is omitted” and you may ask whether this is a good approximation.
Unfortunately, it is—note that absolute and linear terms in the forces cannot change the
oscillatory behavior and small varying positive/negative contributions behave like a noise. The
more complex and denser liquid, the higher coupling between the auxiliary degree of freedom
s and the system is provided, and the faster convergence occurs.

The Nose method is unsuitable for fluids at low densities and for soft potentials like exp-6.

The typical convergence profile of the kinetic temperature in the Nose simulation is:

*

* * ** ** ** ** ** *

* * * ** * * ** *** ** ** ** * *

* * * * * ** * *** ** ** **

* * * * *** ** **

*** *

The typical length of one cycle is tau.T. The time to get a good canonical distribution is longer
and depends on tau.T in a way which is not straightforward – the convergence profile should
be observed (using 20.1).

The convergence problems occur also when starting from unequilibrated state. The initial
oscillations of Tkin may be as high as 1:10 and it takes a long time to damp them. It is
recommended to use another thermostat first.

The Nose thermostat can be also used for calculating one molecule in gas phase using the
cookfree version. (The molecule must not be too simple to guarantee ergodicity).

The Nosé-Hoover thermostat is selected by thermostat=2 or thermostat="Nose". The
implementation is straightforward for the Gear integrator. With the Verlet integrator, there
is a problem that the standard Verlet method with SHAKE does not allow velocities in the
right-hand side. MACSIMUS solves this problem by using predicted velocities (of both particles
and ξ̇)1 The predictor length is selected by option -pC; the default is C=2, which gives time
reversibility of O(h7). See Sect. 26.

12.2.4 Maxwell–Boltzmann thermostat

The third method, suitable for systems without constraints (see option -u), is to replace once
a while the velocities by new ones drawn from the Maxwell–Boltzmann distribution. It can be
done in two ways: periodically (in time intervals given by tau.T, all velocities are replaced:
thermostat="Maxwell"), or to update randomly chosen atoms (thermostat="Andersen").
Advantages

• Fast convergence.

1Other methods include iterations to obtain self-consisteny in velocities and RATTLE, methods based on
the Trotter decompositions[35].

12: NVT and NPT ensembles [Contents] – [Index] 161

• True canonical ensemble

Disadvantages:

• Problematic for constraints and Gear integration

• Spoils time development of trajectories

• The Andersen thermostat erases any energy conservation information

This thermostat is fully and correctly implemented for vibrating bonds and Verlet/SHAKE only.
For weak coupling, (long tau.T), it can be used, with some loss of accuracy, for constrained
bonds or Gear integration. It works worse for constrained bonds and Gear integration
(Lagrangian dynamics).

The same effect as the the Maxwell thermostat, but executed just onece, can be obtained by
specifying initvel.

12.2.5 Langevin thermostat

Random force and friction are added to the equations of motion,

ẍ = − ẋ

τT
+

√
2kBT

mτT
X

where X is uncorrelated Gaussian random noise, 〈X(t)X(t′)〉 = δ(t − t′), x stands for one
coordinate (of atom or center of mass), and m is the atom or molecule mass. The time constant
τT = tau.T in the data (in ps). The random force is implemented (with respect to time step
h) as normalized Gaussian random number divided by

√
h.

12.2.6 Which thermostat

For easy systems there is no difference between thermostats. Problems start with systems with
fast and slow motions not coupled together: e.g., the full-atom model of methane. When the
C-H potentials are harmonic springs, then the energy transfer between the fast C-H vibrations
and other degrees of freedom is very slow (and the integration errors accumulate to violate
the thermal equilibrium between different degrees of freedom). Then, the Maxwell–Boltzmann
thermostat is recommended because it samples all degrees of freedom. In less problematic
cases (e.g., constrained bonds but not angles) the decoupled thermostats may be a choice. In
all these cases the Nose and simple friction thermostats will be inefficient. Sometimes it may
help to start with the Maxwell–Boltzmann thermostat for fast equilibration and continue by,
e.g., Nose or friction (the latter with a long tau.T to avoid its artifacts). In any case, it is
strongly recommended to monitor the ‘internal’ and ‘external’ (translational) temperatures.

12.3 Constant pressure simulations

Nonzero value of tau.P allows for a variable box size. The barostat pressure to keep is given
by variable P. See also rescale and bulkmodulus.

12: NVT and NPT ensembles [Contents] – [Index] 162

12.3.1 Friction (Berendsen) barostats

Unless thermostat="NPT", the barostat is a simple Berendsen-style one. Pressure is calculated
onece every cycle (noint steps) and either the configuration is rescaled once after every cycle
(for tau.P<0) or after every step by a proportionally smaller value (for tau.P>0).

Unless bulkmodulus is set, the friction term is derived using ideal-gas compressibility (more
exactly with the number of degrees of freedom instead of the number of particles). In dense
systems the compressibility is several times smaller (16 times for water, roughly 100 times
for ambient-temperature solids), therefore the values of tau.P must be increased in the same
proportion; tau.P=10 to 1000 is a useful range. Alternatively, variable bulkmodulus can be set;
tau.P is then a realistic relaxation time. This (realistic) tau.P should be several times longer
than tau.T anyway. Setting bulkmodulus is recommended for solids at very low temperatures
where the ideal gas approximation is very bad indeed; the bulk modulus of solids is of the order
of 1e10 Pa.

12.3.2 MTK thermostat and barostat

The Martyna-Tobias-Klein (MTK) barostat [34], providing the true NPT ensemble corrected
for momentum conservation in MD, is selected by thermostat="NPT". The pressure tensor
(virial pressure in the isotropic case) is needed and calculated at every step.

The periodic simulation box with all three box sides fluctuating independently is described by

tensor
↔

λ = ln(
↔

L) (by components). We consider only diagonal components, i.e., a rectangular
box, however, we keep the tensor notation for consistency. The code is in constrd.c, function
Shake(), in parts/files indicated below.

[
→̇
r i =

→
v i +

↔̇

λ · →r i] (12.3)
↔

L = exp(
↔

λ), by components (12.4)

V = LxLyLz (12.5)

forces()[, SCF] fi = − ∂U
∂
→
r i

(12.6)

trvpscale.c
↔
v f =

ξ̇ +
Tr
↔̇

λ

f

↔I +
↔̇

λ & scaling predictor (12.7)

verlet.c
→̇
v i =

→

f i
mi

− ↔v f ·
→
v i & Verlet (12.8)

constrd.c SHAKE with predicted scaling of bond lengths (12.9)

shakev#.c
↔

Ekin =
1

2

∑
i

mi
→
v i
→
v i, Ekin = Tr(

↔

Ekin) (12.10)

shakev#.c
↔

P cfg =
1

V

(
2
↔

Ekin +
∑
i

→
r i
→

f i + · · ·
)
− Pcorr

↔

I (12.11)

thermo.c ξ̈ =
2Ekin +

∑
αMP,αλ̇

2
αα − (f + f+)kBT

MT

(12.12)

thermo.c
↔̈

λ =
1

MP

[
V (

↔

P cfg − P
↔

I) +
2Ekin

f

↔

I

]
− ξ̇

↔̇

λ (12.13)

thermo.c Verlet for ξ, λ & box rescaling (12.14)

12: NVT and NPT ensembles [Contents] – [Index] 163

where f+ is the number of independently fluctuating box sides and
↔

I is the unit tensor. Note

also the different definitions of Ekin = Tr(
↔

Ekin) and Pcfg = Tr(
↔

P cfg)/3.

The ellipsis in (12.11) stands for other terms (constraint forces, polarizable terms, etc.; see
Sect. 15.6). The cutoff correction is assumed to be isotropic (see Sect. 11.4):

Pcorr = −∂U
∂V

=
En.corr

V 2

The masses of the extended degrees of freedom are related to the thermostat and barostat
correlation times (inverse circular frequencies in the ideal gas approximation) via

MT = fkBTτ
2
T (12.15)

MP = fP (f + 3)kBTτ
2
P (12.16)

where fP is the number of fluctuating (not constant) box sides. (Note the difference between
fP and f+. E.g., if x and y fluctuate synchronously and z is independent, then fP = 3 and
f+ = 2.)

MACSIMUS uses the real coordinates throughout, consequently the Verlet-based implementa-

tion of Eq. (12.3) transforms into scaling by
↔

L(t + h)/
↔

L(t) after a step. Velocities
→
v i in (12.3)

are thus “with respect to the background”, whereas the “real” velocities
→̇
r i are in fact never

used.2

These equations do contain a correction to the conserved total momentum [34] (term Tr
↔̇

λ/f
in (12.8) or 3λ̇/f in (12.22)) so that Ekin should not be rescaled by (f + 3)/f , cf. (15.5).3 A
warning is printed on incorrect use.

The MACSIMUS implementation uses a time-reversible velocity predictor (see Sect. 26). This
is not sufficient if there are constraints treated by SHAKE because the scaling (box size) is
needed to know the bond lengths at time t + h. A sufficiently accurate workaround predicts
the value of λ(t+ h) as

↔

λ(t+ h) =
↔

λ(t) + h
↔̇

λ(t+ h/2)

with a second-order predictor for the difference

↔̇

λpred(t+ h/2) = 2
↔̇

λ(t− h/2)−
↔̇

λ(t− 3h/2).

The Verlet-based values of
→
r ij to be constrained are then multiplied4 by the predicted

anisotropic scaling exp[h
↔̇

λpred(t+h/2)]. After
↔

λ(t+h) is calculated by Verlet, the configuration

is rescaled by exp[
↔

λ(t + h) −
↔

λ(t)]. The constraints are subject to error on the order of
h2λ̈(t) ∝ (h/τP)2.

2A “cleaner” solution is to work with the scaled coordinates. Then instead of (12.17) and (12.22) we have

→̈
ρi =

→

f i
Lmi

−
[
ξ̇ +

(
2 +

3

f

)
λ̇

]
→̇
ρi

with
→
r i = L

→
ρ and

→
vi = L

→̇
ρ.

3In the case of this correction added anyway, 3/f in (12.22) would be replaced by 6/f , so in fact the correction
would be applied twice.

4Actually
→
r ij inside the SHAKE algorithm are rescaled by exp[h

↔̇

λ(t+ h/2)]

12: NVT and NPT ensembles [Contents] – [Index] 164

General independent scaling of all box sides is selected by rescale="XYZ", scaling of x and y
(keeping Lz constant) by rescale="XY", etc.

If a synchronous scaling, i.e., constant ratio λxx : λyy or λxx : λyy : λzz, is requested (by
rescale="XX" or rescale="XXX"), the value of f+ changes to 2 or 1, and the second derivative
in (12.14) is modified by

λ̈xx = λ̈yy :=
λ̈xx + λ̈yy

2
or λ̈xx = λ̈yy = λ̈zz :=

λ̈xx + λ̈yy + λ̈zz
3

=
Tr
↔̈

λ

3
,

respectively.

The conserved total energy is

Etot = Ekin +
MT

2
ξ̇2 +

MP

2
(
↔̇

λ)2 + U + PV + (f + f+)kBTξ

It can be easily proven by taking Ėtot. Symbol (
↔̇

λ)2 = λ̇2
xx + λ̇2

yy + λ̇2
zz.

For NPT in a cubic box there is simply L = exp(λ), λ = Tr
↔

λ. This is selected by
rescale="xyz". This option differs from rescale="XXX" because the isotropic pressure (not
pressure tensor) is used. This is faster (if PRESSURETENSOR=3 is not configured), however,
for cutoff electrostatic less accurate. Real positions are

→
r i = L

→
ρ, velocities with respect to the

“background” are
→
v i = L

→̇
ρ (i.e., not dragged with if the whole box shrinks/swells), (not useful)

“real” velocities including the “drag” caused by fluctuating box are
→̇
r i. Number of degrees of

freedom = f ; for simple fluid f = 3N − 3 (minus 3 for periodic b.c.).

For isotropic fluctuations we have (in the algorithm order):

[
→̇
r i =

→
v i + λ̇

→
r i] (12.17)

L = exp(λ) (12.18)

V = L3 (12.19)

forces()[, SCF] fi = − ∂U
∂
→
r i

(12.20)

trvpscale.c vf = ξ̇ +

(
1 +

3

f

)
λ̇ & scaling predictor (12.21)

verlet.c
→̇
v i =

→

f i
mi

− vf
→
v i & Verlet (12.22)

constrd.c SHAKE with predicted scaling of bond lengths (12.23)

shakev#.c Ekin =
1

2

∑
i

mi
→
v

2
i (12.24)

shakev#.c Pcfg =
1

3V

(
2Ekin +

∑
i

→
r i ·

→

f i + · · ·
)
− Pcorr (12.25)

thermo.c ξ̈ =
2Ekin + 3MP λ̇

2 − (f + 1)kBT

MT

(12.26)

thermo.c λ̈ =
1

MP

[
V (Pcfg − P) +

2Ekin

f

]
− ξ̇λ̇ (12.27)

thermo.c Verlet for ξ, λ & box rescaling (12.28)

12: NVT and NPT ensembles [Contents] – [Index] 165

12.3.3 Simulation along given V (t) time dependence

Simple box rescaling at every step according to defined function V (t) leads to poor energy
conservation. The following algorithm uses ideas of the extended Lagrangian barostat of
Andersen:

forces()[, SCF] fi = − ∂U
∂
→
r i

(12.29)

trvpscale.c
↔
v f =

1

h
ln

↔L(t+ h/2)
↔

L(t− h/2)

 & scaling predictor (12.30)

verlet.c
→̇
v i =

→

f i
mi

− ↔v f
→
v i & Verlet (12.31)

constrd.c SHAKE with predicted scaling of bond lengths (12.32)

shakev#.c Ekin =
1

2

∑
i

mi
→
v

2
i (12.33)

shakev#.c Pcfg =
1

3V

(
2Ekin +

∑
i

→
r i ·

→

f i + · · ·
)
− Pcorr (12.34)

thermo.c box rescaling (12.35)

This algorithm is requested by negative tau.rho:

tau.rho=-1 for a cubic box (with rescale="xyz"). In this case,
↔

L and
↔
v f become scalars.

Text file simname.box should contain lines of pairs {t, ρ}, where t is time in [ps] and ρ
is the density in kg m−3. The file must be ordered by t. Note that init>=2 sets t := 0,
otherwise the time continues.

tau.rho=-3 for controlling all three box sides separately (with rescale="XYZ"). Similarly,
text file simname.box should contain lines of {t, Lx, Ly, Lz}, where box sides are in Å.
(NOT TESTED).

The interaction with thermostats is unknown, Berendsen will likely work, for models without
constraints also Andersen and Langevin. The code for Nose should be checked.

12.3.4 Adjusting force field parameter to pressure

Instead of scaling the box, it is possible to change a selected “atom size” (size-like parameter
of the force field, as the Lennard-Jones σ, or a sum of Rmin radii, or similar) and to rescale it
in the Berendsen (friction) way so that pressure reaches the predefined value (P).

To do this, there must be a line in the ble-file in the nbfixes table for given pair of site types.
In the nbfixes table, the first two columns are the respective sites coded as symbolic names
(e.g., KR AR), the third parameter is an energy-like parameter (e.g., Lennard-Jones ε), and the
fourth column is the size-like parameter (e.g., Lennard-Jones σ), to be scaled. In the cook input
data, the respective sites are tau.i and tau.j, coded as numbers. These numbers correspond
to the line of the table of non-bonded interaction (e.g., Lennard-Jones or Buckingham) in the
C-style (1st line has index of 0, the last line nsites-1; the i column in the table does not
apply). 1–4 term is not supported here.

12: NVT and NPT ensembles [Contents] – [Index] 166

Similarly as for the Berendsen barostat, bulkmodulus should be set to define the sensitivity
of pressure to particle size. Variable tau.sig then defines the correlation time (like tau.P for
Berendsen NPT ensemble). For a good stability, tau.sig should be several times longer than
tau.T (e.g., tau.T=1 and tau.sig=10). If the sigma-like parameter has a meaning of inversed
size (e.g., parameter B in the Buckingham force field), bulkmodulus must be negative.

During simulation, the selected value of σ (or B) fluctuates so that the instantenous pressure on
average equals parameter P. The final value of σ is stored in the cfg-file for further steps/restart.
The value of σ is also recorded in column 4 of the cp file (where normaly density is recorded)
and statistics is calculated.

To start the σ-fitting mode, specify tau.sig (and bulkmodulus); if there is nonzero σ in the
cfg-file, it is used, otherwise the initial value of σ is taken from the ble-file. On the other hand,
for tau.sig=0 the value possibly stored in the cfg-file is ignored and the standard ble-file value
applies; in addition, sigma=0 is set for subsequent write to the cfg-file.

Smooth cutoff is always recalculated if σ changes. However, the cutoff corrections are not
recalculated, which is a BUG in principle, although in practice the error is small.

In V2.7t and older, only single atom (not pair) σ was supported, there was tau.R instead of
tau.sig, and tau.j was not used.

Chapter 13

Initial configuration

There are several ways how to generate initial configurations. Small molecules can be placed
in vertices of a lattice, bigger either to enlarged box (to be compressed lated) or shot to an
(enlarged) lattice at random. A small lattice with a periodic configuration can be repeated
several times. A problem of immersing a big molecule into a liquid (of small molecules) can be
solved by removing overlapping small molecules.

13.1 Random-shooting algorithm

If init=3 or init="random" is specified in input data, the initial configuration is generated by
the following algorithm suitable especially for small or moderately large molecules.

1. For given initial density (variable initrho), an attempt is made to fill the simulation box
by randomly distributed and rotated molecules. Molecules are inserted one-by-one and
there is an energy limit (variable Emax); if it is exceeded, the insertion of the molecule is
rejected.

2. If step 1. is not successful (i.e., if the insertion probability exceeds the limit of pins), the
density is lowered and step 1. is repeated. Ignored if pins=0.

3. If pins<0 only: If 1. is successful, however, the system is too dilute (i.e., the insertion
probability of step 1. has been greater than sqrt|pins|), step 1. is repeated with a
higher density.

4. Velocities are assigned (approximately according to temperature T) and both velocity and
length constraints are adjusted.

A configuration obtained by this algorithm can be dilute and should be shrunk. The final
density is named rho (and is in kg m−3). The speed of changing the density is given by typical
time tau.rho (in ps). Recommended values are 0.1–1 ps; too low values may cause a crash. If
you meet problems, we recommended to run first several steps with tau.rho=0 (this means in
fact infinity, i.e., changing density switched off). Use the friction thermostat to cool the heat
of compression.

167

13: Initial configuration [Contents] – [Index] 168

13.2 Crystal initial configuration

Alternatively, small molecules may be placed at vertices of a regular lattice which is selected
by init=5. The lattice type is defined by variable pins either explicitly (values 1,2,3) or left
to program’s decision (pins=0) to obtain lattice with minimum number of vacancies. There is
no overlap check and it is user’s responsibility to choose, if necessary, density low enough not
to have overlapping molecules; see also option -q which offers possibility to turn off random
rotation of molecules.

If pins>3 then the configuration is obtained by repeating an elementary cubic cell containing
a prepared configuration of pins molecules; see the explanation of pins for details.

13.3 Immersing a large solute into solvent

Rapid changes in density can destroy a structure of a big macromolecule. For building an initial
configuration consisting of (for example) a big protein in water, there are two possibilities:

METHOD 1

1. Prepare the .ble-file with the macromolecule as the first molecular parameter given to
blend. Thus, it has index 0.

2. Select cook option -j1 to freeze the atom positions of the protein.

3. Run the initializer init=3 with initrho=rho (or only slightly lower if necessary) and
very high Emax and pins=0 (or so low so that the initializer succeeds);

4. Use the friction thermostat (set tau.T and T). You may have to specify a rather low
timestep h if the initial Emax was very high. In normal cases, tau.T should not be (much)
lower than the typical relaxation time in water which is about 1ps; you may have to use
longer values for complex proteins with cavities.

5. Run cook again without option -j.

METHOD 2

1. Prepare the .ble-file with the macromolecule as the first molecular parameter given to
blend. Thus, it has index 0, and the solvent has index 1.

2. Prepare independently a configuration (may be small, but normally at least about 50
molecules) of the solvent (water) and export it using -l option. Your protein will
be immersed into this configuration (possibly periodically repeated) so that you must
precalculate the appropriate size of the system to allow this.

3. Rename the ascii dump to cfgns.pins; e.g., cook/cfg3.50 contains such configuration of
50 TIPS water molecules.

4. Run cook with option -j1 to freeze the positions of the protein.

13: Initial configuration [Contents] – [Index] 169

5. Run the initializer init=5 with pins equal the number of molecules from step 1. Emax

should be quite high.

6. Some of the solvent molecules are removed. Record the changed numbers of molecules
and edit the .def file accordingly.

7. Run cook again without option -j. As in METHOD 2, equilibrate, preferably first with
the friction thermostat.

Chapter 14

Measurements

14.1 Units of measurements

I’m sorry, but three systems of units of measurements are used by program cook:

• File sysname.ble defining the force field uses kcal/mol as the energy unit and Å as the
length unit because these units are used by CHARMM. See the documentation of blend
for details.

• Internally, cook uses Ångström to measure lengths, ps to measure time, Kelvin to measure
temperature and k·K (where k is the Boltzmann constant) to measure energy (loosely,
energy is measured in Kelvins). See units.h for details.

• cook communicates with the user in SI units: density in kg/m3, pressure in Pa, energy
in J/mol; however, energy is often given in Kelvins (I have a better feeling on Boltzmann
probabilities if the Boltzmann constant is defined as unity).

14.2 Convergence profile

The convergence profiles are important for observing whether the system is in equilibrium.
Many numerical or physical problems are also discernible from convergence profiles. Note that
the term “convergence profile” here means just time dependence of quantities, not running
averages of any kind.

cook records several quantities every cycle as the default, more quantities can be specified in
file sysname.def, See Sect. 9.2.3. The default quantities are:

column 1 = Etot Total energy in Kelvin (more precisely, Etot/kB is in Kelvin). For NVE
simulation or Nose-Hoover thermostat or MTTK thermostat+barostat or simulation with
given box vs. t dependence it includes the extended degrees of freedom; therefore, it should
be constant (with noise and only a small drift). See Sect. 11.1.2, for details.

column 2 = Tkin Instantaneous (kinetic) temperature in K. From showcp, the total kinetic
temperature is combined with the translatioal part (column 7 = Ttr) and the rest
(rotational and vibrational, column 6 = Tin).

170

14: Measurements [Contents] – [Index] 171

column 3 = Epot Total potential energy, in J/mol (of the whole configuration).

column 4 The meaning depends on the simulation ensemble. Possible quantities are:

rho Density in kg m−3, for NPT and other simulaion with changing density.

PdV Presure obtained from the virtual volume change, see variable dV.

Ep+k Sum of potential + kinetic energies, in J/mol (differs from Etot because no
extended degrees of freedom are included).

Ep0 No.first molecules [J/mol], not tested recently.

column 5 = P Pressure in Pa; in special cases replaced by rho or PdV (see above) or svdW (see
tau.sig).

column 6 = Tin Rotational + vibrational kinetic energy, in K.

column 7 = Ttr Translational kinetic energy, in K. In a well equipartioned system Tin =

Ttr. Note that for the Berendsen thermostat generally Tin may slightly differ from Tkin.

|M| Total simulation cell dipole moment [p.u.=0.0117501077 Debye]

Mx Simulation cell dipole moment in x [p.u.=0.0117501077 Debye]

My Simulation cell dipole moment in y [p.u.=0.0117501077 Debye]

Mz Simulation cell dipole moment in z [p.u.=0.0117501077 Debye]

|J|
√
J2, simulation cell current density in A m−2

Jx Jx, simulation cell current density in x̂ in A m−2

Jx Jy, simulation cell current density in ŷ in A m−2

Jx Jz, simulation cell current density in ẑ in A m−2

self self-field in [p.u.]

Rgyr Radius of gyration in Å

ende end-to-end distance in Å, see rg.end[]

See also extension .cpi, See Sect. 9.2.3.

14.3 Analysis of statistical errors

Let Q be an arbitrary quantity measured in the simulations and Qi, i = 1..n, its values obtained
in consecutive measurements. Then the expected error of the average 〈Q〉 is given (under some
assumptions) by the formula

δQ =
√

VarQ(1 + 2τ)

where the (discrete) correlation time is defined by:

τ =
∞∑
t=1

ct

14: Measurements [Contents] – [Index] 172

and the autocorrelation coefficients are

ct =
Cov(Qi+t, Qi)

VarQ
, Cov(Qi+t, Qi) = 〈Qi+tQi〉 − 〈Qi+t〉〈Qi〉, VarQ = Cov(Qi, Qi)

ct should go to zero and the sum for τ should converge (if it does not or does slowly, another
methods should be used). In practice, the sum for τ is truncated at a certain t = tmax; if tmax

is too low, τ is usually underestimated; if t = tmax is too high then the inaccuracies in ct may
cause too large errors in τ .

It is possible to extrapolate ct to infinity, usually by ct = A exp(−Bt) (one bottleneck process
or barrier) or ct = At−3/2 (hydrodynamic tail) and thus to correct τ .

Another way is to use blocking or sub-averages and the same method with only few first
autocorrelation coefficients, or perhaps none (just blocking)m but it is better to include at
least c1.

To understand the output of statics.c, let us consider the following example produced by
testing program staticst.c:

--

r No = 100000 range = <0.78591037,4.2648801> = 3.4789698

Mean = 2.50087886 Var = 0.232787747 StDev0 = 1.5257e-03

_t__c[t]_1+2tau__StDev_ _t__c[t]_1+2tau__StDev_ _t__c[t]_1+2tau__StDev_

1 0.8020 2.604 2.5e-03 2 0.6440 3.892 3.0e-03 3 0.5170 4.926 3.4e-03

4 0.4143 5.755 3.7e-03 5 0.3311 6.417 3.9e-03 6 0.2654 6.948 4.0e-03

* 1 0.7225 2.445 3.2e-03 2 0.4652 3.375 3.8e-03 3 0.2981 3.972 4.1e-03

* 1 0.5652 2.130 3.9e-03 2 0.2402 2.611 4.3e-03 3 0.1096 2.830 4.5e-03

* 1 0.3662 1.732 4.4e-03 2 0.0763 1.885 4.6e-03 3 0.0114 1.908 4.7e-03

--

1+2tau and StDev that appear in the table use truncated sums up to the lags of t. The first
line marked by * refers to the analysis of data averaged in blocks of length 2, the second line
marked by * in blocks of length 4, etc. The result (rounded) is <r> = 2.501+-0.005, to be
compared with the following exact results for the example:

<r> = 2.5

standard deviation of <r> = 4.564e-03

Var r = 25/108 = 0.2315

NOTE: in newer versions, a summary determined from maximum blocked StDev with c1

included is printed.

Try to run staticst.c several times for different n’s to see how the method works!

See also utility autocorr, 20.10.

14: Measurements [Contents] – [Index] 173

14.4 Kinetic quantities from equilibrium molecular dy-

namics

14.4.1 Diffusivity

Green–Kubo

Diffusivity can be calculated from the velocity-velocity time autocorrelation function (more
precisely the covariance) using the Green–Kubo formula

Di =
∫ ∞

0
〈ẋCM

i (0)ẋCM
i (t)〉, (14.1)

where xCM
i (t) is the x-coordinate of the center-of-mass of molecule i. MACSIMUS offers a direct,

but (sometimes) costly, calculation of the covariance 〈ẋCM
i (0)ẋCM

i (t)〉 by setting variable lag.v

(time range in the units of noint*h), see also lag.dim (1 to record the sum over coordinates
x,y,z or 3 to record the all separately) and lag.nv (number of molecules). By averaging these
covariances (over all molecules of the same species and all three coordinates) and integrating
them (use utility runint), the diffusivity can be obtained.

The program unit of diffusivity is Å2/ps = 10−8 m2/s = 10−4 cm2/s.

Einstein

It is possible to calculate the diffusivity from recorded configurations using the Einstein relation.
The mean square displacement is

msd(t) =
1

6

∑
i

{
mi[

→
r i(t)−

→
r i(0)]

}2

(∑
i

mi

)2
t→∞
= const +Dit, (14.2)

where the sums are over all sites of one molecule.

MACSIMUS calculates msd(t) if diff.mode=1 is set. It is recommended to calculate it from a
stored playback file via option -m1 and variables reread.*. The algorithm follows the path of
the particles in the periodic boundary conditions so that dt.plb in the simulation must not be
too long (particles must not travel more than half the box within one frame recorded, which is
checked by the algorithm).

Whole calculations should be repeated with different blocks, averaged and possibly corrected
for the hydrodynamic tail and finite size effects. Utility plb2diff automates the calculations.
See Sect. 21.22.

Finite-size effects

The diffusivity obtained by either method is subject of large finite-size errors [31]. These errors
are caused by the periodic images traveling in the same direction. The MD diffusivity is thus
underestimated. The corrected diffusivity is [31, 32]

D = DMD +
2.8373kBT

6πηL
(14.3)

14: Measurements [Contents] – [Index] 174

where η is the shear viscosity. This formula applies to cubic boxes L3 only.

This correction is large. In order to calculate an accurate value of the diffusivity, both the
periodic (MD) diffusivity and the viscosity must be calculated, and typically the uncertainty in
viscosity has a higher impact on the result. Since the viscosity calculation itself is not subject
to large finite-size effects[32], and the statistical accuracy is low for large numbers of particles,
it is recommended to determine the viscosity using a smaller system1 and the diffusivity using
a larger system.

Recently, we tested the above correction for argon and water [33]:
Ar

^^

EvdW=-0.2380684 kcal/mol, RvdW=1.910992 A

T=143.76 (T*=1.2)

rho=1344.2582 kg/m3 (rho*=0.8)

viscosity (Green-Kubo): eta=0.00017543 Pa.s

D is in 1e-9 m^2/s

Dcorr = Dsim + 2.837*k*T / (6*pi*eta*L)

==================================

N method tau/ps Dsim stderr Dcorr

250 B 0.2 4.217 0.019 4.954

250 B 1 4.229 0.022 4.966

250 N 0.2 4.210 0.021 4.947

250 N 1 4.220 0.022 4.957

2000 B 0.2 4.560 0.012 4.928

2000 B 1 4.567 0.011 4.935

2000 N 0.2 4.568 0.013 4.936

2000 N 1 4.578 0.010 4.947

==================================

2000: L=46.21296 A

250: L=23.10648 A

N=Nose+Gear(+ Lagrange constraint dynamics)

B=Berendsen(+Shake)

SPCE water

^^^^^^^^^^

T=298.15 K

===================================

N method tau/ps Dsim stderr Dcorr

250 B 1 2.30 0.06 2.84

250 B 1 2.26 0.07 2.80

2000 B 1 2.49 0.10 2.76

2000 B 1 2.56 0.09 2.83

==================================

viscosity (N=250): 0.00058(6) Pa.s

L=19.575161 A (N=250)

NB: later results, N=300

viscosity=0.00073(4) Pa.s

Dsim=2.390(8), D=2.80(2) [1e-9 m^2/s]

14.4.2 Conductivity

Partial molar conductivity is proportional to the diffusivity

λn =
z2
ne

2

kBT
Dn =

z2
nF

2

RT
(14.4)

where z = charge in e, F = Faraday constant, R = gas constant, and Vm = molar volume.
Equivalently we may define the partial conductivity as

κn =
z2e2Nn

kBTV
Dn =

z2F 2cn
RT

Dn (14.5)

where Nn is the number of molecules of species n and cn is the concentration (in mol/dm3). In
program units (k = 1) this formula becomes

κn =
NnDnz

2
n

TV
, (14.6)

1In addition, the Green–Kubo route requires a short noint.

14: Measurements [Contents] – [Index] 175

where the program unit of conductivity is 111.26501 S/m (but the user interface uses SI units).

The Green–Kubo formula for the (total) conductivity is

κ =
V

kBT

∫ ∞
0
〈Jx(0) · Jx(t)〉 (14.7)

and the same in the y and z directions (three independent values). The current density
→

J is

→

J =
1

V

∑
i

qi
→̇
r i (14.8)

Three covariances 〈Ja(0)Ja(t)〉, a ∈ {x, y, z}, are calculated by cook for lag.cond set. In
addition, a guide how to finish the calculations is printed.

For a successful calculation, DT=h*noint must be fine enough and the lag lag.cond long enough,
which is best checked using graphs of covariances and their running integrals.

The corresponding Einstein relation (derived from the current, not current density) reads as

mscd(t) =
1

6

{∑
i

qi[
→
r i(t)−

→
r i(0)]

}2
t→∞
= const + kBTV κt (14.9)

The calculations should be performed in the reread mode, see option -m and variables rered.*.
Similarly as for diffusivity, plb2diff can be used to calculate mscd and in turn the partial and
total conductivities, see Sect. 21.22.

In the non-equilibrium molecular dynamics, the conductivity is given by

κ =
Jz
Ez

where we assume that only the z-component of the electrostatic field, Ez = Eelst[2] (in V/m),
was set. Since the Jz = Jz [A/m2] is reported in SI units, κ will be in S/m.

14.4.3 Viscosity

The Green–Kubo equation for viscosity is

ηab =
V

kT

∫ ∞
0
〈Pab(t)Pab(0)〉dt, a 6= b (14.10)

where the pressure tensor components are for pairwise interactions given by (15.2). Three
covariances are calculated by cook for lag.visc set. cook prints a guide, too, and similar rules
as for the conductivity apply. If lag.visc is too short, the hydrodynamic tail (∝ t−3/2) sould
be used for extrapolation. A support for off-diagonal pressure tensor components is needed
(PRESSURETENSOR=7, see See Sect. 8.3).

It is also possible to calculate viscosity from traceless diagonal components[38]

ηaa =
3

4

V

kT

∫ ∞
0
〈P ′aa(t)P ′aa(0)〉dt, P ′aa = Paa −

1

3

∑
b=x,y,z

Pbb

The following mix of both formulas is recommended[38]

η =
3

5
ηoff +

2

5
ηtrless, ηoff =

1

3

∑
ab=xy,yz,zx

ηab, ηtrless =
1

3

∑
a

ηaa.

14: Measurements [Contents] – [Index] 176

Note that ηab is symmetric. MACSIMUS since V1.7p prints also these components (full off-
diagonal support and lag.visc are needed).

Note: it is (probably) not possible to calculate viscosity from the Einstein relation obtained by
the following “naive integration” of the Green–Kubo formula (see [24], p. 86+).

Pab =
1

V

(
N∑
i=1

pi,api,b
mi

+
N∑
i=1

ri,afi,b

)
=

1

V

 N∑
i=1

pi,api,b
mi

+
N∑
i<j

rij,afij,b

2tη =

V

kT
〈[Lab(t)− Lab(0)]2〉

where

Lab =
1

V

∑
i

ri,api,b

Limited support present in plb2diff is thus meaningless. For a work-around, see[39] (not
implemented in MACSIMUS).

14.5 Kinetic quantities from the Einstein relations

Conductivity and autodiffusion measurements by Einstein relation See plb2diff.c, 21.22, and
sim/sfdx.c

NOTE: The Green–Kubo-based conductivity is usually more precise, but the grid has to be
short enough, sometimes 2*h, and the lag long enough, which may be a problem for one-particle
diffusivities. The analysis may be rather subjective because a graph has to be analyzed. The
Einstein version is very similar if the same lag is used. It becomes safer (less systematic error)
but less accurate (larger statistical error) as the lag increases.

14.5.1 Requirements

• Periodic b.c.

• NVT or NPT ensemble (for NPT, see below)

• Stored configurations:

– either in a plb-file (simname.plb, generated by cook* with dt.plb placed in the
def-file (not get-file)

– or simname.1,simname.2,... (generated by cook -r)

14.5.2 Usage

Copy/link files to another name, then re-run cook:

• either with option -m1 (to read simname.plb); dt.plb should math that of the productive
run,

• or -m0 (to read simname.1,...), dt.cfg should math that of the productive run (NOT
TESTED RECENTLY),

14: Measurements [Contents] – [Index] 177

•

Input data are:

reread.from First frame (stored configurations) read, default=1

reread.to Last frame read (hint: use plbinfo simname.plb to get the max frame!)

reread.by Stride (reread.by=1 reads every configuration).

Example:

for ext in cfg def ; do ln -s SIMNAME.\$ext NEWSIMNAME.\$ext ; done

\# edit NEWSIMNAME.def, create NEWSIMNAME.get

cook* -m SYSNAME.ble NEWSIMNAME SIMNAME.plb

with reread.from=5, reread.to=9, reread.by=2 placed in NEWSIMNAME.get, will read
frames 5,7,9 from NEWSIMNAME.plb

14.5.3 Results

simname.prt Protocol (is the screen if option -s)

simname.m.cp Mean square displacements of the center of mass:

COLUMN 1 mean square displacement for species 0:

1 2 2

msd = ----- SUM {SUM m [r (t) - r (0)]} / {SUM m }

6 N_0 n i i i i i i

where m i = mass of site i, SUM i is over all sites of species 0, SUM n is over all
molecules of species 0, N 0 = SUM n 1 = number of molecules of species 0

COLUMN 2 as above, species 1

...

COLUMN nspec+1 The sum over the whole simulation box.

1 2

mdif = - {SUM m [r (t) - r (0)]}

6 i i i i

Note that mdif=0 but rounding errors because of momentum conservation!

simname.q.cp mean square charge displacement:

COLUMN 1 cumulative mean square charge displacement for species 0:

1 2

mscd = - SUM {SUM q [r (t) - r (0)]}

6 n i i i i

14: Measurements [Contents] – [Index] 178

where q i = charge of site i, SUM i is over all sites of species 0, SUM n is over all
molecules of species 0,

NOTE: mscd is SUM while msd is AVERAGE (divided by N 0)

COLUMN 2 as above, species 1

...

COLUMN nspec+1 total mean square charge displacement:

1 2

mscd = - {SUM q [r (t) - r (0)]}

6 i i i i

where the sum is now over the whole simulation box. This is related to the
conductivity, see below.

14.5.4 Analysis of results

See also plb2diff which makes time averages and automates the following algorithm.

DIFFUSION COEFFICIENTS Run:

showcp -p SIMNAME.q.cp

and estimate the time derivatives

D = d msd(t) / dt

Hints:

• Frames are separated by dt.plb*# or dt.cfg*# ps (# denotes the -f option, -f# or -f-#).

• Several first data should be skipped

• Estimate the slope from from the plots or by linear regression of; the linear regression
should use weight 1/t because the error of msd(t) is proportional to sqrt(t).

• And all this should be done for several blocks to have statistics!

D is the diffusion coefficient of given species (column 1 = species 0) in program units [A^2/ps];
in usual units it holds:

• D*1e-8 = diffusion coefficient in m^2/s

• D*1e-4 = diffusion coefficient in cm^2/s

Make also sure that the last column in simname.q.cp (mdif) is small.

NOTES: 1st 2 columns of simname.q.cpa and the plots are incorrectly labeled as Etot and
Tkin instead of 0 and 1. In addition, the last column in simname.q.cpa just repeats the 1st
column, thus the “last column in simname.q.cp” is actually the second-last in simname.q.cpa.

14: Measurements [Contents] – [Index] 179

CONDUCTIVITY Run:

showcp -p SIMNAME.q.cp

and the LAST graph (named cond) should be approximately linearly increasing function of
time, cond(t); of course, it is not and averaging should be done over different runs or blocks
of one run! The conductivity (per unite volume) in program units is:

κ =
1

TV

dcond(t)

dt
(14.11)

where T = average temperature in K and V is the volume of the simulation box. In MACSIMUS
units:

kappa*111.26502 = conductivity in S/m

kappa*1.1126502 = conductivity in S/cm

PARTIAL CONDUCTIVITIES kappa n are obtained from columns 0,1,..nspec-1 in the
same way. Note that the total bulk conductivity is a sum of the partial conductivities only if
the ions are uncorrelated which holds true in special cases and only approximately. It holds

κn =
Dnz

2F 2

RTVm

, (14.12)

where z = charge in e, F = Faraday constant, R = gas constant, and Vm = molar volume,
which in program units (k = 1) becomes

κn =
NnDnq

2
n

TV
, (14.13)

where Nn = number of molecules of species n, V = volume of the simulation box, qn = charge
of species n.

Note that for monoatomic ions, mscd = Nnq
2 msd. For molecules generally mscd(t) 6= Nnq

2

msd(t) although the time derivatives should be the same (but statistical noise).

FINAL NOTES See also util/plb2diff.c, 21.22!

For NPT ensemble (tau.P is nonzero), cook produces scaled (by powers of V^(1/3)) quantities
and the above factors should be recalculated! However, plb2diff does it for you.

14.6 Structure factor

14.6.1 Structure factor for pure simple fluids

The structure factor is in principle the Fourier transform of a radial distribution function, see
see Sect. 30. Here, we use the atomic masses to weight different atoms. We define a k-vector by
→

k =
→
n/λ, where λ is the wavelength and

→
n, |→n| = 1, its direction. (This k-vector is common in

crystallography, whereas in physics a ‘circular’ k-vector is more common, 2π
→
n/λ. In cook V2.6h

and older, the circular definition was used, from V2.6i the above ‘crystallographic’ definition

14: Measurements [Contents] – [Index] 180

is used. The definition is noted in the output files.) In a periodic box only some k-vectors are

available,
→

k =
→

ki/
→

L, where ‘division of vectors’ is defined in (24.7) and
→

ki is an integer vector.
The structure factor of a simple fluid is:

S(
→

k) =
1

N
|Q(

→

k)|2, Q(
→

k) =
∑
j

exp[−2πi
→

k · →r j]

and the sum is over all atoms j.

The structure factor is used to detect crystallization and glassy state of liquids.

14.6.2 Structure factor for mixtures

Theory

A sensitivity of atoms to scattering is described by weights, in neutron diffraction ‘coherent
scattering lengths’ bj. They are generally complex numbers (LIMITATION: MACSIMUS
supports only real values). The mixture structure factor is then

S(k) = 1 +N
〈|Q(

→

k)|2〉 −∑j b
2
j(∑

j bj
)2 (14.14)

where
Q(
→

k) =
∑
j

bj exp[−2πi
→

k · →r j]

and the sums are over atoms.

Implementation

The scattering lengths bI should be written ‘by hand’ to the ble-file to the table of pair potential
parameters (Lennard-Jones, Busing-12, ...) after the last column. (If this column is missing,
atomic masses mI are used instead, however, do NOT write bI instead of masses to the 2nd
column!)

Cook has to be run again with option -f (see there) to calculate the structure factor from stored
configurations. Variables init and no are the first and last frames processed, respectively.
Variable el.kappa is the maximum k-vector calculated.

Sphericalized structure factor

The structure factor of fluids is isotropic. A sphericalized structure factor is

S(k) =
∑
k=|

→

k|

S(
→

k)/
∑
k=|

→

k|

1

LIMITATIONS: MACSIMUS can calculate a sphericalized structure factor for a cubic
simulation cell only.

Sphericalization is requested el.sf=1 in the data (while running cook with option -m). el.sf=3
in the data specifies the full 3D structure factor.

14: Measurements [Contents] – [Index] 181

It is not possible to calculate both sphericalized and 3D structure factors at the same run.
Note that a sphericalized structure factor can be obtained from the 3D one provided that the

numbers of vectors
→

k giving the same k are known (the last column, cf. utility avdata).

See also utility sfourier.

14.7 Radial distribution functions

If rdf.grid is selected, the program measures the site-site correlation functions, also called
radial distribution function (RDF). The results are stored in binary file with extension .rdf

and may be printed and viewed using program rdfg. Site types used for RDF are listed in
table Lennard-Jones (or similar according to the force field used) in the ble-file in 2nd column
(denoted as atom). By default there is one RDF for each pair of site types even if this site type
appears several times in a molecule (molecules).

WARNING: program rdfg (and also harmg) uses for site-site correlation functions formulas
giving ‘incorrect’ limits

lim
r→∞

gIJ = 1 (14.15)

and not the correct (conforming the NVT definition)

lim
r→∞

gIJ =
{

1− 1/NI for I = J
1 for I 6= J

(14.16)

Formula (14.15) is probably a better approximation of the thermodynamic limit, however, in
certain cases (e.g., when integrals of RDFs are calculated), (14.16) should be preferred. In most
cases the difference between (14.15) and (14.16) is irrelevant.

Options for RDF are controlled by variables and by file simname.s-s.

rdf.grid (0) Grid for calculating the site-site radial distribution functions, in 1/Å(i.e., the
number of histogram bins per 1 Å). If negative, there is one summary (equally weighted)
function for all combinations of site types. If positive, there is a separate function
measured for each combination of site types (if simname.s-s is missing) or only selected
site-site pairs are measured (if simname.s-s exists, see below). If rdf.grid=0, the radial
distribution functions are not measured.

rdf.cutoff (0) Max range for which the site-site radial distribution functions are measured,
in A. If rdf.cutoff=0 then the value of cutoff is assumed (default).

rdf.onefour (1) Controls whether 1-4 (or 1-5 if distance14=4 in the ble-file) are to be
included to measured radial distribution functions. E.g., in a united-atom model of
butane, CH3-CH2-CH2-CH3, there is a peak on the CH3-CH3 radial distribution function
caused by intramolecular CH3-CH3 pairs. Setting rdf.onefour=0 will eliminate this
intramolecular peak.

More options can be specified in file simname.s-s. Data in this file are active if rdf.grid>0.

Site types are listed in table Lennard-Jones (or similar according to the force field used) in the
2nd column (denoted as atom).

File format:

14: Measurements [Contents] – [Index] 182

! define group of atoms of given TYPE:

ID TYPE SPECIES.ATOM [SPECIES.ATOM ...]

ID ...

! include all pairs of types and stop reading TYPE1-TYPE2 data:

*

! include RDF of TYPE1-TYPE2:

TYPE1 TYPE2

...

where

ID Lowercase letter or a decimal digit. The full group identifier is a concatenation ID+TYPE
(e.g., aCH3). It is not possible to have different atom types in one group.

TYPE Atom type, see above

SPECIES Species number (numbered from 0 in the order given to blend and used in the ble-file)

ATOM Atom (site) number, see the mol-file or table sites (in the corresponding species section)
of ble-file.

One group of atoms should correspond equivalent (with respect to symmetry) atoms. All
atoms of the same type not listed in any group comprise a ‘default’ group (with identifier =
TYPE without prefix).

Examples of simname.s-s for a simulation of a united-atom model of pentane CH3E-CH2E-
CH2E-CH2E-CH3E (species 0) follow.

To measure only RDF of CH3E-CH2E and CH3E-CH3E pairs:

!type type

CH3E CH2E

CH3E CH3E

To measure all RDF’s so that the central CH2 is distinguished, use:

c CH2E 0.2

*

If, in addition, individual atom pairs are to be selected, the ID’s are prepended, e.g.:

c CH2E 0.2

CH2E CH2E

CH2E cCH2E

cCH2E cCH2E

14.8 Cluster (oligomer) analysis and bond kinetics

Let us consider bulk fluid simulation of atoms (ions) (or small molecules – not fully
implemented) interacting via strong attractions so that it is reasonable to say that two atoms
are bonded if their distance is less than certain limit. Typical example is molten salt like AlCl3
consisting of individual ions. In the melt, the ions are bound to relatively very stable molecules
like calculates the clusters (molecules).

14: Measurements [Contents] – [Index] 183

14.8.1 Cluster overview

1. Reads stored configurations (simname.plb or simname.1..., see option -f)

2. Calculates bonds between molecules (species), bonds are defined by a distance criterion
between selected sites (atoms) in molecules

3. Analyzes connectivity of molecules and splits each configuration into clusters

4. Makes statistical analysis of clusters. Clusters are distinguished by size, stoichiometry,
and topology (with the exception of very large clusters)

5. Calculates time development of selected clusters, prints summary of all clusters in all
configurations

14.8.2 Compilation and synopsis

cook must be compiled with #define CLUSTERS: can be specified while running configure.sh

or directly in simopt.h. The calculation can be performed both during simulation and from
stored trajectory. For the latter case, see Sect. ??

14.8.3 Input data

Cluster calculations are requested by setting cl.mode (see there). You can perform cluster
calculation during simulation or from playback, see option -m1 and variables reread.*.

Commented example of sysname.cli:

bonds ! Section defining bonds

AL CL 2.1 ! Bond created between AL and CL in different molecules

AL S 3 ! for dist<2.1. AL CL S are ATOM names

maxn=20 ! If given, cluster counts up to size maxn are printed to the

! prt-filefor each frame analyzed in the format defined by variable

! format .

! Cluster topology is not distinguished here only sizes matter.

! keyword format is equivalent to cl.format in input data

! formats can be combined; e.g., format=15 will print all four lines:

format=1 ! (default):

! 1st column = number of single molecules in the frame

! 2nd column = number of pairs

! ...

! maxn-th column = number of clusters of size maxn and bigger

! last column = size of the largest cluster

! keyword CLUSTERCOUNT1

! format=2 ! as above with different order:

! 1st column = size of the largest cluster

! 2nd column = number of single molecules in the frame

14: Measurements [Contents] – [Index] 184

! 3rd column = number of pairs

! ...

! last column = number of clusters of size maxn and bigger

! keyword CLUSTERCOUNT2

! format=4 ! lists individual cluster sizes (from largest to smallest), e.g.:

! 222 111 44 44 3 2 1 1 1 CLUSTERCOUNT4

! format=8 ! lists individual cluster sizes with counts, e.g.:

! 222*1 111*1 44*2 3*1 2*1 1*3 CLUSTERCOUNT8

! format=16 ! prints simulation time in front of the above lines

! don’t forget that the colums are shifted by 1 !

maxcluster=15 ! larger clusters not topologically distinguished

! (would be too slow)

! equivalent to cl.maxcluster in input data

! topology of named (registered) clusters is in the che-format

! (see blend for details):

! blank line required after the molecule

cluster AlCl3 ! named cluster for convergence profile

Cl Cl

\ /

Al

|

Cl

cluster AlSCN ! another named cluster, Al CL SCN are MOLECULES

Al--SCN

$i extra.cl ! include file (cannot nest)

clusters ! mol- and plb-files will be created for clusters, showing

! the connectivity of molecules which are represented by

! site[0] only. Use ‘show’ to view the cluster structure.

! Good for monoatomic molecules, equivalent to bit cl.mode&2 set

configurations ! mol- and plb-files will be created for whole

! configurations (frames), full molecules are shown,

! but intermolecular bonds are shown between site[0] only

! Good for monoatomic molecules, equivalent to cl.mode&4 set

bonddynamics ! record created/broken bonds

! may be memory consuming in some cases

! equivalent to cl.mode&8 set

colors ! Good for monoatomic molecules only:

14: Measurements [Contents] – [Index] 185

! data used to make a gol-file when "clusters" specified

! The first column is species name (not atom)!

Al MAGENTA 1.1

Cl GREEN 1.5

I YELLOW 1.8

Comments:

• A bond is created between different molecules if there exists a pair of sites less than the
limit (keyword bond) apart.

• Of course, molecules may consist of one atom only. Molecule named “Al” may contain
only atom “AL” (note case sensitivity!). “Al” refers to “species Al” in a sysname.ble
and thus to files Al.mol etc. for blend.

• maxcluster is the maximum cluster size (number of molecules) for which the topological
analysis is performed. Larger clusters of the same stoichiometry but different structure
are not distinguished (even if they are named). Limited by 1024 (more than 20 too slow
anyway).

• maxn is limited by 65536

• cluster NAME defines a named cluster in simplified CHE-format. There must not be any
blank line after the cluster NAME line.

• If colors is given, gol-files will be created for each cluster shown.

• No gol-file is created for configurations. If you wish to have proper colors, use molcfg

and link or copy simname.gol to simname.#.gol

• Equal sign = is optional between a keyword and its value, e.g., $i=FILE (bug: FILE must
not contain ‘=’). For better compatibility, also $iFILE (without space) is allowed

14.8.4 Results

simname.prtx Final statistics of clusters. The clusters are sorted by size and stoichiometry
(we call this “standard order”). If the cluster is named, the name is printed. Then, a list
of bonds is printed: atoms are numbered consecutively in the order of the stoichiometry
formula. E.g., Al.Cl4 has bonds 0-1 0-2 0-3 0-4 because Al has number 0 and four Cl are
numbered 1,2,3,4.

simname.cl.cpa Convergence profile of counts of named clusters. Columns correspond to
the named clusters in standard order (not in the order in which the clusters appear in
simname.def after ;). Each line corresponds to one configuration analyzed.

simname.#.mol, simname.#.plb #=1,2,... denotes frame number. This applies only if
keyword configurations has been specified in sysname.def. To view the configuration
with molecule-molecule connectivity, use e.g.:

show simname.1

14: Measurements [Contents] – [Index] 186

*.mol, *.plb To view the clusters. Applies only if keyword clusters has been specified. For
instance, Al3.Cl9b.mol or , Al3.Cl9b.plb. The last configuration (position of atoms)
encountered is used to show the cluster, each molecule is represented by the 1st atom.

simname.rm.sh Shell script which will remove all files created with keyword clusters: run
it as

sh simname.rm.sh

14.8.5 Bugs and caveats

• The topology analyzer is inefficient—it requires n1! n2!...nN! operations for a cluster
with stoichiometry MOL1 n1 MOL2 n2...MOLN nN. Hence, the practical maximum
maxcluster is around 15.

• Molecule-molecule bonds in *.mol are always created between site[0] irrespective of the
actual site that passed the distance condition (no problem with one-atom molecules).

14.8.6 Bond kinetics

Files simname.created.cpa and simname.broken.cpa are created:

column 1 time

column 2 created[0] or broken[0] = 2*(# of broken/created bonds since the previous frame)

column 3 created[1] or broken[1], as above but the bond is not counted if the same bond has
been or will be created/broken immediately before/after

column 4 created[2] or broken[2], as above, one other change allowed between cre-
ation/breakage of the same bond

more etc., according to compile-time switch #define BONDHIST

ALGORITHM:

• For bond definition see the ‘cluster analysis’ above

• The algorithm works on the basis of a list of bonded molecules attached to each molecule.
The current and previous lists are compared and the differences determine the broken
and created bonds (column 2).

• In addition, the list of created and broken bonds (at each molecule) is searched for time-
ordered sequences created-broken, broken-created, created-broken-created, etc.; sequences
with even number of changes (=the bond returns to the same state) are omitted, odd
sequences are included as one creation or breakage (for time of the middle change,
e.g.. for created-broken-created for the time of the middle breakage). These sequences
for created[1] or broken[1] must not be interrupted by creation or breakage of another
bond (CreateBondTo77-CreateBondTo13-BreakBondTo77 is not recognized as bond to
molecule 77 created and immediately broken).

14: Measurements [Contents] – [Index] 187

• For created[2] or broken[2], one change in between is allowed (the above example is
recognized and does not count for created/broken bonds to molecule 77)

• Etc., up to created[BONDHIST] or broken[BONDHIST]: BONDHIST-1 changes in
between are allowed

• It may happen that created[i] or broken[i], i > 0, are odd since the ‘does not count’
condition may occur for one molecule from the bonded pair, e.g. (A-B C) → (A B-C) →
(A-B C). This looks strange but is not a bug—is a feature.

14.9 Normal modes of vibration

14.9.1 Without constraints

For notation simplicity, let us assume that the local minimum occurs at
→
r i = 0 and U(0) = 0.

We shall also drop the vector symbol (→): in ri, index i will thus run over 3N components (N
particles × three coordinates). The potential can be expanded in

U =
1

2

∑
i,j

riAijrj, Aij =
∂2U

∂ri∂rj
.

In accord with the notation, A is a 3N × 3N matrix and its values are calculated at the
minimum. The Newton equations of motion are

r̈i =
fi
mi

= − 1

mi

∑
j

Aijrj (14.17)

A vibration can be written as (i denotes here the imaginary unit)

ri(t) = Rie
iωt (14.18)

where Ri are numbers and ω = 2πν is the circular frequency. By inserting (14.18) to (14.17)
we get

−ω2Rie
iωt = − 1

mi

∑
j

AijRje
iωt

and hence in the matrix notation
ω2R′ = A′R′

with

R′i =
√
miRi, A′ij =

Aij√
mimj

.

Matrix A′ is symmetric. We diagonalize it by the threshold Jacobi method. The normal mode
calculation is available both in blend (see options -J, -M,-N,-P) and cook (see variables nm.*).

14.9.2 With constraints

We have to expand the right hand side of the equations o motion (11.1),

→̈
r i =

1

mi

(
→

f i +
→

f
c

i), (14.19)

14: Measurements [Contents] – [Index] 188

at minimum to the first order in the amplitude
→
r i.

The forces are no longer zeros at minimum because they may have nonzero components in the
direction of constraints. The expansion of forces is then

→

f i =
→

f
0

i −
∑
j

↔

Aij ·
→
r j,

↔

Aij = −∂
→

f i
∂
→
r j

=
∂2U

∂
→
r i∂

→
r j
, (14.20)

where we have adopted the tensor notation: Matrix A is treated as an N ×N matrix of tensors
(3×3 matrices); we will use consistently the dot-product symbol · for any sum over components

while
→
a
→

b is a 3× 3 tensor. Matrix A is symmetric (whether a matrix of tensors or numbers).

To expand the constraint forces
→

f
c

i =
∑
a

ga
∂ca
∂
→
r i
,

we have to expand ∂ca/∂
→
r i as well as ga given according to (11.3) by

ga = −
∑
b

M−1
ab Gb, Gb =

∑
i

→

f i
mi

· ∂cb
∂
→
r i
, (14.21)

To expand ga we have to expand both Ga (composed of
→

f i and ∂ca/∂
→
r i) and generally also M .

Here we make a simplification valid for rigid models (e.g., water): We will assume that matrix
M does not depend on the configuration.

The expansion of constraint derivatives is

∂ca
∂
→
r i

=
∂c0

a

∂
→
r i

+
∑
j

∂2ca
∂
→
r i∂

→
r j
· →r j. (14.22)

Now we insert expansions (14.20) and (14.22) into (14.21). The absolute terms represent the

equilibrium condition,
→

f i +
→

f
c

i = 0. Linear terms can be collected into equation

→̈
r i = −

∑
j

↔

Bij ·
→
r j, (14.23)

where
B = B0 +B1 +B2 +B3

Component B0 comes directly from the expansion (14.20) of
→

f i,

↔

B
0

ij =
1

mi

↔

Aij.

Component B1 arises from expanding ∂cb/∂
→
r i in Gb,

↔

B
1

ij =
1

mi

∑
a,b

M−1
ab

∂ca
∂
→
r i

∑
k

→

f
0

k ·
∂2cb

∂
→
rk∂

→
r j

Component B2 is from the expansion of forces in Gb,

↔

B
2

ij = − 1

mi

∑
a,b

M−1
ab

∂ca
∂
→
r i

∑
k

1

mk

∂cb
∂
→
rk
· Akj

14: Measurements [Contents] – [Index] 189

and finally expanding constraints in ga leads to

↔

B
3

ij = − 1

mi

∑
a

ga
∂2ca

∂
→
rk∂

→
r j
.

For bond constraints (11.2) we have formula (11.6) and

∂2ca
∂
→
r i∂

→
r j

= (δi,ia − δi,ja)(δj,ja − δj,ja)
↔

I ,

where
↔

I is the diagonal unit (identity) 3× 3 tensor.

The contributions to B1 are calculated in a double loop over constraints a, b with contributions

↔

B
1

iaib
+=

1

mi

∑
a,b

M−1
ab (

→
r ia −

→
r ja)

 →

f ib
mib

−
→

f jb
mjb

↔

B
1

iajb
−=

1

mi

∑
a,b

M−1
ab (

→
r ia −

→
r ja)

 →

f ib
mib

−
→

f jb
mjb

↔

B
1

jaib
−=

1

mj

∑
a,b

M−1
ab (

→
r ia −

→
r ja)

 →

f ib
mib

−
→

f jb
mjb

↔

B
1

jajb
+=

1

mj

∑
a,b

M−1
ab (

→
r ia −

→
r ja)

 →

f ib
mib

−
→

f jb
mjb

 .
The components of B2 are calculated in a triple loop over constraints a, b and index j:

↔

B
2

iaj −=
1

mia

∑
a,b

M−1
ab (

→
r ia −

→
r ja)(

→
r ib −

→
r jb) ·

↔Aibj
mib

−
↔

Ajbj
mjb

↔

B
2

jaj +=
1

mja

∑
a,b

M−1
ab (

→
r ia −

→
r ja)(

→
r ib −

→
r jb) ·

↔Aibj
mib

−
↔

Ajbj
mjb

The contributions to B3 are calculated in a loop over constraints a

↔

B
3

iaia −=
1

mia

ga
↔

I

↔

B
3

iaja +=
1

mia

ga
↔

I

↔

B
3

jaia +=
1

mja

ga
↔

I

↔

B
3

jaja −=
1

mja

ga
↔

I

From (14.23) it follows that the fundamental frequencies are given by eigenvalues of matrix
B and the normal modes by its eigenvectors. There are two problems to solve. First, matrix
B is not symmetric nor symmetrizable. Yet it has (for physical reasons) all eigenvectors real.
Second, some modes correspond to motion along the constraints.

14: Measurements [Contents] – [Index] 190

The second problem is solved by constructing a linear space perpendicular to the constraints. It
is done by orthonormalizing the space of constraints (by the Gram–Schmidt algorithm), adding
random vectors and orthonormalizing (if the random vector is almost parallel to the already
obtained orthonormal basis, a new one is generated). The resulting space perpendicular to the
constraints is represented by a matrix P composed of 3N − nc row 3N -vectors. The projected
matrix (of rank (3N −nc)× (3N −nc)) is BP = PBP T ; if its column eigenvectors are R′, then
the original eigenvectors are R = P TR′.

The first problem is solved by using the Jacobi method to convert BP into the Schur normal
form2. This leads to orthonormal matrix U such that S = UTBPU is upper triangular matrix.
The eigenvalues are then on the diagonal, λi = Sii. However, the columns of U are no loger
eigenvectors (as for symmetric B). Let us denote the j-th column of U as uj (with components
uji = Uij). The first eigenvector of BP is R′0 = u0 (indices start from 0),

BPR′0 = λ0R
′
0.

Then the i-th eigenvector can be written using either uj, j < i, or equivantly using previous
R′j, j < i:

R′i = ui +
∑
j<i

xjR
′
j.

Let us multiply equation BP · R′i = λiR
′
i from left by R′k·, k < i. We arrive at a set of i linear

equations for xj, j < i:

R′k ·BP ·R′i − λiR′k ·R′I =
∑
j<i

(λi − λj)R′k ·R′jxj

or in matrix form∑
j<i

Ckjxj = Pk, Ckj = (λi − λj)R′k ·R′j, Pk = R′k ·BP ·R′i − λiR′k ·R′i.

Finally R = P TR′.

14.9.3 Harmonic Verlet correction

While numerical verification of the above formulas, it is useful to consider the frequency error
of the Verlet integrator.

Let us consider a harmonic oscillator
r̈ = −ω2

0r, (14.24)

where f0 = ω/2π is the frequency.

Let us insert
r(t) = eiωt, v(t) = Aeiωt

into the leap-frog integration of (14.24),

r(t+ h) = r(t) + hv(t+ h/2), v(t+ h/2) = v(t− h/2)− hω2
0r(t).

After some algebra we get the equation for ω:

1− cos(ωh) =
ω2

0h
2

2
.

2Alternatively, an octave script can be called. This is faster, but more memory consuming.

14: Measurements [Contents] – [Index] 191

Approximately for the wavenumber ν̃ = f/c

ν̃ = ν̃0(1 +
π2

6
c2ν̃2

0).

Maximum frequency and wavenumber that can be (inaccurately) integrated are

fmax =
1

2πh
, ν̃max =

1

2πch
.

14.10 Thermodynamic integration from a harmonic

crystal

14.10.1 Consistent and inconsistent models

Any model – as classical or quantum molecular dynamics or Monte Carlo simulation based on
forces between molecules – is only a better or worse description of reality. A model that can
be used in one simulation – as determining a phase equilibriuum using the slab geometry – is
a “consistent” model.

On the contrary, there are models which describe different phases using different approxima-
tions, for instance: (i) including the Berensen “missing term” in water/vapor equilibrium cal-
culation, (ii) using the electronic continuum approximation (which appears as scaled charges)
plus correction terms in condensed phases and no scaling in the gas phase, (iii) using quantum
mechanics for a crystal and (semi)classical mechanics for the fluid phases, or even (iv) using
the experiment for one phase and calculations for the other. Such models are “inconsistent”
and one cannot directly simulate both phases in one box (as droplets, bubbles, nucleation,
interfaces).

Here we deal with classical consistent models. Using classical mechanics implies that the results
must not depend on the value of the Plack constant nor masses of particles.

14.10.2 Reference state

Although calculations provide the “absolute” chemical potential of a model, it is convenient
to use a combination of all constituent molecules, ions and atoms at the ideal gas state at the
same temperature and some standard pressure pstd (typically 1 bar) as the reference,

µ̃(p, T ; pstd) = µ(p, T)−
∑
i

νiµid,i(p
std, T) (14.25)

where µ(p, T) is the calculated chemical potential (of a crystal) per a molecular formula with
stoichiometric coefficients νi and subscript id refers to the ideal gas state (of the same model
and the same approximation).

We use classical mechanics, therefore µ̃cr(p, T) depends neither on the value of the Planck
constant nor atomic masses; this is actually a strong test of calculations. Particularly, the
spectrum does depend on massed of particles so do the partition functions of molecules in gas,
but their difference according to (14.25) must be the same. Note that equalizing masses of
particles (light hydrogens become heavier, heavy oxygens lighter) not only allows for longer

14: Measurements [Contents] – [Index] 192

timesteps in simulations, but also decreases the width of the spectrum and increases the
precision of normal modes calculations.

For many purposes, the reference chemical potential is taken “inconsistently” from the
experiment as the ideal gas value at given T and a standard pressure pstd. The chemical
potential with respect to this reference is

µ̃expt ref(p, T ; pstd) = µ̃cr(p, T) +
∑
i

νi
[
µid,i(p

std, T)− µexpt
id,i (T, pstd)

]
, (14.26)

where µid,i is now calculated from (14.39) with real masses and the experimental Planck
constant. The difference between both references should be small for a good model.

14.10.3 Thermodynamic functions

Let Q be the semiclassical canonical partition function of a system of N structureless (point)
and identical particles,

Q =
1

h3NN !

∫
exp

[
−Etot(r

N , pN)

kT

]
drNdpN , (14.27)

where h is any constant of dimension energy ×time, k is the Boltzmann constant, T the absolute
temperature, Etot(r

N , pN) = Epot(r
N)+Ekin(pN) is the sum of the potential and kinetic energy,

and rN , pN denote concisely N vectors of atom positions and momenta, respectively. The
integration in positions is over volume V and in momenta over infinite range. No observable
quantity (e.g., the Gibbs energy of a crystal with respect to ideal gas reference) must depend
on the value of h.

If h is the Planck constant, the above Q is called the semiclassical partition function; it
represents a good approximation of the true quantum partition function provided that the
products of typical energies and times are much less than h.

It is straightforward to generalize the above formula to molecules described by internal
coordinates (e.g., rotating rigid bodies) treated via the classical mechanics as well as to mixtures
of such molecules.

The Helmholtz free energy and Gibbs energy are then

A = −kT lnQ, G = A+ pV. (14.28)

For the sake of the thermodynamic integration, it is advantageous to work with ratio −A/T
(called the Massieu potential) because the differential contains quantities easily measurable in
simulations, internal energy U = 〈Etot〉 and pressure p,

d(−A/T) =
U

T 2
dT +

p

T
dV, (14.29)

This differential form is easy to integrate using simulation-based integrands unless we are close
to two singular cases, a low-temperature state limiting to harmonic crystal and a low-pressure
state limiting to ideal gas.

14: Measurements [Contents] – [Index] 193

14.10.4 Classical crystal

Harmonic crystal

First, let us consider a classical harmonic oscillator in one dimension defined by force constant
K. Its potential energy is

u(x) =
K

2
(x− x0)2. (14.30)

The semiclassical partition function of this oscillator is

q =
1

h

∫ ∞
−∞

dx
∫ ∞
−∞

dp exp

[
−u(x) + p2/2m

kT

]
=
kT

h
2π

√
m

K
=
kT

hν
, (14.31)

where ν is the frequency of motion. The semiclassical partition function

q =
T

Tν
, Tν =

νh

k
, (14.32)

where Tν is the vibrational temperature.

For comparison, the quantum partition function is

q =
e−Tν/2T

1− e−Tν/T
. (14.33)

A crystal in the harmonic approximation is characterized by a set of Nf fundamental
frequencies; for N sperically symmetric molecules in periodic boundary conditions with zero
total momentum it holds Nf = 3N − 3. The crystal partition function is then

Qharm =
Nf∏
i=1

T

Tνi
(14.34)

and the Helmholtz energy is

Aharm = −kT lnQharm = NfkT ln
T ν
T
, T ν =

Nf∏
i=1

Tνi

1/Nf

, (14.35)

where T ν is the geometric mean of the vibrational temperatures. This potential diverges as
temperature approaches zero.

No divergence occurrs if the vibrations are treated by quantum mechanics, as in the Debye
model. One would be tempted to use quantum mechanics to calculate the partition function.
However, such an approach is not consistent with classical simulatios: Equilibria calculated
from quantum-based crystal would not be consistent with direct simulations of crystals in a
solution or melt.

In the ideal gas reference the number of the degrees of freedom will be 3N not decreased by
3 for the periodic boundary conditions. This introduces an inconsistency because the final
result in the classical mechanics must not depend on the value of Planck constant h and in
the classical Gibbs energy we always have term NfkT lnh. Finite-size error on the order of
O(1/N) is inevitable, but in this inconsistency the error would depend on the value of h which
is “arbitrary” in the classical mechanics. A natural solution is to multiply Aharm by factor

14: Measurements [Contents] – [Index] 194

Table 14.1: Harmonic sinjarite crystal (CaCl2.2H2O)96 at 365 K. eq is the factor for equalizing
masses within a molecule (for eq = 1 the masses of H and O are the same), T nu is the geometric
average of vibrational temperatures, aharm is given by eq. (14.35), a∗harm = aharm(Nf + 3)/Nf ,
gid is the sum on the right hand side of (14.25). The calculation uncertainties are on the order
of the last given digit.

eq T nu aharm gid aharm − gid a∗harm − gid

1 K J/mol J/mol J/mol J/mol

0.0 370.6504 977.6 −269304.5 270282.1 270283.5

0.2 338.6379 −4770.5 −275052.7 270282.2 270275.1

0.4 322.6019 −7857.6 −278140.1 270282.5 270270.8

0.6 312.9599 −9788.6 −280071.0 270282.4 270267.8

0.8 307.0343 −11005.0 −281287.4 270282.4 270266.0

1.0 303.9410 −11649.4 −281931.8 270282.4 270265.0

0.8 307034.8 428573.6 158946.2 269627.4 270266.1

(Nf + 3)/Nf . However, an O(1/N) dependence on the masses of the atoms is introduced, which
we consider as a minor problem.

Since the calculation of T ν is relatively easy, we extrapolate (see later) T ν to the thermodynamic
limit and calculate the Helmholtz energy per one molecule as

aharm = nfkT ln
T ν
T
, (14.36)

where now nf is the number of degrees of freedom per a chemical formula; for models without
constraints it holds nf = 3

∑
i νi, for rigid water nf = 6.

Real crystal

In order to calculate the Helmholtz energy of real crystal with simulation-based energy, we will
start from the harmonic crystal at temperature T , integrate down to zero, and then integrate
back with the simulation internal energy[43]. (A similar trick is used to calculate the fugacity
of real gas.)

Acr = Aharm + E0 − cT
∫ T

0

Etot − E0 − Etot,harm

T 2
dT

= cAharm + E0 − T
∫ T

0

Epot − E0 −NfkT/2

T 2
dT

because 〈Etot,harm〉 = NfkT , 〈Ekin〉 = NfkT/2 for both crystals, and 〈Epot,harm〉 = NfkT/2. The
potential energy at zero temperature, denoted as E0, is added.

The integrand is no longer singular. However, precision is lost close to T = 0 because the
standard deviation in the potential energy is proportional to T so is the statistical error (with
the same trajectory length). Consequently, the statistical error in the integrand is proportional

14: Measurements [Contents] – [Index] 195

to 1/T . This is the same behavior as for the gas at pressure approaching zero (unless we know
the second virial coefficient). Finally, the Gibbs energy of the crystal is

Gcr = Acr + pV. (14.37)

14.10.5 Gas and liquid

Ideal gas

The classical partition function of (generally molecular) ideal gas is

Q =
1

N !

(
V q

Λ3

)N
, Λ =

h√
2πmkT

, (14.38)

where q is the internal partition function. The Gibbs energy is then

Gid = NkT

[
ln

ph3

N(kT)5/2(2πm)3/2q
+

lnN !

N
+ 1

]

= NkT

[
ln

ph3

(kT)5/2(2πm)3/2q
+

ln(2πN)

2N
+O(N−2)

]
,

where we used the ideal gas equation of state, pV = NkT . Term ln(2πN)/2N vanishes in the
thermodynamic limit, thus the chemical potential (per molecule) is

µid,i = kT ln
ph3

(kT)5/2(2πmi)3/2qi
= kT ln

pΛi

kTqi
. (14.39)

where subscript i denotes species.

For instance, for rigid clasical water the semiclassical partition function includes only rotations,

q =

√
π

σ

∏
a={x,y,z}

(
2IakT

h̄2

)1/2

=
(2π)7/2

h3
(kT)3/2

√
IxIyIz, (14.40)

where the symmetry number is σ = 2).

Mixture of ideal gases

In the Boltzmann statistics, the partition function of a mixture is a product of partition
functions of molecules. Thus

Gid =
∑
i

Niµid,i +NkT
∑
i

xi lnxi +
kT

2

∑
i

ln(2πNi), (14.41)

where Ni is the number of molecules of species i, N =
∑
iNi, and xi = Ni/N is the mole

fraction. The last term is the estimated finite-size error.

14: Measurements [Contents] – [Index] 196

Real gas

The corection for nonideal behavior is given by the integral of the volume difference from the
ideal gas mixture over pressure at constant T ,

G = Gid +
∫ p

0

(
V − NkT

p

)
dp. (14.42)

The integrand is not singular; since it limits to BN , where B is the second virial coefficient, in
simulation we may avoid precision loss by calculating B and using it as the constraint in the
low-pressure limit.

Crystal–liquid equilibrium

For calculating melting temperatures of pure crystals (ice, rock salt, etc.), the chemical
potentials equal the Gibbs energy divided by the number of molecules. In general mixtures
(e.g., to calculate solubilities of crystals in water), we need the chemical potentials of species,

µi = µid,i + kT lnxi

∫ p

0

(
V i −

NikT

p

)
dp, (14.43)

where V i denotes the partial molar volumes of species. Particularly, having crystal with
composition given by stoichiometric coefficients νi, we need combination

µsol =
∑
i

νiµi (14.44)

and therefore
∑
i νiV i. It means to run (at least) two NpT simulations with different

compositions. Alternatively, the Kirkwood–Buff integrals can be used.

To reach liquid, we have to add thermodynamic integration over temperature and pressure
around the critical point to avoid gas–liquid phase transition (there are other options, eg.g,
to start from Lennard-Jones liquid and transmute Lennard-Jonesium into molecules we need).
The integration over temperature requires partial molar enthalpies,

µsol(T2)

T2

− µsol(T1)

T1

=
∫ T2

T1

∑
νiH i

T 2
dT. (14.45)

Since the composition of the liquid (solution) may be different, we equate the chemical potential
of crystal

µcr =
∑
i

νi
Gcr

N
(14.46)

and the chemical potential of the solution, µsol, integrated to the same temperature and
pressure. Note that xi = Ni/N 6= νi/

∑
i νi unless we are in an eutectic point.

14.10.6 Finite-size effects

One dimension

To derive the functional form of the finite-size effects of Aharm, let us first consider a periodic
chain of N atoms (one-dimensional crystal) which may vibrate by N modes with frequencies

14: Measurements [Contents] – [Index] 197

approximately given by ν = cn/Na (double degenerate), n ∈ {1, . . . N/2}, where a is the lattice
constant and c the speed of sound. We assume that c is a constant, N is even, and neglect
momentum conservation. The Helmholtz energy (14.35) is

Aharm = −2kT
N/2∑
n=1

ln
NakT

hcn
(14.47)

= −kTN ln
akT

hc
− 2kT

N/2∑
n=1

ln
N

n
(14.48)

= −kTN ln
akT

hc
− 2kT (N lnN − ln(N/2)!) (14.49)

≈ −kTN ln
2akT e

hc
− ln(πN), (14.50)

where we used the Stirling asymptotic expansion of factorial with terms O(1/N) and higher
neglected. The finite-size correction per particle is then ln(πN)/N , as a direct consequence of
term ln

√
2πN in the Stirling formula.

A more accurate calculation should take into account dispersion. To the second order it holds
ν = (1 − C(n/N)2)cn/Na ≈ cn/Na exp(C(n/N)2), where C is a constant independent on N .
The term to be added to Aharm is

N/2∑
n=1

C
(
n

N

)2

≈ C

8
(14.51)

for large N (1/N neglected), leading to the correction on the order of N−1.

In addition, the number of degrees of freedom is N − 1 because of momentum conservation.
This changes the estimated Helmholtz energy by a constant and the finite-size error by an
O(1/N) term.

Three dimensions

Let us estimate the finite-size correction for a cubic crystal in periodic boundary conditions.
The key term of the Helmholtz energy, Aharm, contains the sum over integer vectors (positive
coordinates) up to certain maximum n = |→n| < m ∝ N1/3,

S =
∑
ν

ln
1

ν
= constN −

∑
→
n

lnn. (14.52)

The above formula is based on two approximations: (i) the speed of sound does not depend on
the direction (this is not generally true even for cubic crystals), and (ii) we have to sum over
both longitudal and transversal waves. While enlarging N and m (and dividing by N) we get
finer grid; in turn, the finite-size correction equals the sum S minus the integral of the same
argument and in the same bounds.

In order to calculate the correction, we first shift the integration bounds by 1/2; in fact,
the upper bound is slightly less because of the conserved momenta. This will produce terms
proportional to less than m2 lnm (for nx, ny, nz = 1) and to m2 lnm (for n = m). The remaining
error is estimated using formula ∫ 1/2

−1/2
f(x)dx− f(0) ≈ f ′′(0)

24
(14.53)

14: Measurements [Contents] – [Index] 198

valid for small higher derivatives. After applying this formula in three coordinates (the second
derivative leads to a Laplacian ∆), replacing the sums into integrals, and using spherical
coordinates, we get a term proportionala to∫ m

const
∆ ln r 4πr2dr = 4πm− const. (14.54)

The leading terms are then m2 lnm/N and smaller m/N .

This is in disagreement with numerical tests where such large terms have not been detected.
The formula consistent with data is

µharm(N) = µharm(∞) +
a lnN

N
+

b

N
, (14.55)

where constants a, b are fitted by the least-square methods with weights proportional to N2. In
addition, we extend this formula to non-cubic crystals provided that the shape (aspect ratios) is
preserved. Interestingly, a lattice model of ice exhibits the same finite-size behavior [J. Kolafa,
JCP 140, 204507 (2014)].

14.10.7 Miscelaneous notes

Massieu and Planck potentials

Slightly simpler expressions can be obtained using the Massieu and Planck potentials,
respectively,

Φ = S − U

T
= −A

T
= k lnQ, dΦ =

U

T 2
dT +

p

T
dV, (14.56)

Ξ = Φ− V p

T
= −G

T
= k lnQ− pV

T
, dΞ =

H

T 2
dT − V

T
dp. (14.57)

Possible extension to integration over pressure

We define the reference as a limiting behavior for T → 0 which can be then extended to a
harmonic crystal with linear compressibility. Its Planck potential is

Ξharm = −E0 + pV0(1 + α0T)

T
+Nfk ln

T

T ν
, (14.58)

where H0 = E0 + pV0 is the enthalpy at T = 0, αT = (1/V)(∂V/∂T)p is the thermal expansion

coefficient, and T
Nf

ν =
∏
Tνi . The full Planck function is then given by integration over T at

constant p

Ξ = Ξharm +
∫ T

0

H −H0 −NfkT − pV0α0

T 2
dT, (14.59)

where H is available from an NpT simulation. Note that the integrand is not singular.

or per mole

µm = µid,m +
∫ p

0

(
Vm −

RT

p

)
dp. (14.60)

Chapter 15

Special versions

I should write more about boundary conditions in cook. Now, see Sect. 8.3 for an overview.
Also comments in file simopt.h may be useful. Only a few particular versions and special
terms are listed here.

15.1 Fixing positions of selected atoms

Positions of selected atoms can be fixed via harmonic springs. See also see Sect. 15.11. The
potential is

Ufix =
∑
i

K

2
(ri − rfix

i)2

File simname.fix defining sites to be kept fixed is needed:

this is comment

! this as well

! the following line specifies that site # 2 will be fixed:

2

! the following line specifies that sites 5 6 7 8 will be fixed:

5-8

! the following line specifies that site 12 will be fixed

! to the position x,y,z given (if no x,y,z are given, the positions

! are taken from the initialization)

12 5.5 6.6 7.7

! then the initial file written while init>=3 is not needed.

! * Site numbers for the first molecule can be found in mol-file or

! ble-file (table sites), otherwise have to be calculated

! This is incorrect line:

2 3

This file has the same format as molname.keep or molname.mark from blend and can be
copied. However, atom positions are not present.

• Force constant K = option -k. K is in units K/A^2. Reasonable values are probably in
range 100–10000. Too low values do not keep atoms in positions firmly enough, too large
values cause bad energy conservation and other artifacts.

199

15: Special versions [Contents] – [Index] 200

• Negative value of option -k [default] turns off any fixing and file simname.fix is ignored.

• For zero value, -k0, see Sect. 15.11.

• If a line containing keyword fix is present in simname.cpi, energy Ufix is recorded in the
convergence profile

Initialization (was changed in V2.4j):

• If simname.fxc exists, it is read and the positions saved there are used as fix locations.

• If simname.fxc does not exist, the positions are taken from the configuration at job start.

• If, in addition, atom positions are present in file simname.fix, they replace the positions
given above.

In any case, file simname.fxc is written to be used next time. In the next start of cook -k,
simname.fxc is used; it may be modified by coordinates specified in simname.fix

Conserved quantities: Presence of non-symmetric potential causes the momentum and
angular momentum (for free b.c.) not to be conserved. For general 3 or more fixed atoms,
this is correctly taken into account in calculating the number of degrees of freedom (needed to
evaluate Tkin). In addition, correcting the momentum and angular momentum for numerical
errors is turned off (unless drift is specified)

Bugs: for 1 or 2 atoms to be fixed (or linear set of atoms), the number of degrees of freedom
calculated and correcting the angular momentum is incorrect and must be set using drift and
conserved.

Tested with FREEBC only, but in principle should work with other b.c. too

15.2 Notes on water models

There are THREE versions of TIP3 water:

1. Flexible TIP3 water, as used in blend, with small intermolecular H-O and H-H Lennard-
Jones terms to prevent H-O charge singularity. Because of flexibility, the H-bond energies
are lower (dimer energy = -6.8322 kcal/mol). To use this model also in cook, do not use
option -h in blend and run cook -u9999 -x.

2. Rigid TIP3 water, with the same intermolecular H-O and H-H Lennard-Jones terms as
above. This is used in cook when *.ble file has been created by blend -h AND cook -x

(and no -uK option selecting flexible terms is used). Dimer energy = -6.5920 kcal/mol.
It is recommended to use this model with the random initializer (init=3="random") to
prevent singularities.

3. Rigid ‘original’ TIPS3 water: blend -h needed and no -x nor -uK is used. If possible,
optimized code is used (using the optimized code is suppressed by cook -x0; the numerical
results should be the same). Dimer energy = -6.5390 kcal/mol.

15: Special versions [Contents] – [Index] 201

As regards other water models, they are usually defined without H-H and H-O Lennard-Jones
terms. There are, however, optimized and unoptimized versions of TIP4P and ST2. (Note:
TIP4P dimer energy = -6.2345 kcal/mol).

• cook prints a warning when it recognizes water and blend -h has not been used.

• blend without -h and cook -x -u9999 will use the flexible water also in MD. This is
less efficient.

• cook need not recognize water (to use optimized code) that has been added to the system
in other way than via ‘blend hoh’ and consequently uses the general code (with H-O and
H-H terms). The molecule is still rigid (if blend -h)

15.3 Cut off electrostatic forces

Instead of the Ewald summation (which can be regarded as more accurate, but is more costly),
the simulation in periodic boundary conditions can neglect electrostatic forces beyond certain
cutoff. This version of cook is requested by #define COULOMB 2 or #define COULOMB 0 in
simopt.h.

The 1/r term in the Coulomb energy is replaced by

1

r
≈

1/r − shift, for r < αcutoff
(r − r1)3(AFA(r) +B FB(r)), for α cutoff < r < cutoff

0, for cutoff < r

where FA(r) = 1 and FB(r) = r are the base functions.

The electrostatic force is thus neglected beyond the cutoff, shifted at short separations, and
smoothly interpolated in between.

The default value of α = 0.7; the optimum values are around 2/3. The former default 0.9 is
not good [17]. The cutoff must be less than one half of the box size.

For #define COULOMB 2 this cutoff electrostatic is implemented by quadratic splines, for
#define COULOMB 0 directly by formulas. In fact, the COULOMB=2 version it makes use of
the structure of the Ewald summation, where the k-space part is turned off (K=0) and the erfc
functions (implemented by rational splines, #define COULOMB -1) are replaced by quadratic
splines that are more suitable. Both the COULOMB=2 and COULOMB=0 are approximately
of the same speed, but this may depend on the architecture.

The cutoff electrostatic should not be used for systems with free charges. It is acceptable for
systems with partial charges but neutral groups, possibly also for charged systems solvated e.g.
by water. The minimum cutoff is 15–20 Å. Because of the shift, the total energy and pressure
may be significantly affected.

The pressure calculation assumes that the virial of electrostatic forces is the same as the
electrostatic energy. This holds exactly for the Ewald summation (and therefore the virial
pressure calculated by the virtual volume change [see variable dV] is the same as the virial
calculated directly from pair interactions). However, this is an approximation only for the cut
and shifted electrostatic. The virial pressure is not consistent with the used potential; this
need not mean that it is worse approximation of the full electrostatic system, though.

15: Special versions [Contents] – [Index] 202

15.4 Gravity simulation (STARS)

In this version, requested by #define STARS, the sign of the Coulomb interactions is changed
to attraction of equal ‘charges’. To be used with FREEBC. For instance, a globular star cluster
can be simulated in this way (http://mujweb.cz/kolafa/jiri/movies/stars.htm).

15.5 Polarizable dipoles

For a general theory and formulas, see Appendix 25.

While point induced dipoles are used in blend, they are approximated by macroscopic dipoles
in cook. A polarizable site i (with an optional charge qi) accepts and additional charge −Q
and there is an auxiliary site δ

→
r apart with charge +Q:

q_i-Q +Q E

o------o ---->

dr

It holds
→
µi = Qδ

→
r i =

↔
αi ·

→

Ei =
↔
αi ·

→

F i/Q (15.1)

or
δ
→
r i =

↔
αi ·

→

F i/Q
2

where
→

Ei is the electric field acting on site i,
→

F i is the electric force,
→
µi is the induced dipole, and

↔
αi is the polarizability tensor. (See also Appendix 25.) The larger Q, the better approximation
of point dipoles, but lower numerical accuracy; Q = −1000e seems to be a good tradeoff.

Particularly, equation (25.6) is approximated by the numerical derivative

→

f rep,i = −κiQδ
→
r i ·

→

∇i
→

f ij ≈ −κiQ[
→

f ij(
→
r i + δ

→
r i)−

→

f ij(
→
r i)].

Equation (15.1) should be valid for all polarizable atoms in the system. Since the field
→

E
depends on the induced dipoles on other atoms, we have a set of equations for the so-called
self-consistent field (SCF). Let us write it shortly as

D = Iter(D)

where D is the set of induced dipoles (or equivalently δ
→
r ’s) and operator Iter() denotes one

iteration. In this iteration, all electrostatic forces are calculated (using the fixed set of atomic
charges and current induced dipoles) and from them the new induced dipoles.

If the iterations diverge, it is called the ‘polarization catastrophe’. It may happen if the
polarizability is too large and/or atoms are too close together (e.g., at too high temperature).

The SCF equation can be rewritten as

D = ωIter(D) + (1− ω)D

where ω (in the program called scf.omega) is the ‘mixing iteration parameter’. For the
equations of motion for the induced dipoles, see also Appendix 27.

15: Special versions [Contents] – [Index] 203

15.5.1 Polarizability models

Several models of polarizability are available. They are selected in the simopt.h file by #define

POLAR number, where number is a sum of the following numbers (or via configure.sh):

1 Repulsive antipolarizability (shell-core model [3]). All polarizable atoms can interact.

2 Saturated polarizability (see Sect. 25).

4 Makes some optimizations if there are also uncharged atoms. Use this option if there are
more than about 1/4 of uncharged atoms in the system.

8 Axial polarizability supported. The polarizability is a tensor. The principal axis of this
tensor is defined by a pair of atoms, such pairs are listed in table axials in the ble-file
[see the blend manual, Section 5: Output format (ble-file)]. Bugs: tensor polarizability
cannot be saturated. POLAR 8 has been checked with the shell-core model (POLAR 1)
and it is not clear whether it can be used without it.

16 Special (see constrdaa.c and gear2polg.c)

32 Modifier of 1: repulsive antipolarizability for polar-nonpolar pairs only. (E.g., polarizable
anions and nonpolarizable cations).

64 The ADIM model [2]: also all intramolecular induced dipole–induced dipole interactions
are included

E.g., #define POLAR 9 selects the shell-core model with a support for axial polarizability
tensors; the code will be optimized for no (or a few) uncharged atoms in the system.

If #define POLAR 0 is specified, only scalar linear polarizability is supported.

If POLAR is not #defined the polarizability support is turned off.

In addition, switch GAUSSIANCHARGES (to be used with COULOMB=-3 and POLAR=0)
selects all charges to be of Gaussian distribution (of width given as sigma in the ble-file as the
last parameter).

BUG: Gaussian charges are not supported in blend and via par-files. To use them, you should
create the ble-file as well as the respective mol and gol files by a point-charge version, the
ble-file must be edited “by hand” to add the sigmas.

15.5.2 Integration methods

There are three integration methods available.

• Iterations This method is most accurate but also most time demanding because
electrostatic forces are calculated several times in one integration step. The self-consistent
field is iterated until sufficient accuracy (given by variable scf.eps) of the induced dipoles
is reached. The value of scf.eps is given in program units, 1 p.u. = 0.0117501 D. Values
of scf.eps less than 0.01 prog. units are normally recommended for the iteration mode.
Since prediction of the induced dipoles from previous integration steps is used at the same
time, (cf. option -p) usually 2–4 iterations are sufficient.

15: Special versions [Contents] – [Index] 204

This method can be used with both Gear integration (option -m#, # > 2) and
Verlet/SHAKE (-m2 = default). For Gear, you may use either the ASPC predictor
(default) with the mixing iteration parameter scf.omega=1 or higher (superrelaxation), or
a higher-order partially stable predictor (see option -p); here, scf.omega less than 1 may
be more efficient1. By careful testing of available predictors and the values scf.omega,
often very accurate induced dipole can be obtained for two iterations per step.

• ASPC Method using a stable second-order predictor see Sect. 27. It should be used with
Verlet/SHAKE. This method normally requires one evaluation of electrostatic forces per
step, however, the self-consistent field is less accurate (and a little delayed behind the
correct SCF); the time-reversibility (and energy conservation) is good, though.

This method is selected by option -p. The default is the k = 2 predictor (equivalent to
-p229). The value of scf.omega is set to the theoretical stability limit. However, (much)
more precise integration can be obtained by careful optimizing the value of scf.omega.
To do this, run a series of short simulations (let us say by 100–1000 steps) with increasing
values of scf.omega, starting from the theoretical stability limit (k+2)/(2k+3) by steps
of about 0.01. Set scf.eps 10–100× grater than the expected error. Follow quantities
called “polar one-step maxerr”, “polar one-step stderr”, “selffield rate”, and “selffield
iter”; in the .cpi file, use “pstd”, “pmax”, “Pstd”, “Pmax”, and “rate” (so they appear
in the convergence profile file .cp). Use scf.omega by 0.02–0.05 smaller than the value
where the iterations become unstable (the error increases and the number of iterations
> 1).

• Combined strategy In practical simulation, if ASPC is not accurate enough, a much
better accuracy (by one order and with a good energy conservation) can be obtained by
using exactly two iterations per MD step. This is requested by scf.eps=-2. The value
of scf.omega can be much larger than with one iteration, sometime even biger than 1;
careful setup is needed, though, because there is no accuracy limit anymore to prevent
the polarization catastrophe.

• Car–Parrinello-like approach (also called Lagrangian or extended Lagrangian) is a
mechanical model of a polarizable dipole. The Lagrangian is:

L = L0 +
∑
i

(M/2)Dṙ2
i −

∑
i

(K/2)Dr2
i

where L0 is the unperturbed Lagrangian and K = Q2/α (only scalar polarizability is
supported). For a fixed configuration at zero temperature, the equilibrium values of the
dipoles are the same as the SCF dipoles, during simulation they will oscillate around the
SCF solution.

This method is selected by option -p, zero 2nd position.

The ‘mass’ of the additional degree of freedom is set indirectly using its typical correlation
time tau.dip:

M = Q2tau.dip2/α

(One free ‘mass’ M in a constant field exhibits small harmonic motion with period
2πtau.dip.)

BUG: in FREEBC, the algorithm removing the angular momentum drift is not correct
and leads to energy drift (decrease). Use drift unless friction thermostat.

1scf.omega can be also set by option -^

15: Special versions [Contents] – [Index] 205

Car-Parrinello-like method is new in version 2.0c.

NOTE: name “Car–Parrinello” is rather misleading. It is not the quantum Car-Parrinello
method.

BUG: this version is of poor accuracy, usually the fast vibration Drude charge subset is
kept at a lower temperature, which is not implemented in this version.

15.6 Pressure tensor

New in version 2.4a, definition modified in 2.4m. Pressure tensor (also called stress tensor2)
is for a system of point interacting particles in free space given by

↔

P =
↔

P kin +
↔

P vir =
1

V

N∑
i=1

(
mi
→̇
r i
→̇
r i +

→

f i
→
r i

)
(15.2)

The scalar pressure is 1/3 of its trace, P = tr(
↔

P)/3.3

For models with rigid bonds (or rigid models described by sites and rigid bonds, see Sect. 11.3)
it is given by

↔

P =
↔

P kin +
↔

P vir,=
↔

P kin +
↔

P constr +
↔

P config,

where
↔

P constr =
1

V

∑
a,b

→

f
constr

ab

→
rab,

the sum is over all bonds a–b and
→

f
constr

ab is the constrained force (fictitious force needed to
maintain the bond, available readily in the MD code). The configuration al part in periodic
b.c. has to be also expressed by pair interactions,

↔

P config =
1

V

N∑
i<j

→

f ij
→
r ij. (15.3)

For long-range forces the sums must run also over all periodic images. Formulas for the Ewald
summation are summarized in excellent paper [20]; for the r-space cutoff less than half the

minimum box size the the real-space part of
↔

P config is evaluated in the same way as (15.3).

Notes:

• For atomic systems without rigid bonds (constraints) in the NVT ensemble it holds

↔

P kin =
NkBT

V

↔

1 (15.4)

The atom-based kinetic part of the pressure tensor for anisotropic systems is no longer
isotropic. Full pressure tensor must be therefore used (typical example is surface tension
of rigid models of water).

2Sometimes the stress tensor is defined as minus the pressure tensor.
3In versions 2.4a–2.4l the pressure tensor was defined with factor 1/3 so that P = tr(

↔

P).

15: Special versions [Contents] – [Index] 206

0 0.005 0.01

1/N

-2.0

-1.5

-1.0

-0.5

0.0

0.5

p
/M

P
a

with kin. corr.

uncorrected

0 0.005 0.01

1/N

36.5

37.0

37.5

38.0

p
/M

P
a

with kin. corr.

uncorrected

0 0.01 0.02

1/N

5.9

6.0

6.1

6.2

p
/M

P
a

with kin. corr.

uncorrected

Figure 15.1: Pressure as a function of the number of atoms for simulated Lennard-Jones
argon (EvdW = −0.2380684 kcal mol−1, RvdW = 1.910992 Å). Left: fcc crystal (T = 60 K,
ρ = 1620 kg m−3), middle: fluid (T = 160 K, ρ = 1000 kg m−3), right: gas (T = 140 K,
ρ = 400 kg m−3).

• NEW in V2.6m:
If some integrals of motion are preserved (e.g., 3 components of the momentum in the
periodic b.c. with the Nosé–Hoover thermostat), then the kinetic part of (15.2) is subject
to finite-size errors of the order of ∝ 1/N . More accurate results, especially in dilute fluid

(see Fig. 15.1), are obtained if
↔

P kin is multiplied by a factor which restores the equation
for the kinetic temperature,

↔

P kin =
Nf0

Nf

1

V

∑
i

mi
→̇
r i
→̇
r i (15.5)

where Nf0 is the number of degrees of freedom not taking into account conserved
quantities (Nf0 = 3N − constraints) but taking into account mechanical constraints
(bonds), Nf is the effective number of degrees of freedom (incl. all conserved quantities);
Nf is used in the formula for the kinetic temperature, Tkin. For atomic systems without
constraints and with canonical thermostats, (15.4) is exactly reproduced; it is not for
the Berendsen thermostat where a (smaller) residual finite-size error ∝ 1/N is inevitable.
This correction should not be used with the true MTK barostat. In addition, it should
not be used in the slab geometry because of thermodynamic inconsistency ∝ 1/N present.
See also variable corr.

• The diagonal components can be independently calculated by appropriate scaling of the
box, see variable rescale; the typical application is the surface tension in the slab
geometry, see Sect. 15.7. In the case of systems with constrained bonds, scaling based on
center-of-mass has to be used. To obtain the full tensor, the corresponding kinetic part
calculated from the centers of mass must be added. The result is in the thermodynamic
limit (not numerically for every configuration) the same.

• Direct calculation of the center-of-mass-based configurational part of the pressure tensor
is not supported (in V2.4a).

All pressure tensor components are given in Pa. Symbols used in statistic analysis are:

• Pvir =
↔

P vir =
↔

P constr +
↔

P config

15: Special versions [Contents] – [Index] 207

• Pkin =
↔

P kin (atom-based)

• PKin = molecular (center-of-mass) based kinetic pressure tensor

• Pvirc = tr(
↔

P constr)/3

• Pvir pair = tr(
↔

P vir)/3
(without k-space contribution if Ewald summation is used)

• Pvir xy-zz = (Pvir,xx + Pvir,yy − 2Pvir,zz)/3
(good for surface tension of models without rigid bonds)

• Pt = (Pxx + Pyy − 2Pzz)/3
(good for surface tension of all models, needs PRESSURETENSOR=3)

To record components of the pressure tensor in the .cp files, their codes must be given in the
.cpi-file (see Sect. 9.2.3. The four-letter codes are Pvxx, Pvxy, etc., for the site-based virial
parts, Pkxx etc. for the site-based kinetic part, and PKxx for the center-of-mass based kinetic
part, and finally Ptxx, Ptyy, Ptzz, Ptxy,Ptyz, Ptzx for the full pressure tensor components.
All these values are without cutoff corrections and the units are Pa.

15.6.1 Pressure tensor for Drude oscillators

Let
→
r
′
i be positions of the Drude charges and shortly r = {ri}Ni=1, r′ = {r′i}Ni=1. Let us denote

U ′ = U ′(r, r′) the potential energy as a function of all point charges (normal and Drude). We
are interested in the self-consistent potential energy,

U(r) = min
r′

[
U ′(r, r′) +

∑
i

Ki

2
(
→
r
′
i −

→
r i)

2

]
(15.6)

The minimum condition is equivalent to

∂U ′

∂r′i
+Ki(r

′
i − ri) = 0 (15.7)

Let us calculate U(r + dr):

U(r + dr) = min
r′′

[
U ′(r + dr, r′′) +

∑
i

Ki

2
(
→
r
′′
i −

→
r i − d

→
r i)

2

]
(15.8)

Here r′′ = r′ + dr′, where dr′ is of the same order as dr. However, the minimum is quadratic
in r′ and therefore replacing r′′ ≈ r′ in (15.8) will lead to a second order error which can be
neglected. From the Taylor expansion of U(r + dr) (or simply taking ∂/∂

→
r i of [. . .] in (15.6))

we get
∂U

∂
→
r i

=
∂U ′

∂
→
r i
−Ki(

→
r
′
i −

→
r i) =

∂U ′

∂
→
r i

+
∂U ′

∂
→
r
′
i

(15.9)

The computer code (r- and k- space Ewald sums for both real and Drude charges) calculates
the following components of the pressure tensor

1

V

∑
i

(
→
r i
→

f i +
→
r
′
i

→

f
′
i

)
= − 1

V

∑
i

(
→
r i
∂U ′

∂
→
r i

+
→
r
′
i

∂U ′

∂
→
r
′
i

)

15: Special versions [Contents] – [Index] 208

However, from (15.9) it follows that it should be

− 1

V

∑
i

→
r i
∂U

∂
→
r i

= − 1

V

∑
i

(
→
r i
∂U ′

∂
→
r i

+
→
r i
∂U ′

∂
→
r
′
i

)

Therefore, the following correction should be added

1

V

∑
i

(
→
r
′
i −

→
r i)

∂U ′

∂
→
r i

= − 1

V

∑
i

(
→
r
′
i −

→
r i)
→

f
′
i

where
→

f
′
i is the force acting on the Drude charge. Since in our model the force on the Drude

charge is entirely electrostatic, the trace of the above term (contribution to the virial pressure),
the above term is −(2/V)Eself .

15.7 Slab geometry and surface tension

To enable the z-density profile and surface tension calculations, SLAB must be #defined in
the respective simopt.h, or selected while running configure.sh. In addition, slab.mode=1
and slab.grid must be set to see the table of results with and without cutoff corrections.

For slab cutoff corrections, see Sect. 31.

To prepare a slab, define first the box; Lx = Ly and Lz = 3Lx is recommended. Example of
data in the def-file:

x=30

L[0]=x

L[1]=x

L[2]=x*3

Note that efficiency of Ewald summation decreases somehow for too an elongated slab even if
the linked-cell list method is used; cutoff electrostatics is not affected in this case.

There are several ways how to create a slab.

1. Use init="slab" with tau.T=0.1 or so. Simplest but slowest.

2. Prepare a periodic box first, then enlarge L[2] and load again with load.L[2]=1. You
may use variable shift[2] to shift the configuration/

3. Use variables slab.n, slab.Kz, slab.z0, etc. These artificial forces should be turned off
for measurement. Example:

n=300

N[0]=n

slab.n[0]=n ! will affect n molecules

slab.Kz[0]=10 ! moderate force

slab.z0[0]=x*0.6 ! slab width=1.2x

4. Edit a configuration using utilities plbbox and/or plbstack, then load it using
init="plb".

15: Special versions [Contents] – [Index] 209

There are four basic ways of slab simulation::

Strictly periodic mode (default) is recommended for liquid with very dilute vapor or two
layers of liquids. The system is fully periodic even in the the z-direction. If the the vapor
pressure is not negligible, molecules moving in the z-direction cross the boundary and
cause that the center of the slab moves slightly in the opposite direction. The z-density
profile is then “smoothed out” and the cutoff corrections may be imprecise, too. These
errors are acceptable if only a few molecules cross the z-boundary in this way. It is not
recommended to use drift=4+8+16+32 (recenter slab and all drifts after every step) and
el.epsinf=-1 (slab-dipole correction) unless very few molecules evaporate.

Periodic mode with centered measuring (NEW in 2.6c) The autocenter feature (see
slab.sp) now shifts the slab automatically before measuring the z-profiles (not
physically—the trajectory is not affected). Generally good for high vapor pres-
sures/solubilities etc.

Almost periodic mode is recommended for liquid with moderately dense vapor. In addition,
a very small harmonic force keeping the slab in the center is added (see center.cmn,

center.cmK[2]). Particles can still cross the boundary (there is a jump in forces there,
but very small) but the slab cannot drift too much. The force constant should be set so
that the period of harmonic motion is larger than the evaporation rate; then this method
is unsuitable for very low evaporation rates. Incompatible with drift=4+32.

Z-aperiodic mode is recommended for a slab with dense vapor. It employs two “caps”
preventing particles to move in the z-directions. Example:

z=x*3

n=300

N[0]=n

slab.n[0]=n ! will affect n molecules

slab.Kz[0]=300 ! large force

slab.z0[0]=z/2-3 ! 3 A thick repulsive wall

drift=4+8+16+32 ! recenter slab and all drifts after every step

el.epsinf=-1 ! slab-dipole correction (Ewald only)

15.7.1 Surface tension via pressure tensor

The recommended method, #define PRESSURETENSOR=34 and #define SLAB is required. The
surface tension is calculated directly from

γ = −3

4
LzPt, where Pt =

Pxx + Pyy − 2Pzz
3

. (15.10)

For other info see above and see Sect. 15.6. The saturated pressure is given (without cutoff
correction) by component Ptzz. (Note: in versions 2.4a–2.4l by three times Ptzz.) Do not
forget slab.mode=1 and slab.grid.

4For models without constaints (monoatomic, with vibrating bonds), the kinetic part is isotropic, therefore,
PRESSURETENSOR=1 is enough: use “Pvir xy-zz” in the output data for the calculations.

15: Special versions [Contents] – [Index] 210

15.7.2 Surface tension via virtual area change

This method [18] is based on the formula

γ =

〈(
δU

δA

)
V

〉

where A = 2LxLy and the derivative is interpreted as scaling of x and y coordinates and
simultaneous contra-scaling of z so that the volume is the same. For technical reasons, this is
implemented as: (

δU

δA

)
V

= −3

4
Lz(pvir + pcutoff correction)

pvir = −U(+dV)− U(−dV)

2dVV
where

U(d) = U(qx, qy, z/q2), q = exp(d/3)

This method is turned on by slab.mode&2; dV must be also set. Example of surface tension
measurements:

dV=1e-3 ! step for numerical derivative; for water and 40Ax40A

! box, the systematic error in eta is 1e-5 N/m

slab.mode=3 ! 1=calculate corrections

! 2=use shape scaling V=const

! (default=all coordinates scaled q-times)

Notes:

• This method is useful to verify (the accuracy of) the pressure tensor method.

• rescale="xyzCM" (molecule-based rescaling) is the default; use rescale=0 for atom-
based rescaling.

• Internally, slab.mode&2 causes that rescale&1024 is set; this flag then selects the the
virtual area method.

15.7.3 Surface tension via virial pressure

The fastest route to the surface tension of liquids with negligible vapor pressure is via the
virial of force in th slab geometry. PRESSURETENSOR=3 need not be #defined and the code
is a bit faster (e.g., using the virial theorem for Ewald summation). Surface tension is

γ = −3

4
pLz

or more precisely with correction to vapor pressure ps:

γ = −3

4
(p+ ps)Lz

15: Special versions [Contents] – [Index] 211

where ps can be estimated from the density (use density profile) and the ideal gas EOS. The
value of γ = gamma printed contains cutoff correction of LJ terms calculated by integration
from the current density profile.

The following variables (structures) apply for slab calculations, see Sect. 9.2.5: center,
densprof, el.epsinf, drift. Do not forget to set slab.mode=1 and slab.grid and
with Ewald el.epsinf=-1, check drift. Note that with cutoff electrostatics the virial of
electrostatic forces is not equal to the electrostatic energy. Consequently, better values of the
pressure and surface tension require the virtual volume change method, see below.

15.7.4 Surface tension via virtual volume change

For completeness, this method is equivalent to the above method, but it uses the virtual
volume change to calculate the virial pressure. This makes sense with cutoff electrostatics
(COULOMB>=0), where the directly calculated virial (replacing the virial of electrostatic force by
the electrostatic energy) gives usually worse results. But there is no efficiency gain because
scaling is used—the virtual area change is a better choice. To select this method, set dV and
an isotropic rescale.

15.8 Slab geometry and vapor-liquid equilibrium

In the slab geometry, the saturated vapor pressure is given by the zz-component of the pressure
tensor, Pzz. This quantity is a result of cancellation of large components and determining of
low pressures is difficult. The following issues must be considered:

1. Do not use the homogeneous Lennard-Jones correction.

2. Do not use (thermodynamically inconsistent) kinetic correction; both points 1. and 2.
are set by corr=0.

3. The Fourier transform slab cutoff correction is recommended, see Sect. 31.1.

4. Use short enough timestep, especially for models with constrained bonds (the virial
of constrained forces is one of the components). Which VERLET version is the most
accurate is not known.

5. For charged systems, use high enough Ewald precision. It can be checked by changing
el.epsk,el.epsr; e.g., for one selected configuration run cook with option -w0 to
prevent writing the configuration, use noint=1 no=1 in the data, and try different
el.epsk,el.epsr.

6. Pzz includes the virial of attraction of dipoles of both slabs; therefore, the vapor pressure
reported is lower (even negative). The theory of this “slab dipole correction” is given in
[19] and implemented as follows.

(a) For dipolar systems (without free charges), you can use the Berkowitz correction for
the energy and forces directly: el.corr="z".

15: Special versions [Contents] – [Index] 212

(b) For systems with free charges (molten salts), the Yeh–Berkowitz correction leads to
jumps in forces and cannot be used. The following a posteriori correction for the
attraction of the z-periodic “sandwich” of slabs is

P corrected
zz = Pzz + ∆corrPzz

where

∆corrPzz =
Var(Mz)

2ε0V 2
(SI)

= 2π
Var(Mz)

V 2
(CGS)

= 2π
Var(Mz/p.u.)

(V/Å
3
)2

· 13806485.2 Pa (prog.units)

where the last version is directly applicable: use staprt -nMz SIMNAME.sta to get
the variance (in p.u.) and the volume (in Å3) in SIMNAME.prt.

The values of these corrections are printed to simname.prt, too.

For dipolar systems, both (a) and (b) can be used; it is not clear which approach is
better (more accurate).

(c) If el.corr=12 or el.corr="zCM" (for “z-Corrected-Measurement”) is given in the
data, the above a posteriori correction is transparently added to Pzz (as well as total
pressure and potential energy). The trajectory is identical to el.corr="z" (forces
are not corrected by Yeh–Berkowitz); thus, the conservation of total energy is by
this term violated.

15.9 Interfacial Gibbs energy by the cleaving method

15.9.1 The method

The implemented method is a modification of the method of [25]. It is turned on by specifying
#define SLAB 2 in the simopt.h file and recompiling. Also PRESSURETENSOR=3 is needed (not
necessary in NVT, but NVT is not suitable anyway – see below).

The Fourier transform slab cutoff correction are recommended, see Sect. 31.1.

Instead of two walls, we use the cleaving potential (a “knife”) in the z-direction; for N
interaction sites:

Φ(σ) =
N∑
i

Kσ bell
(
zi − z0

σ

)
(15.11)

where bell(x) is a bell-like function

bell(x) =

0, |x| > 1,

(1− |x|)2/2, 1/2 < |x| < 1,

1/4− x2/2, |x| < 1/2.

bell′(x) =

0, |x| > 1,

x− sign(x), 1/2 < |x| < 1,

−x, |x| < 1/2.

(15.12)
If σ > Lz/2, the nearest-image conditions apply (there is only one term). This is not
recommended because of possible artifacts.

15: Special versions [Contents] – [Index] 213

-1 0 1

z

-0.5

0

0.5

z0=0
K=1
σ=1
N=1

dΦ/dσ

f=-dΦ/dz1

Φ(z1)

Figure 15.2: The cleaving potential (“knife”), force f , and the derivative over σ

Parameter σ is the half-width of the “knife” while K/2 is the maximum steepness. The potential
maximum is Kσ/4. The figure shows the function and its derivatives for one particle.

The force on atom i in the z-direction is

fi = −∂Φ

∂zi
= −K bell′

(
zi − z0

σ

)
(15.13)

and hence the contribution to the virial of force (and the Pzz-component of the pressure tensor)
is

Wi = (zi − z0)fi. (15.14)

From the semiclassical partition function in the isothermal-isobaric ensemble5,

ZNPT =
βP

N !Λ3N

∫
dV

∫
exp(−βU − βΦ− βPV) (15.15)

where β = 1/kBT and Λ = h/
√

2πmkBT is the de Broglie thermal wavelength, we get the
Gibbs energy

G(σ) = −kBT lnZNPT . (15.16)

It is a function of knife width σ, thus by direct differentiation of (15.15) we get(
∂G

∂σ

)
p,T

=

〈
∂Φ

∂σ

〉
NPT

, (15.17)

where

∂Φ

∂σ
=

N∑
i

K
[
bell

(
zi − z0

σ

)
− zi − z0

σ
bell′

(
zi − z0

σ

)]
=

1

σ

(
Φ +

N∑
i

Wi

)
. (15.18)

The interfacial Gibbs energy is obtained by integration over dσ.

5for a pure substance – an extension to mixtures is straightforward

15: Special versions [Contents] – [Index] 214

The program stores (in the convergence profile) and analyses (calculates averages and errors)
quantity Wcleave normalized by the surface area LxLy and converted to Pa6,

Wcleave(σ) =
1

nLxLy

∂Φ

∂σ
. (15.19)

where n is the number of cleaving walls (n = cleave.n). In other words, Wcleave(σ)dσ is the
element of reversible work per surface area needed to increase σ by dσ, i.e., a pressure; it thus
includes the external z-pressure.

The surface cohesion or adhesion energy per surface area is

Wcoh,adh =
∫ ∞

0
[Wcleave(σ)− 〈Pzz〉] dσ, (15.20)

where normally a z-direction barostat is used, thus, 〈Pzz〉 = P (simulation parameter, in Pa).
Do not forget to convert σ in the integral from Å to m.

For liquid, the cohesion energy equals twice the surface tension, Wcoh = 2γl, where γl can be
obtained easily (see Sect. 15.7); note, however, that the current version of the cleaving method
does not include the cutoff corrections.

The solid (crystal) surface energy and interfacial l/s energy are, respectively,

γl/s = γl + γs −Wadh,l/s

γs =
1

2
Wcoh,s/s

15.9.2 User interface

The following quantities are available:

cleave.sigma [default=0] Parameter σ, in Å. Typically should run from zero to several Å in
steps by 0.01–0.1 Å.

cleave.K [0] Parameter K, in K/Å. Typical values are 10000–100000.

cleave.n [0] Number of cleaving walls, max. 2. Both walls have the same K and σ, but differ
in z0. cleave.n is intended for adhesion energy calculations.

cleave.init [0] If bit 20 is set (cleave.init=1) then the cleaving wall positions given below
are used, otherwise the previous versions are loaded. To be used for simulation start.
This bit is then unset so that next time the wall positions are not changed (similarly to
init = continue with simulation).
If bit 21 is set (cleave.init=2) then the cleaving walls (for (cleave.n=2) are adjusted
along with Lz according to the the z-components of the pressure tensor using the same
tau.P and bulkmodulus; use rescale="ZCM" or similar.

cleave.z0 [0] The initial position (z0) of the first wall, in the units of z-box size Lz.

cleave.z1 [0] The initial position of the second wall (for cleave.n=2).

6Internally, the program units are used (K/Å3, or more precisely kK/Å3), which the same as the pressure
unit, 1 p.u. = 13806485.2 Pa (Codata 2014), see sim/units.h

15: Special versions [Contents] – [Index] 215

If two walls are used, cleave.n=2, the Andersen (or center-of-mass Andersen) thermostat
should be used to avoid mutual “convection” in both compartments.

A barostat (tested with the Berendsen barostat) should be used in the z-direction (e.g.,
rescale="ZCM"); thus, PRESSURETENSOR=3 configured is required. For cleave.n=2 also the
wall positions are barostatted to maintain the same pressure in both compartments. Note that
the wall positions are stored in the cfg file and used unless cleave.init is set.

The slab cutoff correction (see slab.K) is recommended with cleaving, see Sect. 31.1.

15.10 Simulations at walls

The WALL version allows simulations at Lennard-Jones integrated walls (9-3 potential). One
wall (wall.n=1) at z=0 and two walls (wall.n=2) at z = 0 and z = L are supported.

The GOLD version performs simulations at vicinity of metal (ideal conductor) surface. It is
(since version 2.0e) treated as sub-version of WALL. The surface is located at z = 0, bulk
metal at z < 0, studied configuration at z > 0. If wall.n=2, then another Lennard-Jones
(non-conducting) wall is added at z = L.

Both FREEBC and cutoff electrostatics (see Sect. 15.3) versions are available, the latter is
periodic in x and y directions only.

LINKCELL version is available (with cutoff electrostatics). In this case using two walls
(wall.n=2) is recommended because atom positions z ≥ L are illegal and the program ends
with ERROR if a molecule leaves the x < L slab.

The WIDOM code differs for a slab and provides a z-dependent profile of the chemical potential.
WARNING: no cutoff corrections included for WIDOM + SLAB.

15.10.1 Atom-surface force field

The atom-surface force field is averaged (integrated) Lennard-Jones, 11.4, of interaction between
a wall atom and a given atom; these parameters are obtained by the usual combining rules from
LJ parameters of both atoms, and let rho be the number density of (smoothly distributed) wall
atoms. Then the effective wall-atom potential is

E = 4ερσ3

[
π

45

(
σ

z

)9

− π

6

(
σ

z

)3
]

15.10.2 Atom-metal force field

The electrostatic forces of a charge with a conducting wall (gold) are obtained by the method
of “inversion”:

(+)

(+)

/ configuration

(-)

(-)

15: Special versions [Contents] – [Index] 216

(+)

(+)

\ mirror image with opposite charges

(-)

(-)

The potential energy:

U =
∑
i<j

qiqj

(
1

|ri − rj|
− 1

|r∗i − rj|

)
− 1

2

∑
i

q2
i

|r∗i − rj|
,

where ri=(xi,yi,zi) and the mirror image is ri*=(xi,yi,-zi). In the cutoff electrostatics version
all the 1/r terms are modified (see Sect. 15.3).

(To derive this formula, calculate the electrostatic energy of the ‘double’ system with reflected
charged. You will get 2U. Use —ri*-rj—=—ri-rj*—, —ri-rj—=—ri*-rj*— to simplify.) Note
also that —ri*-ri—=2z.

Implementation:

Inside all site-site functions, the Coulomb term is replaced by Coulomb+inverted Coulomb.
Module interpot.c is replaced by gold.c, with the same header file interpot.h. Boundary
conditions macros in intermac.h are updated to treat periodic b.c. in x,y only and extra
support for inversion is added. The SUM i part (along with LJ, see below) is in force.c,
function goldforces().

CAVEAT: optimized water potentials not (yet) implemented, gold must be run with option
-x.

15.10.3 Using WALL and GOLD versions

Programs wall/gold derive rho from real mass density wall.rho in kg/m^3 which is available
in data (default wall.rho=19320 corresponds to gold). The Lennard-Jones parameters of the
wall material must be listed as the LAST atom in table Lennard-Jones in the system ble-file and
at the same time MUST NOT appear as normal atom in molecules. This can be accomplished
by putting it the last position when using blend and specifying N[LASTINDEX]=0 or blend
option -n0, e.g.

blend MOLECULE(s) -n0 au

where au.che is just

gold atom

MAU ! for charmm21.par

AU ! for charmm22.par or GROMOS (to be implemented)

WARNING: this requires that the correct data for gold are present in the parameter set
(charmm21.par)! The current value is

! alpha EMIN Rmin

! [A^3] (kcal/mol) (A)

MAU 1 -0.039 3.293 ! UFF -- JK

15: Special versions [Contents] – [Index] 217

based on UFF [J. Am. Chem. Soc. 114,10024 (1992)]. The value for alpha (used in the
combining rule) is just guess. We need better data from literature, and/or adjust this for given
task. This value affects the energy of adsorption.

NOT TESTED: interaction with blend -n-1

15.10.4 Wall versions and integrals of motion

Minor versions:

FREEBC free b.c. in x, y, and z > 0

NIBC nearest image periodic b.c. in x, y, free in z > 0 (NOT TESTED)

Cutoff electrostatics periodic b.c. in x, y, free in z > 0

Ewald Ewald summation not supported

Integrals of motion:

x,y periodic and FREEBC: momentum in x and y is conserved and is periodically reset to
zero, z-momentum is unchanged; center-of-mass is adjusted to (x, y) = (0, 0)

FREEBC: angular momentum in z-direction is conserved and is periodically reset to zero, x, y
are unchanged

Degrees of freedom to subtract for conserving quantities (see siminit.c):

• GOLD + FREEBC, no central force (option -o0): 3

• GOLD + FREEBC, central force (option -o#): 1

• GOLD + periodic: 2

• Fixed atoms (option -k) shrinks this to 0 (NOT GENERALLY CORRECT).

15.10.5 Initial configuration

Initializer:

• only init=3 available, both with and without config option

• config (= option -n-1 in blend): the configuration is shifted in the z-direction so that the
atom with minimum z coordinate is wall.minz from the surface (wall.minz is available in
the data, default=3). wall.minz<=0 turns off this function. Suitable for a ‘configuration’
prepared by blend.

• standard (-n-1 not used): when initializing by ‘random shooting’ condition, min z >

wall.minz is satisfied

• CAVEAT: MC not implemented

15: Special versions [Contents] – [Index] 218

15.10.6 Input data for the WALL versions

Data (to be placed in def- or get- file):

wall.g (0) Gravity towards the z=0 (the golden plate), in A/ps^2 (=internal prog. units,
see sim/units.h). Useful especially while initializing to adsorb molecules on a wall.
Practical range is up to 10 with intensive thermostatting, otherwise much less.

wall.minz (0) minimum z for GOLD initial configuration, in A

wall.n (0) Number of walls. 0=none, 1=bottom, 2=top and bottom (slit pore)

wall.rho (19320) mass density of wall atoms, in kg/m^3

wall.scalez (1) factor by which the randomly shot z-coordinates are multiplied while GOLD
initializing (i.e., when init=3)

wall.rep (2) wall.rep=1 causes the z=0 wall repulsive (by using only the

r−9 term from the integrated Lennard-Jones potential),

wall.rep=2 causes the z=L wall repulsive, wall.rep=3 causes both walls repulsive.
WARNING: wall.rep>1 does not imply wall.n=2.

15.10.7 Wall visualization and more

Option -\number was added to show to show the surface as number*number mesh. Version
-\number\ shows a slit pore, negative argument uses wall made of atoms. Note that \ should
be protected from the shell by doubling. The size is derived from the size of the system (if no
box size is specified either in the plb-file or by option -l). Example:

molcfg MOLNAME1 [MOLNAME2 ...] SIMNAME

show -\\5 -I% SIMNAME

Full example (OPTIONS ARE OBSOLETE):

blend -o test -p ala -h hoh au

molcfg ala hoh test

goldcut test -y-1 -q-100 -x

Bugs/Plans:

• Unify interpot.c and gold.c into one module???

• POLAR version in some cases unnecessarily repeats calculation of sqrt()

WARNING: LJcutoff<0 means that the effective LJ cutoff is —LJcutoff—*van der Waals
diameter (not LJ sigma)

BUG to fix: some extra terms proportional to the shift of the cut-smoothed-and-shifted
electrostatic potential are present (in functions XQQ, XQQM, and *QQ14). This affects internal
energy and pressure, but not trajectory. Not fixed (yet) for gold!!!

15: Special versions [Contents] – [Index] 219

15.11 Anchor sites and axes and measure forces

The ANCHOR version allows selected atoms or the center-of-mass to be fixed and at the same
time to measure forces and torques acting on them. Run time option -k0 must be used. Cf.
version with harmonic springs, see Sect. 15.1. The input data are in file simname.fix:

site MOLECULE SITE X Y Z # keep site SITE of MOLECULE at (X,Y,Z)

max 1 site per molecule allowed

SITE must not be a dependant

cm MOLECULE X Y Z # keep center-of-mass of MOLECULE at (X,Y,Z)

inert MOLECULE X Y Z # keep principal axis parallel to direction (X,Y,Z)

axis MOLECULE SITE X Y Z # keep vector (center-of-mass,SITE)

parallel to (X,Y,Z)

pair MOLECULE SITE1 SITE2 X Y Z

keep vector SITE1-->SITE2 parallel to (X,Y,Z)

triple MOLECULE SITE1 SITE2 SITE3 X Y Z

keep plane given by (SITE1,SITE2,SITE3)

perpendicular to (X,Y,Z)

group MOLECULE NS SITE_1 ... SITE_NS X Y Z

keep center-of-mass of given group

groups may repeat and even overlap, but no

check of mechanical inconsistency is made

measurements only (no constraining), of center-of-mass:

r MOLECULE # print position of MOLECULE

v MOLECULE # print velocity of MOLECULE

x MOLECULE # print acceleration of MOLECULE

force MOLECULE # measure force to (center-of-mass of) MOLECULE

moment MOLECULE # measure torque to MOLECULE (center-of-mass based)

where MOLECULE is the molecule number (1st molecule has n=0), SITE is the site number. X Y

Z is the position or unnormalized direction to be fixed. The keywords can be abbreviated to 1
letter. Line beginning with non-letter (e.g., space) is treated as comment and ignored, i.e., the
keywords must start from column 0.

The last two commands, force and moment, measure the force and the moment of force (torque),
respectively, acting to the given molecule. Nothing is constrained. Both quantities are related
to the center-of-mass. These measurements are based on atom forces. All other commands
constrain some quantity. At the some time, the constraint force is measured. All these forces
are (in SI units) printed in file simname.anc with a self-explaining header.

Commands site and cm cause the constraint for position to be satisfied. cm is implemented
after the Shake iteration because the whole molecule is is shifted to satisfy the constraint; at the
same time, the constraint force is measured. site is implemented within the Shake iteration.

Commands inert, axis, pair, triple, cause the molecule to rotated around the center-of-
mass to satisfy the constraint; this is exclusive with site option, but can be combined with
cm. It is implemented after Shake because the center-of-mass is preserved.

If both force and cm are given, both the force on the center-of-mass and the constraint force
(on the center-of-mass) are printed. The constraint equals minus the force.

If both moment and either of inert, axis, pair, triple are specified for a rigid molecule,
the moment with subtracted projection to the given axis equals minus the constraint force

15: Special versions [Contents] – [Index] 220

with precision proportional to h^2. If the molecule is not rigid, both quantities differ, but in
mechanically well-defined systems (plane defined by atoms far from each other, the principle
moments of inertia differing sufficiently) the difference consists of small and fast oscillations.

Example:

s 0 1 1 1 1

c 1 5 5 5

t 1 0 1 2 1 1 0

Site 1 of molecule 0 is (1,1,1). Center of mass of molecule 1 is (5,5,5). Plane given by sites
0,1,2 of molecule 1 is perpendicular to (1,1,0).

In the input data, drift=0 must be specified and omegac<1 is recommended. After these
coordinates have changed, drmax should be set to a small negative value. Suggested value is
drmax=-0.03, but the final temperature will be too low and equilibration with larger |drmax|
or none must follow. If init=3 and option -k0 are combined, the initial configuration satisfies
these constraints and setting drmax is not needed (does not apply for group constraints).

Caveats:

• Dependants are not allowed as SITEs.

• Variable conserved and drift must be specified by user – the automatic setup is not
implemented.

• Some combinations of constraints are illegal even if there is no apparent reason for it.

• Implemented for one version of Shake (SHAKE=1) only – check simopt.h

• Constraining axes for flexible molecules is not a well-defined task. Use with caution.

• Note also that rigid molecules generated by blend with the dep-files species.dep do not
preserve the inertia tensor.

• If init=3 is used, the generated configuration satisfies the positional constraints, but not
the axes. Equilibrating with drmax must follow.

• The above point, or if the constraints are changed (with drmax), flexible molecules may
adopt fast internal vibrations which (see see Sect. 12.2) are only weakly coupled to the
rest. Using the Andersen thermostat may help; in case of molecules with rigid bonds,
this is incorrect and can only be used temporarily.

• Inconsistent group constraints may lead to integrator crash or infinite SHAKE loop.

15.12 Analyze pair energies

Special cook version MARK:

• calculates pair energies between groups of atoms

• one group is the zeroth-group, there are NG (NG<254) other groups

15: Special versions [Contents] – [Index] 221

• energy (in vacuum) of n-th group vs. zeroth-group is calculated and recorded in CP-file
(note:1st 2 columns have bad heading)

Source of data:

• if option -r: files simname.1, simname.2, ..., simname.no

• if not option -r: playback file simname.plb, frames 1..no

Compiling:

• #define MARK needed in simopt.h

• link with module mark (mark.h, mark.c)

Bug: inefficient, calculates also pairs that are not needed

Usage:

• prepare file simname.mkr (option -r > 0) or simname.mkp (option -r ≤ 0) in the
following format (ID is group ID derived from 1st atom ID):

NG

0 ID GROUP

1 ID GROUP

2 ID GROUP

...

For example (abridged):

10

0 ASN64aC 0

1 ASN64aCA 0

2 ASN64aCB 0

...

633 PRO10cCG 10

634 PRO10cN 10

635 PRO10cOC1 10

636 PRO10cOC2 10

NOTE: in the playback version (no option -r), only those atoms actually stored in the
playback may be listed.

Option -r summary:

-r0 reads playback simname.plb, uses simname.mkp

-r1 reads configs simname.1 ..., uses simname.mkr

-r-1 reads configs simname.1 ..., uses simname.mkp

15: Special versions [Contents] – [Index] 222

NOTES (added 3/2000):

• IDs in the mkp,mkr files are used as info only, they do not select anything nor are checked

• The N[] in the def-file used must conform the original def-file.

• Atom not to be included in any group simply have the group field blank (e.g., “636
PRO10cOC2 ”)

• simname.mkp and simname.mkr files may be shorter (i.e., not listing all atoms). Not listed
atoms are simply ignored. Only if the actual plb file is shorter, a warning is printed.

• Typical usage is for protein in water. For energies without water (not solvated), mkr and
mkp files can be created from the protein mol-files (water is ignored). To include water,
use a mol-file generated by molcfg.

15.13 Viscosity by shear stress

Two methods for viscosity determination are supported. The equilibrium method is based on
the Green–Kubo, See Sect. 14.5. It is generally more accurate.

The NEMD simulation requires compile-time switch #define SHEAR (or selecting it in
configure.sh). It is performed in a rectangular box of sizes Lx × Ly × Lz, where Lx = Ly.
The recommended Lz = 3Lx. The external acceleration acting on particles in the direction
perpendicular to the z-axis is cos-modulated

r̈i = Cf cos
2πzi
Lz

.

We use forces in the direction of vector (1,1,0). Then

fx,i = fy,i = Kfmi cos
2πzi
Lz

, where Kf = Cf/
√

2.

We also add a small z-force to all atoms so that the sum of forces over all atoms is exactly
zero—normally it slightly deviates because particles are not distributed ideally uniformly.

The Navier-Stokes equation for a steady Newtonian flow of an incompressible fluid reads as

η∇2→v +
→

f = 0,

where
→

f is the (averaged) external force per unit volume, |
→

f | = f = ρCf , and ρ =
∑
imi/V

is the mass density. Its solution is a steady flow proportional to the applied force. Systematic
contribution to the (thermal) velocities of individual atoms is then

vi = Cv cos
2πzi
Lz

.

where

η =
(
Lz
2π

)2

ρ
Cf
Cv
.

In order to calculate Cv and consequently η, we define sums

Sf =
∑
i

fx,i cos
2πzi
Lz

, Sp =
∑
i

(vx,i + vy,i)mi cos
2πzi
Lz

,

15: Special versions [Contents] – [Index] 223

The final formula for viscosity then adopts the form

η = ρ
L2
z

2π2

〈Sf〉
〈Sp〉

. (15.21)

During simulation, also the velocity amplitude

Cv =
Sf
Sp

Cf
2

is monitored (name Cvel) in the convergence profile to check for the steady state.

Heating rate is an important control quantity in the simulation. In the steady state flow it is

Ė =
dE

dt
=

1

2

∫
η(∇v)2dV =

V

η

(
CfρLz

4π

)2

.

It is useful to express it via expected increase in temperature because it will help us to set up
the thermostat used to remove the heat. The crudest estimate of the isochoric heat capacity
is that of the ideal gas, CV = Nfk/2, where Nf is the number of degrees of freedom of the
simulation box. Then

Cf =

√√√√8π2Ṫ ηNfk

V L2
zρ

2

and we use product shear = Ṫ η as the parameter of the simulation. If the Berendsen (friction)
thermostat is used to remove the friction heat, the following quantity

∆T = Tkin − T = Ṫ τT

a rough but still useful measure of the deviation of the system from equilibrium. Namely, the
Berendsen thermostat also uses the ideal gas approximation to relate the correlation time tau.T
to the friction term.

For larger systems it takes some time until a steady velocity profile develops. Relaxation to
this steady state is exponential with the correlation time given by

τv =
ρ

η

(
Lz
2π

)2

.

As soon as an estimate of viscosity is know, the recommended strategy to fast finding the
stationary state is to simulate time t = τv ln 2 with doubled parameter χ and half τT .

The shear stress method is activated by the compile-time option #define SHEAR and by data
shear. The value of shear is given in SI units [kg m s^-2 K]. Typical values are on the order
of 1e9–1e10.

The viscosity value is a ratio of two variables denoted as shear:num and shear:den, see (15.21)
(the factor are already embedded in these variables).

To obtain reliable viscosity estimates, a series of measurements with different values of shear
should be conducted and extrapolated to shear=0. The theoretical dependence at the limit of
shear=0 is a linear dependence of η to shear.

15: Special versions [Contents] – [Index] 224

15.14 Widom and scaled insertion particle method

#define WIDOM required in simopt.h The Widom method gives the residual chemical
potential, i.e. the absolute chem. pot. is (for monoatomic gas)

mu = mu_res + mu_id = mu_res + k_{\rm B}T ln (Lambda^3 N/V)

where Lambda is the de Broglie wavelength, N the number of solutes and V the liquid volume.
This should be equal the gas abs. chem. pot. of gas at pressure p (assumed to be ideal gas,
Ng and Vg refer to the gas phase)

mu = k_{\rm B}T ln (Lambda^3 Ng/Vg) = k_{\rm B}T ln (Lambda^3 p/k_{\rm B}T)

On comparing, the Henry constant with respect to definition

p = c Kc

(where concentration of gas in liquid is c=n/V and n is in moles), is

Kc = RT exp (mu_res/RT)

and mu res is in macroscopic units [J/mol]. For mu res in program units = [K]:

Kc = RT exp (mu_res/T).

The resulting Kc is in [Pa.m^3.mol^-1]. OTHER UNITS: For Henry law in form

p = x Kx

where x = molar ratio = n solute/n solvent, it holds

Kx = rho_solvent/M_solvent*Kc

where rho solvent and M solvent are in matching real units. E.g. (SI), [kg.m^-3] and [kg.mol-1]
and then Kx is in [Pa]. For Henry law in form

mm = p Km

where mm = molality = n solute/m solvent, it holds

Km = 1/(rho_solvent*Kc).

BUG: the Widom method cannot be used with Ewald (k-sum ignored)

widom.sp (default=0) species to (virtually) insert (for the number, see .ble)

widom.n (0) Number of insertions per cycle (WALL version: and per slab)

widom.mode WALL version switch, use a sum of:

15: Special versions [Contents] – [Index] 225

1 also record symmetrized functions (makes sense for wall.rep=0 or wall.rep=3)

2 record 〈exp(−[Upair + Uwall]/kBT)〉, leading to real mu

4 record 〈exp(−Upair/kBT)〉; useful for monoatomic molecules where the wall potential
is simply added

8 record 〈exp(−Uwall)/kBT)〉 – the angle averaged Boltzmann factor of the molecule-
wall potential

widom.z0, widom.z1 Minimum and maximum z for which (in the wall/slab geometry) the
insertion will be performed.

widom.dz The step.

Note: the data are internally recorded by the statistical (statics.c) module in variables of names
“Widommode z=z” Output printout is in file SIMNAME.wid.

NOTE: The Widom method inserts a virtual molecule into the configuration AFTER the
last step in standard versions. However, in the linked-cell list version BEFORE the last step
(previous linked-list is re-used). Therefore the results of non-linked-cell and linked-cell are not
exactly the same even with option -z specified. But if you advance linked-cell by 1 timestep,
then the Widom results with noint=1 are exactly synchronized with non-linked-cell.)

Support for gradual (scaled-particle-like) insertion (Widom-like). It is selected by:

widom.spreal=<species to change>

then (instead of virtual insertion of species widom.sp), all molecules of species widom.spreal

are changed into widom.sp. Since all the coordinates are unchanged, the molecules should
differ in partial charges and Lennard-Jones terms only. Note that widom.n does not apply. The
recommended strategy to calculate the chemical potential is to place the species into a ble-file
several times with the extra instances edited by hand to describe the partial molecules during
gradual insertions. If LJ terms are changed, it requires to create copies of atom types.

BUG: cutoff corrections are not calculated if SLAB (slab, wall, ..) is active. Final correction
can be added.

WARNING: with slab-centering (drift&4 set), it is generally illegal to have a molecule close to
z=L[2]. The LINKCELL method may then detect coordinates out of range [0,L[2]]. Although
(in the interactive run) it may be sometimes possible to continue, this is not recommended. A
protective potential (see slab.Kz etc.) should be used.

NOTES to Widom and gradual insertion with SLAB:

* the Widom method inserts a molecule to a place with defined z-coordinate with respect
to the reference point as defined in the ble-file (with random rotation added). It is the
CM (center-of-mass) by default if blend has been used (with the default option -y).

* Consequently, in the grow-molecule stages, the partial (scaled) molecule(s) should be
placed at CM, too. To do this, cook* must be compiled with ”anchoring” and run with
option -k0. File SIMNAME.fix must contain the molecule(s) being fixed with keyword
cm, like

cm NUMBER X Y Z

15: Special versions [Contents] – [Index] 226

* Equivalently, if the molecule in the blend stage has a selected site as the reference point
(e.g., O for water), use either cook -k0 with SIMNAME.fix containing:

site MOL_NUMBER SITE_NUMBER X Y X

This fixes the site exactly (as a constraint). For fixing the site by a harmonic spring, use
cook -kK (K=force constant) with SIMNAME.fix containing:

SITE X Y Z

CAVEATs: SIMNAME.fix has a different format with -k0 and -kK, K > 0 (to be changed
in future?) -k0 requires -DANCHOR, -kK, K > 0 does not

* The slab should be centered. For -kK, K > 0, flag drift&4 is OK. For -k0, use whole-slab
harmonic force defined by (in input data)

center.cmK[2]=100 ! tau=0.7755*\(M/cmK) [M=tot.mass in g/mol]

drift=0

(If appropriate, use center.cmn for # of molecules; default=all)

* For scaled water, -x must be used to suppress true water detection

* If the anchored (fixed) atoms are not in place (coordinates in SIMNAME.fix have changed
or -k0 is turned on suddenly), drmax=<negative value> should be used in input data
and then released. Recommended value is

drmax=-0.1

If there are problems, use lower (in abs. value) value, e.g.

drmax=-0.03

however, too low drmax may cause too low temperature and after drmax=0 is reset, the
system must be equilibrated. NEVER USE drmax IN PRODUCTIVE RUNS!!!

15.15 Metals

15.15.1 Tight-binding potential

The interatomic potential [41] is decomposed to a sum over all pairs,
∑
i<j, and a nonadditive

term,
∑
i:

U =
∑
i<j

2Aep(rij/r0−1) −
∑
i

ρ
1/2
i , (15.22)

where
ρi =

∑
j 6=i

ρij =
∑
j 6=i

ξ2e−2q(rij/r0−1) (15.23)

mimics the electron density. The algorithm to calculate the forces and energy proceeds in
two passes. In the first one the density components ρij are calculated and in the second one,
which is again a loop over all pairs, the calculations of the additive and nonadditive forces are
finished. From these pair and pair-like forces the pressure tensor is calculated. (Another way
to calculate the pressure tensor is via the virtual volume and shape change method [?]. We
used this method to test the algorithm.)

15: Special versions [Contents] – [Index] 227

Forces

let is write (15.22) as

U = Upair + Umulti ≡
∑
i<j

upair
ij −

∑
i

ρ
1/2
i , upair

ij = 2Aep(rij/r0−1)

The k-gradient of ρij is
→

∂kρij =

→
r ij
rij

(δkj − δki)

where
→
r ij =

→
r j −

→
r i. The pair part is standard,

fpair
ij =

p

r0

2Aep(rij/r0−1)

→
r ij
rij

The multi-body part:

fmulti
k = −(−

→

∂
∑
i

ρ
1/2
i)

=
∑
i

1

2ρ
1/2
i

∑
j 6=i

ξ2e−2q(rij/r0−1)−2q

r0

→
r ij
rij

(δkj − δki)

Let’s denote
ρij = ξ2e−2q(rij/r0−1)), qii = 0

After summing up and replacing k → j we get

→

f
multi

k =
∑
i

→

f
multi

ij ,
→

f ij = − q

r0

(ρ
−1/2
i + ρ

−1/2
j)ρij

→
r ij
rij

The algorithm:

1. pair loop, ρij are calculated

2. sum, ρi =
∑
j ρij

3. second pair sum where Upair and contributions fij are calculated

4. Umulti = −∑i ρ
1/2
i can be now finished

Chapter 16

File formats

This section is incomplete and occasionally obsolete...

16.1 Configuration

Files simname.1, simname.2, ..., and simname.cfg are binary files of variable record length.
They consist of records which, in addition to the variable recorded, contain the length of the
record (one integer prepended to the record) and the checksum of all bytes in the record (one
integer appended to the record). The end-of-file is marked by a zero integer (because no record
may have zero length) and by the system time (long integer, time in s since the standard
time/date). The last value is useful to recover files after a crash.

A list of variables follows. It applies to cook version > 2.7a; to read an old version, use cfgconv
to convert.

int cfgkey File version. Valid bits are:
20: 1 = version ≥ 2.7a
21: 2 = POLAR version
Other bits are not valid for cook le 2.7a

int optionlist[32] The values of options, -@, -a, ...

int nspec Number of species

int spec[nspec] Array [nspec] of species data: int N; int ns; (N = number of
molecules, ns = number of sites).

rec[*] Records of form { int key; int intval; vector vecval; } in any order. The
following keys are recognized:

1 intval=N (total number of molecules)
vecval={t,h,Etot} (running simulation time [ps], time step [ps], total energy [K])

2 intval=total number of sites
vecval=L[3] (box sizes, vector in [Å])

3 (reserved for cell shape)

228

16: File formats [Contents] – [Index] 229

4 intval = thermostat
vecval[0]=RvdW (for van der Waals radius setup)
vecval[1]=tau.T
vecval[2]=tau.P

5 intval = number of cleaving planes
vecval[0] and [1] = positions of cleaving planes

17 vecval[0]=tau.dip (POLAR only)

ToInt cfg[GearOrder] The configuration, see ToInt in simglob.h. cfg[0] contains the
size in bytes as integer first, then possible void bytes to satisfy alignment requirements,
then the Nose variable log(s) as double, vector lambda for the barostat, vector aux

reserved, and then ns double vectors corresponding to all sites. cfg[1] contains the first
derivative of cfg[0], multiplied by h (differences for Verlet/SHAKE), and so on as in
Taylor expansion.

16.2 Convergence profile

File simname.cp is a fixed record length file. As a rule, one record contains n single precision
floats, n ≥ 2 (see below). There are three types of records:

1. The initial record.
IF the first record in the .cp file starts with 4 bytes interpreted as:
#define CPmark ((float)-1.755645e+37)

then the 2nd number (interpreted as 4 unsigned 8-bit integers) contains n either in the
1st or 4th byte (to recognize endianness), the 4th or 1st being zero. The remaining
(n−2) 4-byte fields in the record contain max 4 letter info; the 1st two info’s are assumed
to be Etot (total energy, kinetic + potential; often the Hamiltonian) and Tkin (kinetic
temperature). IF the first record in the .cp file does not start with CPmark, the old
format with n = 5 is assumed.

2. Time mark.
IF the record (except the first) starts with CPmark, it contains the system time in the
last 4 bytes.

3. Standard data record.
If a record does not start with CPmark, it consists of n floats with the meaning given in
the initial record; if not given, the following applies:

Etot Total energy or Hamiltonian

Tkin Instantaneous (kinetic) temperature

Epot Total potential energy

Ein Intramolecular non-bonded energy (replaced by rho in V2.8c)

P Pressure, in Pa

Item Ein may be replaced by rho (density in kg/m3), Ep+k (sum of kinetic+potential
energy, if it differs from the Hamiltonian), svdW (see tau.sig, or Ep0 (see No.first).

Item P may be replaced by PdV or PdVm (see dV) (?).

16: File formats [Contents] – [Index] 230

16.3 Playback file

The playback file is a file of single precision floating point numbers (4 bytes long). It contains
a header of two floats, the 1st one being the number of sites ns (in the float format) of the
molecule/configuration, the 2nd contains

L=0 free boundary conditions (old format)

L>0 periodic b.c. - the box size L (fixed, old format)

L=-3 New format enabling variable vector L. One frame consists of float vector L[*] first,
then the configuration (ns float vectors) follows.

The body of the file consists of configurations recorded at regular time intervals. Each
configuration contains ns records of vectors of 3 floats (x,y,z).

The extension of playback files is .plb.

Chapter 17

Examples

17.1 Example 1: Protein in water

This is a continuation of the example from the blend manual, see Sect. 6.1.

You may use several versions of cook for this example, but let us choose a cheap and fast one.
Run configure.sh from directory macsimus/cook and select defaults (i.e., answer Enter) to
all questions but:

Select algorithm for ELECTROSTATIC calculations:

0 = Cut-and-shift approximation (MACSIMUS style) calculated directly

File cookce should be created (“ce” stands for “cutoff electrostatics”).

In the manual for blend we prepared file crambinw.ble containing one molecule of protein
crambin and 999 water molecules. The protein has bond lengths constrained, water molecule
is TIP3P treated as rigid body. Now we want to simulate this protein.

First, we must prepare the initial configuration. We will run cook interactively so that we
need a default (.def) file only. We name our project crambin so that the default file will be
crambin.def. A commented example of file crambinw.def follows:

T=310 ! temperature in K

thermostat="friction" ! Berendsen thermostat

rho=1000 ! final density in kg/m^3 (this is the default)

initrho=900 ! initial density

tau.rho=1 ! typical time for initrho->rho condensing

cutoff=15 ! electrostatic cutoff

; ! end of data set

Now, let us run cook* interactively:

cookce -s crambinw

You will be prompted for data. Enter:

tau.T=0.1 ! thermostat time constant - short for start

init="random" ! random initial configuration of molecules

;

231

17: Examples [Contents] – [Index] 232

The program will print a lot of information—read it! You may see some warnings “dr in 1
timestep reduced” as a consequence of large initial temperature. They will disappear as soon
as the system equilibrates.

Time evolution of temperature (incl. graph), potential energy, total energy, density, pressure,
and accuracy of constrained dynamics is printed. After some time (when temperature drops
below about 350 K), interrupt the calculations by pressing Ctrl-C and selecting . =stop.

To generate a longer trajectory, create file crambinw.get:

init="start" ! start simulation (from .cfg)

dt.plb=0.1 ! write playback every 0.1 ps

tau.T=1 ! thermostat time constant

no=2000; ! number of cycles (by h*noint=0.01 ps)

h*noint ! check: cycle length

; ! end of data set

init="append" ! restart measurements but append playback and .cp

no=1000 ! another 10 ps

quit=1; ! end

Start simulation by command:

cookce crambinw

The output protocol is crambinw.prt. The simulation can be interrupted (with everything
saved) either by signalling -2 (-SIGINT) to the process, or by creating file crambinw.stp.

To watch the convergence profiles, run

showcp -p crambinw

if plot is installed properly, you should see the time development of quantities during 30 ps.

To watch the trajectory, check that files crambinw.mol and crambinw.gol have been created;
if not, use command like

molcfg crambin TIP3P crambinw

To show, use (may be used also while cook is running)

show crambinw

Useful variants include

show crambinw -Ob

show crambinw -o396 -I%@ -l -x10 -y2 -z2

The first form omits all waters, in the second 396 is the number of atoms in crambin, the values
of shift -x -y -z should be set according to the actual position.

Basic hot keys are: g G to cycle the viewing mode, 1 to start playback, 0 to stop it, i to
start again, and mouse.

17: Examples [Contents] – [Index] 233

17.2 Example 2: Melting point of a model of NaCl

WARNING: OBSOLETE

First, run the cook configurator configure.sh from directory macsimus/cook and select
defaults (i.e., answer Enter) to all questions but:

Select DETAILS of boundary conditions:

s = Slab (includes: z-forces, density profiles, surface tension)

Are all your molecules smaller than half the box size (y/n)?

y

Select algorithm for PAIR FORCES calculations (affects speed):

l = Linked-cell list method

Request PRESSURE TENSOR calculations:

3

File cookewslc should be created (ew=Ewald summation, s=slab, lc=linked-cell).

17.2.1 Force field and molecules

We will use the force field [22, 23] with the geometric combining rules (the combining rules
are not mentioned in the original paper, but with other combining rules the density of NaCl is
wrong). The parameter file called sea.par is included in MACSIMUS.

Molecules are simple, na.che and cl.che should be:

ion Na+ ion Cl-

parameter_set=sea parameter_set=sea

NAp1 CLm1

Prepare also a cluster na4cl4.che:

Na4Cl4

parameter_set=sea

NAp1 NAp1 NAp1 NAp1

CLn1 CLn1 CLn1 CLn1

17.2.2 Crystal Na4Cl4

Use blend:

blend -g -y13 na4cl4

where -y13 is a sum of 1=show centered, 4=save with positive coordinates, 8=put in a box.
Prepare a crystal 2× 2× 2 and place it so that it is parallelly with the axes, then save by . .

17: Examples [Contents] – [Index] 234

17.2.3 Preparation of data for the simulation

To create the parameter file for simulation, nacl.ble, use:

blend -o nacl na cl

Then, convert na4cl4.plb to the cook format:

plb2cfg na4cl4.plb nacl.cfg 8

17.2.4 Crystal Na108Cl108

Use the following def-file, nacl.def:

! cookewslc nacl -s

n=108 ! auxiliary

N[0]=n N[1]=n ! numbers of Na+ and Cl-

rho=2160 ! reference density [kg/m3]

cutoff=8.4 ! elst cutoff [A]

LJcutoff=cutoff ! LJ cutoff [A]

rdf.grid=20 ! grid for RDF

el.epsk=1 el.epsr=0.2 ! Ewald summation accuracy [K/A]

noint=40 h=0.1/noint ! number of steps/cycle and timestep [ps]

no=100 ! number of cycles

dt.plb=1 ! how often to write playback [ps]

thermostat="Andersen" ! Maxwell-Boltzmann-like thermostat at random times

T=300 ! temperature [K]

tau.T=1 ! time constant of the thermostat [ps]

P=101325 ! pressure [Pa]

tau.P=100 ! constant of barostat; less for a liquid

init="start" ! start from a prepared configuration

;

The microcrystal Na4Cl4 (in nacl.cfg) will be repeated (3 times in x,y,z) and then shrank by

cookewslc nacl -s -[333

with the following data entered:

no=50 ! 50 cycles

tau.rho=1 ! shring fast to a cube of given density

tau.P=0 ! no barostatu now

;

17: Examples [Contents] – [Index] 235

tau.rho=0 ! density control canceled

tau.P=50 ! barostat

;

quit=1; ! the end

Some warnings during initialization can be safely ignored.

To follow convergence, use:

showcp -p nacl

show -I% nacl

17.2.5 Equilibrium simulation of the crystal

Interactively:

cookewslc nacl -s

with input data:

no=100;

quit=1;

or in the batch mode

cookewslc nacl

where the input data should be put into nacl.get.

Analyze the results by:

showcp -p nacl

show -I% nacl

rdfg nacl pu

The last command will show the radial distribution functions.

17.2.6 Melt

Make a copy of the configuration:

cp nacl.cfg nacl-l.cfg

and simulate at a higher temperature:

cookewslc nacl nacl-l -s

with the following data

17: Examples [Contents] – [Index] 236

tau.T=0.5 T=2000 tau.P=20 no=50;

;

;

repeat ‘;’ several times until the system is equilibrated. Watch the trajectory:

show nacl nacl-l -I%---i

and restart again (do not forget T=2000) and watch the rdf:

rdfg nacl-l pu

17.2.7 Melt–crystal equilibrium

OBSOLETE!

1. Choose a temperature (the melting temperature is 1340 K; try various temperatures below
and above) and repeat the crystal simulation. Suggested control data are tau.T=0.5

tau.P=20 in the beginning, then followed by tau.T=1 tau.P=100.

2. Copy the configuration

cp nacl.cfg slab.cfg

cp nacl.def slab.def

and edit slab.def as follows:

n=108*3 ! 3 times as much

rho=1800 ! ref. density (estimate)

L[0]=1 L[1]=1 L[2]=3 ! box sizes ratio

T=TEMPERATURE ! your choice

tau.P=20 ! faster barostat

rescale="ZCM" ! box changed in z using pressure tensor component

3. Replicate the box and sort by z

cookewslc nacl slab -s -[113

with the data:

sort="z" ! sort (mlecules separately) by z-coordinate

no=0; ! no simulation - write only

quit=1;

4. Melt half of the box:

cookewslc nacl slab -s -j108

where -j108 means that first 108 molecules (Na+) are fixed. Use data:

17: Examples [Contents] – [Index] 237

T=5000 ~~~~~~~~~~~~ ! melting

tau.T=0.2 tau.P=200

no=50;

tau.P=15 ! z-pressure

T=TEMPERATURE; ! equilibrate at T chosen

quit=1;

To have a look:

show slab "-I%----******yirrr=" -l -z12

5. Final run

cookewslc nacl slab -s

with data no=200; and more.

Part III

Utilities

238

239

This manual page describes various utilities and supporting software.

Note that a brief but up-to-date help on most utilities can be obtained by running the utility
without any parameter. (A help for ray is obtained by ray -h. Often, more info can be found
in the source.

Utilities marked by * in front of the *Source field need a make file (see Sect. 18.1), otherwise
they can be compiled by a command written in the first line of the source file.

Most utilities also print names of related utilities as See also:.

Chapter 18

General utilities

18.1 makemake: Makefile and project interface

Projects are in MACSIMUS written in files called metamake. Utility makemake then finds
dependencies and converts these files to standard makefiles (or Turbo C projects).

Installing MACSIMUS software thus typically requires the following steps:

1. Edit the project metamake. The sample metamake files contain enough comments...

2. Running makemake may be as simple as

makemake linux

or in case of project- and system-dependent switches something like

makemake unix digital polarlj

3. If there are no errors, run make on the requested target (s), e.g.

make blend pdb

See comments in the source file for details!

Source: c/makemake.c

18.2 plot: Plot a graph (with formulas and mouse-

rescaling)

Plots graphs of tabular ASCII data. This utility allows to plot formulas as well us use a mouse
to rescale — it did so several years before gnuplot supported these features. It has developed
from the viewer of the NSK project and I consider it as the most useful general program I have
written.

plot accepts input files in similar format as gnuplot: of white (SPACE, tab) separated
numbers. Comment lines are marked by # in the 1st column. When plotting by lines, the
comments as well as blank lines break the plotted curves.

Simple examples:

240

18: General utilities [Contents] – [Index] 241

plot sim.g # plots file sim.g: column 2 (y-axis) vs. col. 1 (x)

plot sim.g:2:3 # plots column 3 vs. column 2

plot sim.g:0:3 # plots column 3 vs. consecutive numbers 0,1,2,...

plot sim.g:0:3:p # as above, using points

plot sim.g:0:3:p:4 # as above, using points w. error bars in col. 4

plot sim.g:A:B^2 # plots col. 2 squared vs. col. 1

plot :2:3 *.g # plot all *.g files using cols. 2 and 3

plot "[0:10]" "[1000]:A:sin(A)" # plot function y=sin(x)

Usage in detail:

plot [RANGE] FILE-ARG [FILE-ARG] ..

where

FILE-ARG = { [FILE]:X:Y [FILE]:Y [FILE]:X:Y:STYLE[:DY] | @RESPONSE-FILE }

RANGE = [FROMX:TOX,FROMY:TOY]

In the RANGE, the brackets [] are part of the argument. If RANGE is missing (or some data in
it are missing), the missing ranges are data determined from FILEs (maxima and minima).

FILE = { FN | -FN | [POINTS] | [POINTS:FROMX:TOX] | - | @ }

FN file to draw

-FN file not to draw (but this argument is considered when advancing colors or parsing the
arguments after :). [Note: this looks strange and may be removed in future]

[POINTS] ([] are parts of the argument): the same as file of POINTS+1 points in interval
[FROMX,TOX]. Use A in expressions for x or @ for numbers 0..POINTS. (x n can be still
used, too, but are deprecated.)

- take data from stdin (this argument may repeat because plot creates and uses a
temporary file of input stream)

dummy argument (useful to set X,Y,STYLE for a consequent set of files)

X

Y The x- and y-coordinate to draw.

DX error bar, also asymmetric [FILE]:X:Y:STYLE:DYFROM:DYTO Allowed primitives are:

1, 2, ... column

#1, #2, ... the same as above (but usable in expressions)

A, B, ... the same as above (but usable in expressions)

x, y, z the same as A, B, C

01, 02, ... the same as 1, 2, ... but hotkeys 0 , 1 , ... are disabled

+1 or (1) etc. constant 1 (not column 1)

18: General utilities [Contents] – [Index] 242

0 or or #0 or n counter: is 0 for the 1st line, 1 for the 2nd, etc. It is reset to zero if
a blank line or comment is encountered in the file.

In addition, expressions using numbers, parentheses, variables mentioned above, and
simple functions can be used.

STYLE It is a string of chars:

- lines (this is the default, but when - is given explicitly, it cannot be changed by hot
keys)

= thick lines

d dotted lines

. pixel-size dots

p dots or very small circles

P small circles

o circles

O larger circles

Colors are normally advanced for consecutive files in order: White Yellow Cyan Magenta
Green Red Blue Brown Darkcyan Darkmagenta Gray Darkgray Darkblue. This can be
changed by modifiers:

c set White

cc set Yellow

ccc set Cyan, etc. (cumbersome — to be changed/extended)

d hotkey SPACE enabled even for files with explicitly determined type of line/point

C toggle: turns off and on advancing color (since first used, the color is the same for
subsequent files until C is used again

Type of line/point must be explicitly used with c C. Missing arguments FILE,X,Y,STYLE
retain their values from previous arguments. The initial default is @:1:2:-.

Environment:

PLOTGEOMETRY X11 only: The initial plot window geometry, e.g. 300x200-1+1. The default
depends on the display size

PLOTNAME X11 only: The name of the window and icon. Useful when plot is called from
scripts or other programs

LAZYX11 X11 only: The value must be an integer. Makes X11 slower but suppresses
unnecessary redrawing on slow networks.

PLOTINIT X11 only: The sequence of hot keys to execute. E.g., to write a PostScript file
plot.ps with the graph, set PLOTINIT to #Q.

PRTSCR DOS only: Output file/device for printscreen (hotkey @). Default=LPT1.

Mouse:

18: General utilities [Contents] – [Index] 243

drag left button rectangle to rescale (zoom in)

click left button place file information (delete it by hotkey Ctrl-D or Del)

double click left button Print cursor position in current x,y coordinates. If environment
variable TOCLIP is set, put the data to the X11 clipboard.

click middle button quit

click right button redraw

Hot keys:

h

? Help

q

e

ESC Quit

K Kill all currently launched programs plot. Requires script (utility) Kill, accepting one
argument — the name of the program to kill. My script looks like:

ps u | fgrep $1 | fgrep -v Kill | cut -c1-15 | \

lemon jiri "-kill "$2 > /tmp/KilL

chmod +x /tmp/KilL

rm /tmp/KilL

+ Zoom in (enlarge details)

- Zoom out

u Undo last zoom or scaling

X Zoom in in x direction

x Zoom out in x direction

Y Zoom in in y direction

y Zoom out in y direction

i Reset the initial (min-max or specified) scaling

r Redraw

R Round coordinates up so that the ends of the coordinate axes are ‘round numbers’. E.g.,
if the range of the x-axis is [0.1278:0.333], it will become [0.12:0.34].

R Round coordinates (to the nearest ‘round’ number) so that the ends of the coordinate
axes are round numbers. E.g., if the range of the x-axis is [0.1278:0.333], it will become
[0.13:0.33].

18: General utilities [Contents] – [Index] 244

cursors Move viewpoint

Ctrl-W

PgUp Place file or argument info to the top

Ctrl-V

PgDn Place file or argument info to the bottom

Ctrl-D

Del Remove file or argument info

= \ | Standard thin line, points off

: ; Dotted line, points off

l

L Toggle line style or change thickness (points unchanged)

p

P Toggle points (circles) off or change diameter

g

b Toggle grid and labeling off or thickness (not for PostScript)

SPACE Toggle style lines/circles/circles+lines. Useful!

! Dump file fig.dat, using fig.def. This is for an obsolete graphical system in Pascal
(can be sent on demand).

Printscreen prefix. Then use hot key:

l DOS only: printscreen on LaserJet printer

e DOS only: printscreen on Epson 9 pin printer (in 72 dpi)

p DOS only: printscreen on Epson 24 pin printer (in 180 dpi)

o Dump screen in PostScript, black background (see # for better PostScript output!)

O Dump screen in PostScript, white background (see # for better PostScript output!)

m Dump screen to a PPM file, black background

M Dump screen to a PPM file, reversed (white background)

1

2

3 ... : Plot given column as Y. Suppressed if the column argument Y was written as 01 etc.

[] Change the column by -1 or +1.

18: General utilities [Contents] – [Index] 245

0 Prefix: e.g., 0 1 2 will plot column 12. 0 0 4 is the same as 4 . Max column is
26.

Make PostScript file (plot.ps or plot.eps), use control data in ps.def. This file may
contain the following commands. The command key letter must start from column 1. Al
sizes are in pt (only for command w, negative values denote cm).

! anything

anything comment

s SIZE [NAME] Set font size (default=14) and name (default=Helvetica)

m l Set landscape mode (default)

m p Set portrait mode

m e Set eps mode (encapsulated postscript)

x LEFTMARGIN RIGHTMARGIN TEXT [TEXT] Set margins (of the graph without axes
labelling) of axis x and its label.

y BOTTOMMARGIN TOPMARGIN TEXT [TEXT] Set margins (of the graph without axes
labelling) of axis y and its label.

w XSIZE YSIZE Set window size. Negative values denote sizes are in cm. Note that
command m p used after w swaps XSIZE and YSIZE. Default is w 576 432, i.e., 8x6
inches.

t LINETHICKNESS FRAMETHICKNESS Set the default line thickness and the thickness of
the frame and tics. The default is t 1 0.5.

f NOXTICKS NOYTICKS Sets the approximate number of ticks and corresponding
labelling on axes. The default is f 5 5. The program determines the tick distance
to be a round number of a power of 10 time 1, 2, or 5, and thus the actual number
of ticks may differ.

R G B[,DASH,LINEWIDTH] Set the color (in RGB) of line number # (1st file=0, 2nd

file=1, if not changed by hot keys c , C). DASH is a space-separated even number
of numbers denoting DASH PAUSE DASH PAUSE... Example: 1 1 0 0,5 3 1

3,0.5

r ANGLE Rotation angle for subsequent l and y, in degrees.

l X Y STRING

l X +[DY STRING] Print string at given position. The second form advances from the
previous position down by DY (default DY=line feed).

STRING for commands l, x, y may contain the following charcters:

\ Next character is symbol (Greek letter): \a is alpha, etc.

Next character is subscript

Next character is superscript

Examples: t c o r r/ps, r^\a

*Source: show/plot.c

18: General utilities [Contents] – [Index] 246

18.3 tabproc: Command-prompt spreadsheet

Some people like excel, I like command prompt and pipes... Input data are processed using
given formulas and formats and.

tabproc EXPR1[:FMT1] [EXPR2[:FMT2]] ... < INPUT > OUTPUT

EXPR Expression made of letters A B C... for columns 1,2,3..., and usual mathematical
operators and functions. Instead of A B C..., #1 #2 #3... can be used. Consecutive
numbers are coded by @ or n and are reset to zero on a blank line. Examples of expressions:
A/2+sin(B), #1/2+sin(#2), @*pi^2.

FMT Format in the C-style; the initial % may be omitted. Examples: 7.4f, %7.4f, err=%.2e.
The default format is that of the previous argument or %g if no format is given.

Lines beginning by ‘#’ or ‘!’ are copied as comments. Max 26 columns are allowed.
Environment variable NOLF suppresses line feeds (may be useful in scripts, see Sect. 18.6).

*Source: c/tabproc.c

18.4 mergetab: Merge columns of data

This utility merges columns (white-separated) of data. Lines beginning with # are ignored.

Call by:

mergetab [FILE1]:[-OMIT:][/STRIDE:]COL:COL...

[FILE2]:[-OMIT:][/[-]STRIDE:]{COL|COL=COL1}:{COL|COL=COL1}...

...

FILEi File name, or - for stdin (max once allowed). Missing FILEi repeats previous, missing
FILE1=stdin.

OMIT # of noncomment lines omitted from the top of file

STRIDE Consider only every STRIDE-th noncomment line

-STRIDE As above, starting with (STRIDE-1)-th line OMIT and -STRIDE may be combined,
e.g., :-2:/-10 is the same as :-11:/10

COL Column to extract (print)

COL=COL1 Synchronizes with column COL1 of FILE1 but does not print. The data in columns
to synchronize should be in increasing order.

Example:

mergetab st2.g:1:2 tip4p.g:1=1:2 | plot -:A:C-B

will pipe columns 1 and 2 of st2.g and column 2 of tip4p.g shifted so that it matches column
1. If tip4p.g has finer grid, extra data are omitted, if st2 finer grid, missing data in tip4p.g

are marked as n.a. The piped stream has thus three columns. Finally, the difference of tip4p
and st2 is plotted.

Source: c/mergetab.c

18: General utilities [Contents] – [Index] 247

18.5 tab: Column table of consecutive numbers

Call by:

tab FROM TO [BY [FORMAT]]

TO is included. If no BY is given, 1 is the default. If no FORMAT is given, ”%g” is the default.

Example (Fourier transform of a saw-like function, 20.11)

tab 0 100 0.01 | \

tabproc "A-int(A)" | \

spectrum 10000 | \

plot -:0:1

Source: c/tab.c

18.6 ev: Calculator

To run a line-oriented calculator, suitable for Unix with fast pasting of numbers, run ev --c and
type ? for help. Also supported: plot graph of function (utility plot required, see Sect. 18.2),
sums, products, numerical integrals and derivatives, and numerical root finding. Can read a
list of constants (file .evdata).

To calculate an expression once, give it as an argument, e.g.:

ev "pi^3*exp(2)"

Source: c/ev.c

18.7 endian: Change endian (order of bytes) in binary

files

The playback files (extensions .plb, .p00, .p01) and the convergence profiles (extension .cp)
contain float (single precision) numbers in binary format. This format is the same for most
computer architectures with one exception — order of bytes (the endian or sex). Utility endian

changes endian by four-byte words. Call by:

endian source_file { dest_file | drive: }

drive: means drive letter and applies for DOS only. Directory name cannot be used instead
of the output file name.

endian cannot be used for other binary files. Some utilities can read binary files (even other
than .cp and .plb) with opposite sex so that endian is not needed.

Source: c/endian.c

18: General utilities [Contents] – [Index] 248

18.8 start: Start application according to file extension

Motivation:

This is a command-prompt analogue of the Windows (or MacIntosh, Gnome, KDE, OS/2 ...)
mechanism of starting application according to the type of the associated file. On some versions
of Windows there is command ‘start’ of the same function (unfortunately very buggy). Such
a style of work may be considered strange by Windows folk. But my brain is not able to find
a file of interest among more than ten icons in a graphical folder (or Norton Commander list)
and I consider typing the file name much faster (especially with file completion and wildcards).

Simple examples:

start pig.jpg --> xv pig.jpg

start archive.zip --> unzip -v archive.zip | less

Extended examples:

start -expand 2.5 pig.jpg --> xv -expand 2.5 pig.jpg

start pig.jpg -expand 2.5 ERROR unknown ext

start pig.jpg "-expand 2.5" --> xv pig.jpg -expand 2.5

start mol cfg.plb -I% --> show mol cfg -I%

Details:

1. Scans arguments given and determines the extension of the last file argument. (File
argument is an argument not starting with - nor + and with an extension and not
containing a space. The extension is the suffix after the last . in the file name provided
that the name before this . is not empty.)

2. Looks up the associated application

3. Starts this application with arguments, using system()

File registration:

Edit the array of structures reg[] in start.c and recompile. The last line must be NULL,NULL.

Source: c/start.c

18.9 sortcite: Sort LaTeX citations

This utility sorts all \bibitem{ } statements in the thebibliography environment so that they
appear in the order in which they are referenced using statements \cite{ }, \Cite{ }, and
\Hide{ } (see cite.sty for the latter two).

Usage:

sortcite FILE [-]

FILE.tex is input, FILE.ren output. Optional - means that not referenced bibitems will be
removed from output.

Source: c/sortcite.c

Chapter 19

Program ‘pdb’ version 1.4a

pdb reads protein in the PDB format and converts it to mol-format understood by program
blend. See also pdb2pdb, see Sect. 23.1 (rearranges the lines of pdb-files to a ‘more standard’
order).

19.1 Running

19.1.1 Environment

Environment variable BLENDPATH can be set to point to the path that contains the needed
residue-filed (*.rsd by default). If it is empty, the files are looked for in the working directory.
A subdirectory of this directory, i.e., the used set of the residue files, may be specified by option
-r.

Example for UNIX (csh, tcsh):

setenv BLENDPATH /home/jiri/macsimus/blend/data

Example for UNIX (sh, bash):

export BLENDPATH=/home/jiri/macsimus/blend/data

Example for DOS:

set BLENDPATH=D:\MACSIMUS\BLEND\DATA

19.1.2 Synopsis

The command line to run pdb is:

pdb [options] pdbname [molname]

If molname is missing then it is assumed that molname=pdbname.

Run pdb without options to get a brief help.

249

19: Program ‘pdb’ version 1.4a [Contents] – [Index] 250

19.1.3 Files

pdbname.pdb Source PDB-file

molname.pdb Output PDB-file (only if option -p)

molname.####.pdb Output PDB-file (only if option -p with range)

molname.rep

pdbname.rep Optional pattern replacement file. If molname.rep is not found, pdbname.rep
is tried, if this file does not exist either, no patter replacement occurs. Example (to fix
wrong OT type for C-O-C oxygens in sugar-sugar bond; pdb has been run with -d2

option).

CH1E OT-0.65 CH1E CH1E OE-0.5 CH1E

CH2E OT-0.65 CH1E CH2E OE-0.5 CH1E

CH1E OE HO CH1E OE DEL

CH2E OE HO CH2E OE DEL

It means that all structures CH1E-OT-CH1E with partial charge on OT -0.65 will be replaced
by CH1E-OE-CH1E with partial charge on OT -0.5, etc. DEL means deletion of the atom.
The file is executed by lines so that all changes caused by one line are available when
executing the following line. Currently only replacement in groups by 3 atoms defined
by atom types is available. No wildcards available for atom types. If necessary, will be
extended in future.

molname.sel Residue selection file. Example:

option -n0 ! should match with runtime option -n

! neutral versions of all negatively charged residue

!RSD # chain replacement

ASP * * asph

GLU 11 A gluh

The format is free, - in the chain field means no chain, * in the chain field means any
chain, * or -1 as # matches any residue irrespective of its # in the PDB file. RSD MUST
be uppercase, replacement refers to .rsd files and for UNIX is case sensitive, however,
lowercase is recommended.

molname.mol Output mol-file (see blend) Default output from pdb.

molname.3db Molecular configuration in binary format float[][3], deprecated (use .plb),
see option -b.

molname.plb Molecular configuration in the playback format, the default since V1.4a (see
the manuals for cook and blend and option -b).

molname.3dt Molecular configuration in text 3 column (x y z) format.

molname.plt Molecular configuration in text 3 column format with playback-like header line
(one line of 2 numbers, 1st=number of sites, 2nd=0).

*.rsd Extension of the residue files, see also BLENDPATH and option -r.

19: Program ‘pdb’ version 1.4a [Contents] – [Index] 251

19.1.4 Options

-a Some atoms in the pdb-file may be given alternative locations, i.e., different coordinates.
They are numbered by letters A,B,...

-a0 Use location A (default)

-a1 Use average of all location weighted by occupancies

-a2 Use location with maximum occupancy number.

-b Write (if not -p) or read (if -p) binary file with the molecular configuration.

-b0 -b- Don’t read/write any binary coordinate file.

-b -b1 Binary coordinate file is molname.3db.

-b2 Use playback file molname.plb as the molecular coordinate file (default).

-b3 Both -b1 and -b2 (not for input).

-b-1 As -b1 with reversed endian.

-b-2 As -b2 with reversed endian.

-b-3 Both -b-1 and -b-2 (not for input).

-cnumber Calculate S-S (CYS-CYS) bonds from the configuration. number is the distance
limit in Å, missing number means distance limit 3A (equilibrium bond length is 2.04A).
Use if SSBOND and/or CONECT commands are missing.

-dkey Delete (do not include) the atoms which are in the residue files but are not present in
the pdb-file. Note that typically hydrogens are NOT present in the pdb-file and should
be included but sometimes a missing heavy atom should be removed because a chemical
bond is present (hopefully described by CONECT statement). E.g., sugars are given with
all -OH groups in the residue files but if they are chemically bonded then two -OH groups
create one -O- bond and one O and two H should be removed. (See also molname.rep).
The values of key are as follows:

key>0 Deletions apply only to MOLECULES (1st keyword in the residue file must be
molecule

key<0 Deletions apply to all residues

1,-1 Deletions apply to hydrogens only

2,-2 Deletions apply to heavy atoms only; free hydrogens after removing these heavy
atoms are also removed.

3,-3 Deletions apply to any atoms

-eRSD Use RSD.rsd as end (C-terminal patch) for ending peptide chains. The default is
cter.rsd (COO−). Extension .rsd can be changed by option -f.

-fPARSET PARSET.par will be the used force field (parameter set). Information on the
parameter set is written to the mol-file created so that blend can make use of it. In
addition, file PARSET.par contains line rsddir rsddir with the name of the directory
in which the residue files (extension *.rsd) are looked for. If no -f is specified,
PARSET=RSDDIR is assumed (see option -r).

19: Program ‘pdb’ version 1.4a [Contents] – [Index] 252

-g Gap in residue numbering terminates chain. If the difference of numbers of two consecutive
residues is not 1 than the protein chain is terminated (normally by CTER) and started
again (normally by NTER), as if there was a TER statement between them.

-hRSD Use RSD.rsd as head (N-terminal patch) for starting peptide chains. The default is
nter.rsd (NH+

3). Extension .rsd can be changed by option -f.

-ikey Ignore atoms which are present in the pdb-file but are not supported by the residue-
files. Typical case is when all hydrogens are in the pdb-file (incl. aliphatic H) but the
aliphatic H are not supported in the united atom representation. Typical key is 1 (ignore
H in molecules) or -1 (ignore all H, in molecules and aminoacid residues). See option -d

for details of key.

-m- -m0 Don’t write .mol file

-n Use neutral residues:

-n0 Charged residue are used for acids (ASP and GLU) and bases (ARG, LYS, and
HIS). This is the default. In V1.3c and older, HIS was neutral by default, now HIS
is charged (protonated) by default and -n (see below) specifies its uncharged state.

-n Use neutral residues instead of ‘standard’ charged ones:

ARG -> ARGN

ASP -> ASPH

GLU -> GLUH

LYS -> LYSN

HIS -> HISN

NTER -> NTERN

CTERH -> CTER

(In versions V1.3h and older did not work for the termini.)

-n-1 Use charged residues and compensate charges by counterions Na+ or Cl-. Also
charges of NTER and CTER are compensated. NOTE: Positions of ions are
calculated from known atoms of the side-chain (for ARG, ASP, GLU, LYS, HIS)
or backbone (for terminals) so that the ion is placed in the direction of the chain
off the molecule. E.g., for N-ter the formula is 2*r[N]-1*r[CA]. When counterions
are used, blend should be called for the first time with option -k-3 to allow energy
minimization with the molecule skeleton fixed and free ions and hydrogens.

-n-% As above where the distance of the counterion from the ion being compensated is
-% percent of the previous bond., e.g.: (q/100+1)*r[N]-q/100*r[CA]

-oRSD Omit residue RSD. Typical use is such as -oHOH (or -oWAT—check the PDB file!) to
remove all water molecules.

-pnumber[:FROM:TO] Paste a configuration from input file (typically the playback file
molname.plb to a PDB-file. Both pdbname and molname must be specified on
the command line (and must differ). File pdbname.pdb is the input PDB-file and
molname.pdb the output. The source and format of input configuration is given by
options -b and -t (only one of them may be active; since -b is default, it must be
turned off if -t is to be used). -pnumber with a positive argument selects number-th
configuration on the playback file (supported only for binary format), -p is the same as

19: Program ‘pdb’ version 1.4a [Contents] – [Index] 253

-p1 (the 1st configuration), -p-1 means the last configuration in the playback file, -p-2
the 2nd last, etc. The version with range processes a range of frames. Option -b2 meaning
playback file molname.plb as input is forced (also -t2?). The output files are numbered
molname.####.pdb, where #### is the frame number. In this case, molname=pdbname
is allowed. Cf. options -r4:FROM:TO:BY -w10 | -w20 of blend.

-qnumber Charge multiplication factor in %. Default is 100%.

-rRSDDIR The directory of residue files, relative to BLENDPATH (see Sect. 19.1.1). If also
option -fPARSET is given, option -rRSDDIR overrides the value of rsddir stored in file
PARSET.par. Slash or backslash after directory name is not allowed.

-snumber Scrolling enabled with number kB buffer, see blend for details.

-t Write (if not -p) or read (if -p) text file with the molecular configuration.

-t -t1 Coordinate file is molname.3dt.

-t2 Coordinate file is molname.plt with playback-like header line.

-t3 Both -t1 and -t2.

-u Enable more relaxed atom matching algorithm when assigning PDB atoms to atom names
in the residue files; for instance, with -u, HE3 in PDB-file matches HE1 in the residue
file if there is only one (Unique) HE atom in the residue file. Without -u, they do not
match. If the PDB-file contains aliphatic hydrogens (but no charged or hydrogen bonded
hydrogen), the default -u0 must be used. Some PDB formats, however, may use different
numbering and then option -u may help.

-v Verbosity level.

-v -v1 Verbose (default).

-v- -v0 Most of the info messages and warnings are suppressed.

-v-1 Partly verbose. Only connection and re-connection reports are suppressed.

-x Wildcard A in atom names in the PDB file is enabled. This occurs when a group like
-CNH2O in GLN may rotate by 180 degrees so that it is not possible to distinguish both
heavy atoms.

-z (new in V1.3n)

-z0 Patched residue keeps name of the residue even for atoms added (i.e., the added
atoms are treated as part of the residue).

-z2 The patched part has always the name of the patch (i.e., the added atoms are
treated as new ‘residue’ under the patch name). If the patch is specified by -h/-e
options, first three letters of the patch name (in uppercase) are used.

-z1 (default) Option -z0 applies for patches specified in the PDB file while -z2 for
patches specified by -h and -e options.

19: Program ‘pdb’ version 1.4a [Contents] – [Index] 254

19.2 Residues

The topology (chemical structure) along with partial charges are defined in the residue files.
The name of a residue file is usually the same as the residue name (but is lowercase) and the
extension is defined by the parameter set used (see option -f).

19.2.1 Format of residues

The format of residue files is almost the same as .mol format described in the manual for blend.

Differences are:

1. First line must start by one of the following keywords:

aminoacid Aminoacid residue, to be connected by a peptide bond

patch A part of molecule that modifies another molecule, for C/N-termini deprecated

nter Chain head (N-terminus). A peptide bond to the next residue is added. This
residue keeps its name in the PDB file.

nterp Patch for chain head (N-terminus), merged with the following residue. A peptide
bond to the next residue is added even if not specified in the patch.

cter Chain end (C-terminus). A peptide bond to the previous residue is added. This
residue keeps its name in the PDB file.

cterp Patch for chain end (C-terminus), merged with the following residue. A peptide
bond to the previous residue is added.

water Water model

molecule Any other molecule

2. If the type is patch, nter, or cter, atomid field may be divided by a colon into 2 parts.
The second part is atomid to be replaced in the residue and the first part is the new
name. Example:

patch NH3+ (N-terminal patch for all aminoacids but GLY and PRO)

number_of_atoms = 5

! charge=1

atoms

! i id type charge chir nb bonded_atoms

0 N:N NT -0.30 0 4 1 2 3 4

1 NH1:H HC 0.35 0 1 0

2 NH2 HC 0.35 0 1 0

3 NH3 HC 0.35 0 1 0

4 CA:CA CH1E 0.25 1 1 0

Since Nothing is compatible, the same atom can be coded in different PDB files by different
id’s. These aliases can be listed in a residue-file as a comma-separated list.

4 C,CY C 0.51 0 0 2 0 5

Only the first one is printed in info/error messages.

19: Program ‘pdb’ version 1.4a [Contents] – [Index] 255

19.2.2 Termini

The residue files for aminoacids contain residues as they enter the peptide chain (-N-Cα-CO-).

The first aminoacid (N-terminus) must be modified as follows:

• +charged (=protonated): there is NH+
3 instead of N, patch=NTER

• neutral (pdb -n) : there is NH2 instead of N, patch=NTERN

• counterion (pdb -n-1) : there is NH+
3 Cl− instead of N, patch=NTERCL

This is accomplished by applying given patch (a patch is represented by a residue file with
keyword patch, nter, or cter in the 1st line, e.g., file nter.rsd is the patch NTER for
charmm21).

Residues PRO and GLY are exceptional and different patches must be used:

PRO: • +charged (=protonated): there is NH+
2 instead of N, patch=PROP

• neutral (pdb -n): there is NH instead of N, patch=PROPN

• counterion (pdb -n-1): there is NH+
2 Cl− instead of N, patch=PROPCL

GLY: • +charged (=protonated): there is NH+
3 instead of N, patch=GLYP

• neutral (pdb -n) : there is NH2 instead of N, patch=GLYPN

• counterion (pdb -n-1) : there is NH+
3 Cl− instead of N, patch=GLYPCL

(The reason for a special treatment of GLY is because of CH2E instead of CH1E
as Cα)

pdb since V1.3i selects the appropriate patch automatically according to the value of option
-n. However, if the patch is specified by -hpatch, no check is made and the requested patch is
used.
WARNING: names of hydrogens vary in different versions of pdb files and they need not be
recognized. In PROPN the hydrogen is called HNC while in PROP the two hydrogens are
called NH1 and NH2. This is not logical, but corresponds to the pdb files I have seen. Edit the
files if you meet another names. Unrecognized hydrogens may be usually safely ignored—they
are calculated in the blend stage.

19.2.3 List of residues

The most common residues follow. The corresponding file name is in lowercase and has the
residue extension appended. One-letter code for aminoacids is in parentheses.

nter ACE acetylated N-terminus, CH3-CO-

aminoacid ALA alanine (A)

cter AMI amidated C-terminus, -CO-NH2, also called CT2

aminoacid ARG arginine (R)

aminoacid ASN asparagine (N)

19: Program ‘pdb’ version 1.4a [Contents] – [Index] 256

aminoacid ASP aspartic acid (D), anion

aminoacid ASPH aspartic acid, protonated

cter CT1 methylated C-terminus -CO-O-CH3

cter CT2 amidated C-terminus, -CO-NH2, also called AMI

cter CT3 n-methylamide C-terminus -CO-NH-CH3, also called CMAM

cter CTER C-terminal patch for aminoacids, anion -COO−

cter CTERH C-terminal patch for aminoacids, protonated -COOH

aminoacid CYS cysteine (C)

aminoacid CYSS cysteine (to bind to another CYS)

aminoacid GLN glutamine (Q)

aminoacid GLU glutamic acid (E), anion

aminoacid GLUH glutamic acid, protonated

aminoacid GLY glycine (G)

nter GLYP terminal patch for GLY instead of NTER

molecule HEM heme BUGS: in some force fields, planarity is accomplished by different force
fields terms than original. It may affect vibrational frequencies and similar. Binding of
the heme with the protein can accomplished by files .sel and .rep files which are only
partly available. Since there are 6 bonds of Fe, blend must be compiled with #define

MAXVAL 4 in blend/blendpar.h

aminoacid HIS histidine (H), cation (protonated)

aminoacid HISN histidine (neutral with proton on ND1)

aminoacid HISNE histidine (neutral isomer with proton on NE2)

water HOH TIP3P water model

aminoacid ILE isoleucine (I)

aminoacid LEU leucine (L)

aminoacid LYS lysine (K), positively charged

aminoacid LYSN lysine (K), neutral (not in all force fields)

aminoacid MET methionine (K)

nter NTER N-terminal patch, -NH+
3 , for all aminoacids but PRO and GLY

nter NTERN neutral N-terminal patch for all aminoacids but PRO and GLY

aminoacid PHE phenylalanine (F)

19: Program ‘pdb’ version 1.4a [Contents] – [Index] 257

aminoacid PRO proline (P)

nter PROP N-terminal patch for PRO instead of NTER. prop.che is the whole residue

aminoacid SER serine (S)

aminoacid THR threonine (T)

aminoacid TRP tryptophan (W) BUG: in some force fields, planarity is accomplished by
different force fields terms than original. It may affect vibrational frequencies and similar.

aminoacid TYR tyrosine (Y)

aminoacid VAL valine (V)

molecule ZN Zn++

19.3 Bugs and caveats

1. In spite of its name, MACSIMUS is now being developed towards simulations of
fluids, ionic systems, systems with polarizability and not biochemistry applications.
MACSIMUS’ basic support of protein modeling and simulation will not be extended
in future.

2. Only aminoacids are supported and a few other compounds.

3. There are several variants of the PDB format and therefore there is no guarantee that
pdb will always work. See comments in the program (pdb.c) for details.

4. Information in PDB commands SSBOND and CONECT is duplicated. pdb writes a
notice ‘reconnected’ if the same bond is connected again The same holds for option -c.

5. Cannot use different N- and C-terminal patches for different chains.

6. Some residues (esp. in alternate charge states) may be missing for some force fields.

Chapter 20

Data analysis

20.1 showcp: Show and analyze convergence profiles

cook (and in special cases also blend) records time-development of selected quantities (see the
manual for cook, file extension .cpi). showcp enables viewing and analyzing these ‘convergence
profiles’. showcp recognizes the endian so that analyzing the cp-files on a different computer is
transparent.

IMPORTANT NOTE: Always the time development of quantities is shown and never a
cumulative average (sometimes also called ‘convergence profile’) from start of simulation
because this quantity hides important information like sudden jumps, oscillations, etc! (To
show a cumulative average, use runsum).

Usage:

showcp [OPTIONS] {SIMNAME | SIMNAME.cp | SIMNAME.cpz} [OPTIONS] [NAME ..]

Files:

SIMNAME.cp convergence profile file

SIMNAME.cpz packed convergence profile file (see Sect. 20.9)

SIMNAME try SIMNAME.cp, if it does not exist then SIMNAME.cpz

Options:

Select columns. The default (if no such option is given) is all columns selected.

-# Select column number # (integer from 1). This option can repeat and can be combined
with NAME.

NAME Select column of given name.

258

20: Data analysis [Contents] – [Index] 259

-o#[,#...] To be used with option -p: merge given columns to One plot. Several -o’s can
be repeated. The default (if no option -o is given) is -o2,6,7, i.e., T, Tin, and Ttr
are merged in one plot. If at least one -o is given, this default is overridden, further
-o’s define variables for another plot. The first column must be also selected (by -# or
NAME), the remaining are added. Columns in the cp-file (cpa-file) not listed are plotted
separately. Example: to plot 512.cp, blocked by 10, with columns 4 and 5 merged, 2, 6,
7 merged, and all other columns separate, use:

showcp -b10 -p 512.cp -o4,5 -o2,6,7

Range/lag options:

-f# (1) Analyze or show from record #

-t# (0) Analyze or show to record # (incl.). The default is -t0 (= the last record)

-b# (0) Block (sub-average) size for showing and additional analysis. The default is -b0,
which will adjust the block size to a power of 10 (for plotting) or according to screen
width.

-h# Set the timestep (noint*h from cook run), applies to -x,-c1,-c2.

-l# (29) Set lag for statistics (up to which autocorrelation analysis is performed). -l0 = no
statistics

-n# (12) Number of consecutive blockings by 2 (not for -c1,2). Blocked data enable better
error estimate.

Actions:

-a Write ASCII file SIMNAME.cpa in format compatible with gnuplot or plot (see Sect. 18.2)

-a-1 As above and add column Etot-Etot0

- Output is stdout instead of a cpa-file and any other information but the resulting ASCII
convergence profile is prepended by #. To be used with option -a to pipe the results to
other programs. Example:

showcp - -a test.cp | plot -:0:4 :5

will show a merged graph of columns 4 and 5.

-c# (0) Sum of:

1 write files SIMNAME.NAME.tcf with time correlation functions

2 write files SIMNAME.NAME.cov with covariances

4 detailed autocorrelation analysis (not just summary)

8 autocorrelation analysis of data blocked by option -b

16 autocorrelation analysis with removed linear T-dependence

20: Data analysis [Contents] – [Index] 260

Option -l must be set, too. The default is -c0 which means that only a brief summary
of errors is printed.

-g print pseudoGraphs [default if columns selected and no other action]

-m print Merged y-x pseudograph (1 line = 1 block, variables are shown by letters)

-p Plot blocked selected columns with not-constant data (forces -a)

-x write blocked x-y files SIMNAME.NAME.xy

-e statistical analysis and regression of the first two selected columns

Options:

-k# pseudograph info line (blow the graph) contains:

1 column info, min, max, range, blocking

2 column info, first, last, difference, blocking

3 both 1+2

-d# (1) Set delay # s between plots, to be used with option -p. Increase when showcp is run
on a distant computer and the connection is slow

-r Reverse endian (obsolete)

-s# Scroll (buffer #kB, -s=-s30) (obsolete)

-u Character set for pseudograph (option -g) is

-u Braille UTF-8

-u- ASCII

The default is guessed from LOCALE.

Example:

showcp mysimul -p Etot Tkin -5

Will show three graphs, total energy (column 1), temperatures (white=Tkin=total, yel-
low=translational, cyan=rotational and intramolecular), and column 5=pressure or density.
The data will be averaged in appropriately selected blocks

*Source: util/showcp.c

20: Data analysis [Contents] – [Index] 261

20.2 cp2cp: Manipulate convergence profile files

Usage:

cp2cp [OPTIONS] INPUT.cp OUTPUT.cp [OPTIONS]

Files:

INPUT.cp input convergence profile file

OUTPUT.cp output convergence profile file

Options:

-b# input data are blocked (sub-averages are made) by # lines of data

-s# stride by #: every #-th value of input is taken, the first one considered is the #-th

-s# -b## strided data are blocked

-rKEY Rearrange columns. KEY=string of {1,2,..,9,A,..,0}, where 1=1st column, A=10th
column, 0=empty column (filled by 0)

-hNAMENAME.. headers of empty columns (added by using key 0 in -k), every 4 chars
correspond to one 0

-f# read the input file from record # (records are numbered from 0)

-n# max. # of records read (must appear after -f)

-t# read the input to record # (record # is not included; equivalent to the sum of -f -n)

BUGS: does not accept old 5-column format, opposite endian, packed (.cpz) files

Examples:
Omit first 1000 records, delete columns 6+7 (of 12), and block by 10:

cp2cp in.cp out.cp -f1000 -r1234589ABC -b10

Replace column 4 by 0 (header ZERO) and swap columns 6 and 7:

cp2cp in.cp out.cp -r1230576 -hZERO

Split a.cp (100000 records long) into chunks by 10000 records

tab 10000 100000 10000 "cp2cp a.cp b0.cp -f0 -n10000" | sh

Source: util/cp2cp.c

20: Data analysis [Contents] – [Index] 262

20.3 rdfg: Analyze and show radial distribution func-

tions

rdfg prints and/or plots the radial distribution functions from binary data stored in the rdf-file.
The running coordination numbers are provided, too (as column 4 of the g-files).

Usage:

rdfg SIMNAME[.rdf] [KEY [FMT]]

KEY is a string of:

u Unix version only: Create separate files SIMNAME.SITE1.SITE2.g for each site-site pair
in the rdf-file

d DOS style: Create separate files SITE1SITE2.g for each site-site pair in the rdf-file

none of d u Create one merged file SIMNAME.g of all site-site RDFs

p Start plot of the of generated g-file(s). See Sect. 18.2.

r Reverse endian on input. To be used for rdf-files obtained on a computer with the opposite
sex (endian)

FMT is the C-format for printing g(r), default=”%8.4f” (four dec. digits).

Example (generate files with DOS-names, accuracy=5 dec.digits, plot them):

rdfg mysim dp %9.5f

*Source: util/rdfg.c

20.4 smoothg: Smooth histogram-based RDF

Smoothing of g(r) [obtained by histogram]. Call by:

smoothg WINDOW ORDER DR DATA[:COLR:COLG] FROMR[:TOR[:DR]] [FORMAT]

WINDOW RECT[+TRIANG] rectangular width+triangular half-width

-WIDTH Gaussian half-width: exp[−(x/WIDTH)2/2]

ORDER order of the polynomial (1=linear)

DR grid of R in DATAFILE (must match file!)

DATA file of r,g data

COLR:COLG columns of r,g (default=1,2), COLR=0 means 0,1,..

FROMR:TOR:DR output range and grid of R

FORMAT output format for double x,y (default=”%.12g %.12g”)

*Source: util/smoothg.c

20: Data analysis [Contents] – [Index] 263

20.5 staprt: Print a sta-file

Prints the contents of a sta-file generated e.g. by cook. Usage:

staprt FILE.sta [mode]

where MODE is

+ More decimal digits of the output

- Print merged time correlation to stdout

anything else Print time correlation files to files FILE.NAME.tcf, where NAME is derived from
the variable name (problematic characters are edited)

Warning: some changes in DOS version

*Source: util/staprt.c

20.6 sfourier: Structure factor from RDF

Using the fast Fourier transform, RDF (from a g-file) is converted to a structure factor (SF).
Cf. structure factors obtained directly from configurations (see cook, option -f).

To get a partial SF from site-site RDF:

sfourier GRID CUTOFF NS < FILE.X.X.g > FILE.gsf

where FILE.X.X.g is one of g-files obtained by rdfg FILE u

The total SF for a mixture from a set of RDFs

sfourier GRID CUTOFF NS SITE1:b1 SITE2:b2 ... < FILE.g > FILE.gsf

where FILE.g is obtained by rdfg FILE (or cat FILE.*.*.g) Note that sfourier reads also
information printed in the header of the g-files.

GRID Number of grid points/Å, must match the grid of the RDF files

CUTOFF Should be rdf.cutoff (see cook input data). If CUTOFF<rdf.cutoff, then then the
data are truncated; if CUTOFF>rdf.cutoff then the data are padded by g(r) = 1.

NS total number of sites (atoms, not types of sites)

SITE1, SITE2 name of site of given number. Sites may be listed in any order

b# scattering length of site #

*Source: util/sfourier.c

20: Data analysis [Contents] – [Index] 264

20.7 coordn: Coordination number

Calculates the coordination number from a (r g(r)) file. Normally not needed because rdfg

prints the coordination number as well. Call by:

coordn COLUMN_OF_G DR [RHO G0 CONST] < INFILE > OUTFILE

Calculates CONST + RHO * integral 0^R [g(r)-G0] dV. Default RHO=1, CONST=0. The
integral is over dV = 4 PI r^2 dr and is replaced by the sum over dV = 4 PI/3*[(r+DR/2)^3-
(r-DR/2)^3

Source: util/coordn.c

20.8 hbonds: H-bonds for liquid water

Hydrogen bonds are generated for water based on intermolecular O-H distance. The default
version is for TIP4P, this can be changed in the source file.

Call by:

hbonds PLBFILE [O-H distance]

where PLBFILE is the input playback file and the second parameter is the threshold O-H
distance to define an H-bond; the default is 2.44. A series of files hb####.mol, hb####.gol,
hb####.plb is generated where #### are consecutive frames.

Source: util/hbonds.c

20.9 cppak: Loss (de)compression of convergence profile

files

This compressor samples the min–max interval of variables using integers of given number of
bits and stores the differences. Typical compression rates are to 25–50%, depending on the
number of bits and possible columns of zeros only.

Call by:

cppak FILE.EXT [NBITS]

where the action is determined by the extension .EXT:

.cp compresses FILE.cp to FILE.cpz

.cpz decompresses FILE.plz to FILE.cp

NBIT is the number of bits to store the min–max interval; default=12 (accuracy 3-4 dec. digits).

Packed cp-files are transparently recorded by cook (see variable CPnbit) and shown or analyzed
by showcp (see Sect. 20.1).

Source: util/cppak

20: Data analysis [Contents] – [Index] 265

20.10 autocorr: Statistical analysis using autocorrela-

tion function

Prints autocorrelation and error analysis of time-dependent data. Call by:

autocorr {FILE|-} [OPTIONS]

Options:

-l# The lag (# of autocorrelation coefficients) for statistics [default=29]

-b# The lag for calculations with data blocked by 2, 4, 8, ... items [default=2]

-n# Number of blocked calculations: the maximum block size is 2^# [default=8]

-h Higher precision (more digits) on output [default=off]

-m-1 Input data are angles in radians (mod 2PI) and they are reconstructed to be continuous.
To be used for the time correlation function of, e.g., dihedral angles.

-m# As above, modulo # (must be positive integer). E.g., for angles in degrees use -m360 (as
for output of ramachan)

-c# Column of data [default=1]

-t Write time correlation functions (column 1 = 0,1,2,...; column 2 = autocorrelation
coefficients) in separate files NAME#.tcf Number # is used only if given by option -c#.
[default=off]

- Instead of FILE means stdin

The output contains first the name, number of data and their range. In the second line there is
the Mean and Variance. Then, the autocorrelation coefficients and other statistics are printed:

c[t] = Cov(c[0],c[t])/Var(c)

tau = SUM_t’=1^t c[t’] (partial sum)

StDev^2 = <(1+2tau) Var(c)>/n

where Cov(X,Y)=<(X-<X>).(Y-<Y>)> is the covariance and Var(X)=Cov(X,X) is the variance;
both are estimated from the data. tau is the correlation length and StDev is estimated standard
deviation of the mean (arithmetic average).

*-lines contain the same information calculated from blocks of averages (sub-averages) by 2, 4,
8... data. Example (realistic):

> autocorr logfile.anc -c3 -n12

logfile.anc.3 No=320688 range=[-1.40727e-09,2.12488e-09]=3.53215e-09

Mean = 1.30584217e-10 Var = 5.16207293e-20

_t__c[t]__1+2tau__StDev_ _t__c[t]__1+2tau__StDev_ _t__c[t]__1+2tau__StDev_

0 1.0000 1.000 4.0e-13 1 0.9960 2.992 6.9e-13 2 0.9844 4.961 8.9e-13

3 0.9667 6.894 1.1e-12 4 0.9450 8.784 1.2e-12 5 0.9214 10.627 1.3e-12

6 0.8978 12.423 1.4e-12 7 0.8754 14.173 1.5e-12 8 0.8552 15.884 1.6e-12

20: Data analysis [Contents] – [Index] 266

9 0.8374 17.559 1.7e-12 10 0.8220 19.202 1.8e-12 11 0.8084 20.819 1.8e-12

12 0.7958 22.411 1.9e-12 13 0.7834 23.978 2.0e-12 14 0.7702 25.518 2.0e-12

15 0.7556 27.029 2.1e-12 16 0.7389 28.507 2.1e-12 17 0.7201 29.947 2.2e-12

18 0.6994 31.346 2.2e-12 19 0.6771 32.700 2.3e-12 20 0.6539 34.008 2.3e-12

21 0.6304 35.269 2.4e-12 22 0.6074 36.484 2.4e-12 23 0.5853 37.654 2.5e-12

24 0.5645 38.783 2.5e-12 25 0.5452 39.874 2.5e-12 26 0.5274 40.928 2.6e-12

27 0.5110 41.950 2.6e-12 28 0.4957 42.942 2.6e-12 29 0.4812 43.904 2.7e-12

* 0 1.0000 1.000 5.7e-13 1 0.9848 2.970 9.8e-13 2 0.9465 4.863 1.2e-12

* 0 1.0000 1.000 8.0e-13 1 0.9516 2.903 1.4e-12 2 0.8663 4.636 1.7e-12

* 0 1.0000 1.000 1.1e-12 1 0.8936 2.787 1.9e-12 2 0.7559 4.299 2.3e-12

* 0 1.0000 1.000 1.5e-12 1 0.7907 2.581 2.5e-12 2 0.4804 3.542 2.9e-12

* 0 1.0000 1.000 2.1e-12 1 0.5645 2.129 3.0e-12 2 0.1880 2.505 3.2e-12

* 0 1.0000 1.000 2.6e-12 1 0.3299 1.660 3.3e-12 2 0.0953 1.850 3.5e-12

* 0 1.0000 1.000 2.9e-12 1 0.2409 1.482 3.6e-12 2 0.0838 1.649 3.8e-12

* 0 1.0000 1.000 3.3e-12 1 0.1694 1.339 3.8e-12 2 0.0917 1.522 4.1e-12

* 0 1.0000 1.000 3.6e-12 1 0.1880 1.376 4.2e-12 2 0.1144 1.605 4.5e-12

* 0 1.0000 1.000 3.9e-12 1 0.2105 1.421 4.7e-12 2 0.0248 1.471 4.8e-12

* 0 1.0000 1.000 4.2e-12 1 0.1515 1.303 4.8e-12 2-0.0060 1.291 4.7e-12

* 0 1.0000 1.000 4.4e-12 1 0.0376 1.075 4.5e-12 2 0.0331 1.141 4.7e-12

1.30584217191e-10 4.76e-12 9.53e-12 320688 (av std 2*std no)

Analysis: These are highly correlated data. The average is 1.3058e-10. The autocorrelation
coefficient with lag of 29 timesteps is 0.4812 so that the error estimate of 2.7e-12 is severely
underestimated. In lines beginning with * are error estimated with blocking 2,4,8,... The higher
blocking, the less influence of correlations, but fewer data so that less reliable estimate. The best
results are from the t=1 column, i.e., in addition to blocking the first autocorrelation coefficient
is taken into account. Watch the c[1] column and find the line with c[1] small enough, let us say,
c[1]< 0.2, or c[2]< 0.1. It gives stdev=4.8e-12. The last #-line contains the maximum which
is usually reasonable error estimate obtained automatically. Therefore the result is 1.306e-10
+- 4.8e-12 (or perhaps more optimistic 1.306e-10 +- 3.6e-12; it is difficult to say which value
is more reliable. This is general problem in simulations with slowly decaying correlations.),
i.e., with probability about 68% the value is within 1.306e-10 +- 4.8e-12, with probability 95%
within twice this margin.

If there are enough data and the error estimates are reliable, then

Note: the autocorrelation analysis is embedded also in cook and showcp

Bug: some non-alphanumeric characters are removed from FILE.

*Source: util/autocorr.c

20.11 spectrum: Spectrum (Fourier transform)

Calculates a spectrum (Fourier transform) of data. Call by:

spectrum [-]NDATA [KDATA [DT]] < FILE

FILE should contain NDATA numbers (SPACE, tab, or EOL separated) and KDATA is the number
of output frequencies (if not given, KDATA=NDATA/2. If time resolution DT is given, the output
has two columns (1st column = frequency, 2nd column = squared amplitude) and peaks are
also calculated. If DT is omitted, the output has only one column (squared amplitude). With

20: Data analysis [Contents] – [Index] 267

-NDATA, the input data will be multiplied by bell-like window sin2(π ∗ i/NDATA). The peaks
are then ‘more peaky’ (delta-function like), but the resolution actually somehow worsens.

May be used for determining vibrational frequencies from MD data. For instance, let sim.cp

be a 1000-records-long convergence profile obtained by running cookfree at low temperature
for one molecule with h=0.001 and noint=1. Then the following ‘pipe’:

showcp - -a sim | \

mergetab -:2 | \

spectrum 1000 2000 0.002 | \

plot -

will plot a graph with peaks corresponding to vibrational frequencies. These should match the
results of blend -N sim. Note that parameter DT has been set to TWICE the sampling rate
h*noint because the kinetic temperature is a quadratic quantity and gives doubled frequencies.

Note: the algorithm uses FFT optimized for factors 2 and 3. The calculation is slowest for
NDATA=prime number.

*Source: util/spectrum.c

Chapter 21

Working with playback files

The calculated configurations or trajectories are usually stored in files with extensions .plb

(whole configuration) or .p00 (one molecule). In some cases the can be analyzed again by
blend or cook that have generated them. Here are utilities to manipulate with the plb files.

21.1 plbinfo: Get information on plb-files

Get information on binary playback files. Call by:

plbinfo [-]FILE [[-]FILE ...]

The file(s) must be with extensions (.plb, .p00...) - in front of file names reverses endian on
input.

Returns # of errors encountered (0 on success)

Source: util/plbinfo.c

21.2 plbcheck: Some checks on binary playback files.

Similar to plbinfo with some checks added. Call without arguments to get help.

Source: util/plbcheck.c

21.3 plbconv: Converts old and new plb formats

The format of plb files changed from a version supporting only fixed box size to a version with
variable 3D box. plbconv converts these two formats.

Call without arguments to get help.

Source: util/plbconv.c

268

21: Working with playback files [Contents] – [Index] 269

21.4 plb2plb: Extract selected sites

Call without arguments to get help.

Source: util/plb2plb.c

21.5 plb2asc: Conversion of plb-files to ASCII

Call without arguments to get help.

See also see Sect. ??.

Source: util/plb2asc.c

21.6 asc2plb: plb-files from ASCII

Call without arguments to get help.

Source: util/asc2plb.c

21.7 frame: Extract one frame from a plb-file

Obsolete, old plb format only. Use plbcut instead.

Call by:

frame {FILE|FILE.plb|FILE.p00|FILE.ppp} [FRAME [NS [{a|t|b}]]]

argument 1 FILE without extension means FILE.plb, if not found then FILE.p00 [[??, if not
found then FILE.ppp]]

argument 2=FRAME FRAME is the frame # to extract, default=1=1st frame, -1=last frame

argument 3=NS optional number of sites to truncate; default=0=use all sites\n\

argument 4 a=t output is ASCII file FILE.3dt. The default is b = binary file FILE.3db

Source: util/frame.c

21.8 cutplb: Edit plb-files

Obsolete, old plb format only. Use plbcut instead.

To extract parts from a plb file:

cutplb INPUT_FILE OUTPUT_FILE BY [FROM]

where

21: Working with playback files [Contents] – [Index] 270

INPUT FILE The input binary playback file

OUTPUT FILE The output binary playback file

BY The stride: extracts every BY-th configuration

FROM The first configuration extracted, default=1

To checks coordinates of SITE, remove repeating frames, and generate cutplb.chk with removal
info:

cutplb INPUT_FILE OUTPUT_FILE -BY [SITE]

where SITE is the site number. This version is useful when a long simulation crashed and
was restarted so that some frames have been included twice into a plb-file. Not all versions of
cook work in a strictly deterministic manner. The POLAR version depends on the start of the
self-consistent field and in parallel versions the result may depend on the order of calculations.
Even tiny numerical errors multiply in long simulation times! It is therefore better in case of
any crash to truncate the plb file before restart – information on this restart is printed in the
prt-file.

Source: util/cutplb.c

21.9 plbcut: extracts parts of a playback file

Call without arguments to get help.

Source: util/plbcut.c

21.10 plbbox: Change box size of a plb-file

Call without arguments to get help.

Source: util/plbbox.c

21.11 densprof: Selected density profile angular correla-

tions.

Call without arguments to get help.

Source: util/densprof.c

21.12 plb2cryst: Sort sites to files according to crystal-

like structure.

Call without arguments to get help.

Source: util/plb2cryst.c

21: Working with playback files [Contents] – [Index] 271

21.13 plb2nbr: Sort sites to files according to the number

of neighbors.

Call without arguments to get help.

Source: util/plb2nbr.c

21.14 plbmerge: Merge several plb files

Merge several plb files into another plb file, frames synchronously. Call without arguments to
get help.

Source: util/plbmerge.c

21.15 atomdist: Atom-atom distances

Prints atom-atom distances from playback files Call by:

atomdist FILE INDEX1 INDEX2 [NS]

FILE The playback file (with extension .plb, p00, ...) or a 3db-file

INDEX1 INDEX2 Atom indices (see the mol-file)

NS Number of sites (iff FILE a 3db file)

Source: util/atomdist.c

21.16 smoothpl: Smooth the playback file

A simple method to filter out the thermal motion is smoothing the coordinates. It is, for each
atom vector r, given by

r’[t] = SUM w[i] r[t+i]

where w is the weight function.

Call by:

smoothpl IN OUT WINDOW [GAUSS [SITES]]

IN input playback file

OUT output playback file. It is shorted by the window width which is WINDOW+GAUSS

WINDOW rectangular window [1/WINDOW,...,1/WINDOW]. Negative WINDOW means to
reverse endian on input

21: Working with playback files [Contents] – [Index] 272

GAUSS # of [0.5,0.5] windows to convolute. This creates binomial function or approximately
Gaussian function

SITES optional # of sites. If SITES is given, no header is assumed, otherwise 2 floats

Example: let sim.plb is a file of a 1ns long run, sampled by 1ps (there are 1000 frames in it):

smoothpl sim.plb smoothed.plb 20 20

show sim smoothed

will calculate and show the smoothed motion. Try different WINDOW and GAUSS.

Source: util/smoothpl.c

21.17 plbmsd: Mean square displacement of atoms

Calculates the (mean) square displacement of selected sites. Call by:

plbmsd [-]FILE[:FROM] L SITE [SITE ...]

where

FILE.p00 or FILE.plb input playback file

FROM start for linear regression, default=2=first datum (1=zero)

FILE.msd output file

-FILE reverse endian of input playback file

L box size (L=0: take from FILE.EXT, L < 0: force FREE boundary conditions)

SITE site # to process (can enter more sites)

*Source: util/plbmsd.c

21.18 density: Calculate local density

Call by:

density FILE.plb[:FROMFRAME] X Y Z R

Calculates # of atoms in a sphere of center (X,Y,Z) and radius R. Reads the whole file starting
with frame FROMFRAME (default=1).

Source: util/density.c

21: Working with playback files [Contents] – [Index] 273

21.19 mergeplb: Merge several plb files into one

Merge several plb files into another plb file, frames synchronously. Stops when any plb-file
reaches EOF.

mergeplb PLB-FILE [PLB-FILE ...] > MERGED-PLB-FILE

The box size L is set to the maximum L Bug: cannot for DOS because of binary redirection
Hint: use molcfg to prepare mol (and gol) files for showing.

Source: util/mergeplb.c

21.20 filtplb: Convert a plb-file for a subset of atoms

Obsolete (old format only), use plbfilt instead.

Call by:

filtplb RICH.mol [-]RICH.plb POOR.mol POOR.plb

Reads playback file RICH.plb which corresponds to molecule RICH.mol, selects only sites which
are contained in molecule POOR.mol and creates playback file POOR.plb. POOR.mol must be a
subset of RICH.mol, i.e., it POOR.mol must contain atoms of IDs present also in RICH.mol. Sign
- in front of RICH.plb means reversed endian.

Typically used for essential dynamics.

Source: util/filtplb.c

21.21 plbpak: Loss (de)compression of playback files

This compressor rounds the coordinates to the nearest grid point and stores differences in
coordinates. Typical compression rates are to 25–30% for resolution 10/A and 30-40% for
resolution 100/A. Best lossless compressors (bzip2, rar) give about 90%.

Call by:

plbpak FILE.EXT [GRID]

where the action is determined by the extension .EXT:

.plb compresses FILE.plb to FILE.plz

.p00 compresses FILE.p00 to FILE.plz

.plz decompresses FILE.plz to FILE.plb

GRID is the resolution of points per 1A. The default is GRID=10, i.e., the distance of grid points is
0.1. This is sufficient for most tasks like visualization or diffusion or conductivity calculations.
BUG: available as a stand-alone utility only and not included into cook nor other programs.

*Source: util/plbpak.c

21: Working with playback files [Contents] – [Index] 274

21.22 plb2diff: Diffusion and conductivity

This utility helps calculate the diffusion, conductivity (both partial and bulk) from plb files.
plb2diff calls cook* several times for different blocks of configurations and makes averages.
Run plb2diff without argument to get help.

*Source: util/plb2diff.c

21.23 shownear: re-color atoms according to their dis-

tance

shownear FILE.plb[:FRAME] FILE.gol \

FROM TO [-]DIST COLORNEAR [COLORMARK] > OUTFILE.gol

Creates a gol-file that, when used with show, will mark atoms closer than —DIST— to atoms
[FROM..TO) by COLORNEAR and optionally atoms [FROM..TO) by COLORMARK. -DIST
means that atoms [FROM..TO) are not included in tests. Configuration (frame) FRAME is
analyzed from file FILE.plb. TO<=0 means TO=number of sites.

Source: util/shownear.c

21.24 tomoil: Conversion to MOIL

Converts mol- and plb-files to the MOIL format. If you do not know what MOIL is, you
probably do not need this utility. Run tomoil to get help.

*Source: show/tomoil

Chapter 22

Molecule visualization

22.1 molcfg: Create configuration mol- and gol-files

This is a supporting utility to be used with show to show a configuration recorded by cook*.
It generates a configuration mol-file SIMNAME.mol and optionally a gol-file SIMNAME.gol from
mol-files FILE1.mol, FILE2.mol ... and optionally gol-files FILE1.gol, FILE2.gol ...

Usage 0:

blend -o SYSNAME MOL1 MOL2

...

cook* SYSNAME SIMNAME

In the above “standard” way to call cook with a force field generated by blend, molcfg is called
transparently from cook*. Problems may occur with “optimized water models” recognized by
cook, which may change the name. Then see below

Usage 1:

molcfg FILE1 FILE2 ... SIMNAME

Repeats FILE1.mol and FILE1.gol (if exists) N[0] times, FILE1.mol N[1] times, etc., where
N[0], N[1], etc., are read from SIMNAME.def used in the simulation. Note: only variable init,

no, noint are accepted as temporary variables in SIMNAME.def if you wish to use formulas to
calculate N[]: init=20 N[0]=init^3 is correct, eps=20 N[0]=eps^3 is incorrect.

Example 1:

molcfg Li Al Cl I salt

show salt

Usage 2:

molcfg -COUNT1[PREFIX1:SUFFIX1:FROM1] FILE1 \

[-COUNT2][PREFIX2:SUFFIX2:FROM2] FILE2 ... SIMNAME

275

22: Molecule visualization [Contents] – [Index] 276

Repeats FILE1.mol COUNT1 times, etc.; SIMNAME.def is ignored. PREFIX and SUFFIX are
added to atom ID and may contain format (as %d) to hold file number, starting from FROM

(default=1)

Example 2:

molcfg -1 cyto -10w hoh -3:p%d proton -1 etoh config

show config -Yp1 -Yp2 -Yp3

*Source: util/molcfg.c

22.2 show V 2.0a: Viewing playback (trajectory) files

show shows playback files (trajectories), .plb. In addition, description of molecules (mol-file
and optional gol-file) is needed; details are explained in the manual of blend. See also molcfg

(see Sect. 22.1) and other utilities working with the playback files (see Sect. 21).

Run it without parameters to get list of options. Letter ‘s’ in shell variable GUI indicates start
with menu.

Usage:

show [OPTIONS] MOLNAME[.mol|.gol|.plb] [PLBNAME.EXT]

22.3 ray: The raytracer

A Reasonably Intelligent Raytracer by Mark VandeWettering, modified by J. Kolafa. The
recommended raytracer for MACSIMUS. I found it more suitable for rendering molecules than
PovRay (unless you want to see wooden atoms in fog..) because (1) it is simple, (2) can better
handle the ambient light, and (3) uses the normal right-handed coordinate system. Nevertheless,
if you prefer PovRay, you will find info on how to use it in show/show.c.

The scene file for this raytracer has extension .nff (for Neutral File Format) and can be
generated by show. The output file is PPM (see Sect. 22.2).

To get help on options, run

ray -h

Simple example (render sim-0000.nff dumped by show):

ray -n sim-0000

Another example (as above, 1/2 size, no antilaliasing (faster), watch progress, view the final
picture by ‘xv’)

ray -n sim-0000 -S.5 -j1 -t -vxv

Usage details:

22: Molecule visualization [Contents] – [Index] 277

ray { -Option Argument | -OptionArgument } ...

-h Help

-i FILE Input scene file (Neutral File Format), recommended extension .nff

-o FILE Output file (P6 Portable Pixel Map), recommended extension .ppm

-n FILE Input=FILE.nff, output=FILE.ppm

-t Show progress indicator in %

-u Cheap and fast antialiasing by 2x2 blur (formerly -f)

-v VIEW Show picture using viewer VIEW. For linux, ImageMagick viewer display is
recommended.

-j # Antialiasing and jittering. The default is -j-9

#=0 No antialiasing nor jittering (fastest)

#>0, #!=N^2 Random jittering with # samples/pixel

#>0, #=N^2 Antialiasing by N*N supersamples/pixel in a square

#<0, #=-N^2 As above but supersample only if contrast > c.

#<0, #=-N^2 -d# With option -d#: if error > c, enlarge supersample N →2N+1 (N
even) or N →3N (N odd)

-d # Diffuse light. # is the light size for Gaussian jittering (for each light source). Use -j

with a large argument (at least 100). Will create soft shadows.

-c # Threshold for smart supersampling (-j-#), default=0.02

-x # x size in pixels, default=command ‘resolution’ in NFF file

-y # y size in pixels, default=command ‘resolution’ in NFF file

-r # The same as -x# -y#

-s # Scale view angle (zoom) by # [default=1]. Use # < 1 if you do not see the whole
molecule, # > 1 if you wish to look closer

-S # Scale x and y size by # [default=1]. Will create smaller image but does not change
proportions.

-a # Pixel aspect ratio (y/x) [default=1]

-f # Fog from z-coordinate (no fog in front of this z) [0]

-F # Fog thickness for exponential attenuation to 1/e (to background color), 0=off [0] Note:
the fog algorithm is simple and works OK only with uniform background, best light cyan
or blue

-b FILE Use given background image (must be P6 PPM file), instead of color (command b in
the NFF file)

22: Molecule visualization [Contents] – [Index] 278

-X # Scale background image # times horizontally [1]

-Y # Scale background image # times vertically [1]

-U # Move background image up by #*height [0]

-R # Move background image right by #*width [0]

-B # How the background image is treated [default=+2]

#>0: tile background image

#<0: chessboard mirror tile (make nonperiodic images continuous)

+1 -1 Use the color of command b in the NFF file front background (this is not directly
visible, but may reflect in the rendered spheres)

+2 -2 Calculate background color for front as background image average [default]

-l # Light scaling factor [1] (effective brightness adjusted to -I -N). Use # > 1 if the
image is too dark and vice versa.

-I # Ambient isotropic light [0.1]. This is the light shining on the scene from all sides
isotropically and reflecting isotropically.

-N # Ambient light proportional to cos angle(normal,ray) [0.2]. This is the light shining on the
scene from all sides isotropically but reflecting more to the normal. Both -I -N improve
the appearance of spheres.

NFF: Detailed explanation is in ray/NFF.desc. Note that ray uses the normal right-handed
coordinate system.

Comment

v 1st command to start scene description

from X Y Z The viewpoint (eye)

at X Y Z Look at point (center of the ‘screen’ or ‘paper’)

up X Y Z Direction up vector on the ‘screen’ or ‘paper’

angle ANGLE Viewing angle of the width of the

‘screen’ or ‘paper’, in degrees

hither 1 ?

resolution 533 400 Size of the image in pixels

l X Y Z Position of a point light source. There may be several light sources. All have the
same intensity

b R G B Background, in RGB (Red Green Blue in interval [0,1]).

22: Molecule visualization [Contents] – [Index] 279

f R G B diffuse specular Phong transmittance index Set the material. diffuse is the
amount in [0,1] of the light reflected diffusely, specular is the amount in [0,1] of the
light reflected in the same angle (this makes the ‘mirror’ effect), Phong is the power
determining the size and brightness of the highlights. For molecules, the transmittance

and the index of refraction will never be used.

s X Y Z RADIUS A sphere

c X1 Y1 Z1 RADIUS1 X2 Y2 Z2 RADIUS2 A cone of the axis defined by (X1,Y1,Z1)-
(X2,Y2,Z2). If both radii are the same, this is a cylinder.

p # Polygon of # vertices. # lines of X Y Z should follow.

pp # Polygonal patch primitive (one-sided). # lines of X Y Z Xnormal Ynormal Znormal

should follow. Not used by show

*Source: ray/main.c

22.4 ppm2ps: PPM, PBM, PGM to PostScript conver-

sion

Both ray and show generate pictures in the PPM format. Since I was not satisfied with the
quality of printing these files using available utilities, I wrote my own. All six versions (P1–P6)
are supported.

Call by:

ppm2ps [OPTIONS] [INFILE [OUTFILE]] [OPTIONS]

Options:

-r# Resolution in DPI (default = −75).
< 0: minimum resolution (=small pictures small, large fit to page),
= 0: smart autoselect good for 600dpi printers.

-a# y pixel aspect ratio (VGA 320x200 has 1.2) (default=1)

-x# x-position in cm: 0=center (default), # > 0: left margin, # < 0: right margin. Ignored
for -e

-y# y-position in cm: 0=center (default), # > 0: top margin, # < 0: bottom margin. Ignored
for -e

-X# x size of the picture in cm, overrides -r

-Y# y size in cm, overrides -r; both -X and -Y override both -r and -a

-p Portrait orientation (default)

-l Landscape orientation

-i Invert colors or gray scale (processed after -d,-w)

22: Molecule visualization [Contents] – [Index] 280

-e Output is Encapsulated PostScript level 1 (-x and -y are ignored)

-c Compress image (using run length encoding). Useful if the image contains large one-color
areas. Usually not good for dithered B/W images (-1 -d#).

-0 Autoselect output format [default]

-1[#] Output B/W image [default for P1,P4]. #=dither square [default=threshold (change
by -d)]. (THIS OPTION HAS CHANGED RECENTLY)

-2 Output gray scale image (converted from color if necessary, default for P2,P5) (THIS
OPTION HAS CHANGED RECENTLY)

-3 Output RGB image (default for P3,P6)

-4 Output CMYK image (some printers like this)

-d# Change input depth for gray (default=depth in file)

-d#,#,# Change depths for RGB (default=depth in file)

-R# Add pseudo-random number (in 5*5 square mod 8, to fix dithering): try -R32 for DeskJet

-R#,#,# As above, for each color separate amplitude

-w The same as -d248,252,248 (16 bit TrueColor adjustment of white)

-g The same as -d248,248,248 (16 bit gray adjustment of white)

-L Letter paper (default=A4)

-G# Gamma correction [default=1.0=no correction]

-# Do not copy PPM/PGM/PBM comment to PS/EPS (here # stands for itself, not a
number)

Missing OUTFILE = stdout, missing both INFILE and OUTFILE = filter (cannot for DOS).

Source: ray/ppm2ps.c

22.5 ppminfo: Get information on ppm,pbm,pgm-files

Call by (verbose info):

ppminfo FILE

Call by (brief info):

ppminfo FILE FILE [FILE ...]

Source: ray/ppminfo.c

22: Molecule visualization [Contents] – [Index] 281

22.6 stereo: Stereogram

This program calculates stereograms normally with the eye cross point behind the paper, i.e.,
your eyes should watch an imaginary point lying behind the paper in approximately the same
distance as the eye-paper distance (this is for the recommended default of the x-pattern size one
half of the eye’s distance). Different people may prefer different distances or even stereograms
with the cross point above the paper.

Two input files are needed:

1. The ZB-file with a z-buffer data. It is a PGM (raw Portable GrayMap, P5). It can be
generated by show.

2. Optional pattern file. Its x-size should correspond to about 5 cm. If not given, a random
pattern is generated.

Run without options to get more info.

stereo

*Source: show/stereo.c, upgraded 2016

Chapter 23

Miscellaneous utilities

23.1 pdb2pdb: Rearrange pdb-files

Rearranges a pdb-file so that the order of the backbone atoms is N-CA-C-O[-sidechain]. This
is ‘standard’, though most programs (incl. pdb) do not care. Call by:

pdb2pdb [MAXLINES] < INPUTPDB > OUTPUTPDB

Source: blend/pdb2pdb.c

23.2 ramachan: Ramachandran plot from blend and

playback files

Call by:

ramachan [OPTIONS] SYSNAME [SIMNAME.plb|SIMNAME.p00] [OPTIONS]

Options:

-a Angles in interval [0,360) [default=[-180,180]]

-r Write results to separate files SIMNAME.r#, where #=frame number. [default=all frames
concatenated to one file SYSNAME.ram]

-s Write summary phi,psi file (1line=1frame; for columns see SYSNAME.mar) This file can
be used, e.g, by autocorr to obtain time correlation functions. Example:

autocorr -t -c2 -m360 test.sum

where see test.sum which dihedral is column 2 (of -c2) In addition, this file can be used
as SIMNAME.ddf for the DIHHIST=-1 version of cook as selection of phi,psi angles.

-f# From frame (first frame to process) [default=1]

-t# To frame (last frame processed) [default=-1=until eof]

282

23: Miscellaneous utilities [Contents] – [Index] 283

-b# By frame (stride) [default=1=every frame]

-p# The calculated Ramachandran plot is plotted (using plot, see Sect. 18.2)).

-n# Number of molecules. It should be the same as N[0] specified in the simulation def-file.
[default=1] BUG: Only simulations of identical molecules are supported (N[1]=N[2]=..=0
in the simulation def-file). WARNING: if no option -n# is specified, only the 1st molecule
from the plb-file is processed. Similarly if -n# is less than the actual number of molecules
(N[0]).

-PPARSET Parameter set (prepends environment variable BLENDPATH) The default param-
eter set is that defined in file SYSNAME.ble.

Files:

SYSNAME.ble Input ble-file

SIMNAME.plb,SIMNAME.p00 Input playback file

SYSNAME.mar Output dihedral angle info extracted from SYSNAME.ble

SYSNAME.ram Output Ramachandran plot(s) omega,phi,psi,omega: The first table from
SYSNAME.ble with site info, tables calculated from playback files follow (if not option
-r).

SYSNAME.sum Output Ramachandran summary of phi,psi by columns, 1 line= 1 frame of plb-
file

SIMNAME.r1,... Tables calculated from playback files (if -r)

${BLENDPATH}/PARSET.par Parameter file (if given by option -p). Only table ‘backbone’ is
used from this file.

Undefined angles/sites are denoted 999/-1

Source: blend/ramachan.c

23.3 makepept: Makes a peptide in che-format

Makes a peptide of given residues in a che-format. The environment is the same as for pdb and
blend.

Print one letter aminoacid codes:

makepept ANYPARM

Make a peptide:

makepept RSDDIR {rsd | RRR} [rsd | RRR ...]

RSDDIR Subdirectory of BLENDPATH with residues in che-format.

23: Miscellaneous utilities [Contents] – [Index] 284

rsd Residue or terminus name in lowercase

RRR Chain of one-letter aminoacid codes (uppercase)

Example (make peptide Acetyl-ALA-PRO-THR-HIS(neutral)-Methyl)

makepept charmm22 ace APT hisn ct1 > pept.che

BUG: for termini, the output file has to be edited (ct1 above)

Recommended blend commands:

blend -e40 pept.che # no pept.mol,pept.3db

blend -e40 -r2 pept.che # to try again (overwrite pept.mol,pept.3db)

Source: blend/makepept.c

23.4 blefilt: Blend-file filter.

Extracts some information ‘hidden’ in ble-files. Call by:

blefilt TABLE [COL [COL2 ...]] [TABLE2 ...] < INPUT.ble > OUTPUT

where TABLE is one of { sites bonds angles dihedrals impropers aromatics } and
optional list of columns follows. The default column is the column with the value of bond
length or angle, or x y z for sites. The output is in the order of the blend-file. Examples:

blefilt angles dihedrals < cyto.ble > cyto.int

blefilt sites < cyto.ble > cyto.xyz

blefilt bonds 2 4 7 < cyto.ble > cyto.int

Source: blend/blefilt.c

23.5 bonds: Make (show-able) mol-file from coordinates

Call by:

bonds { FILE.3dt | FILE.atm | FILE.pdb } [DIST]

FILE.3dt Data are in 3 columns x,y,z. DIST is the bond threshold [default=1.5]

FILE.atm Data are in 4 columns, ATOM,x,y,z, where ATOMS is atom symbol. The bond
threshold = r0*DIST, where r0 is maximum bond length for given atom-atom bond.
Only atoms H C O N S P are explicitly considered, other atoms use certain general values
that may be OK in many cases. [default DIST=1.2, values less than 1 do not have too
much sense]

FILE.pdb As above, PDB format.

23: Miscellaneous utilities [Contents] – [Index] 285

FILE.mol output mol-file

FILE.plb output plb-file

The output mol and plb files can be used by show, but are not suitable for blend.

Hint: combination of bonds FILE.pdb; show FILE can serve as a simple PDB viewer.

Source: blend/bonds.c

23.6 cutprt: Shorten a prt-file

Shortens prt-files (generated by cook) leaving the first header and the final statistics. Call by:

cutprt [-]FILE.prt [[-]FILE.prt ...]

FILE.prt rewrites file FILE.prt by the shortened one, the old one is renamed to FILE.prt

-FILE.prt output to stdout

Source: util/cutprt.c

23.7 lattice: Make a cubic lattice

Call by

lattice N L LATTICE

N Number of vertices

L Box size

LATTICE=1 Simple cubic lattice

LATTICE=2 Body centered lattice=1

LATTICE=3 Face centered lattice

Source: c/lattice.c

23.8 showpro: Show sorted pro-files

pro-files are generated by blend and contain energies of the ‘probe’ (atom or water molecule)
in a grid around a protein. Call by:

showpro PRO-FILE [LE]

where LE > 1 means that # of data in low-energy histogram will be divided by LE; default=1.

Source: blend/showpro.c

Part IV

Appendixes

286

Chapter 24

Ewald summation

24.1 Point charges

To simplify notation, let us first define function

e(y) =
erfc(y)

y
=

1

y

2√
π

∫ ∞
y

exp(−t2)dt (24.1)

Basic formula for the Ewald electrostatic energy in periodic boundary conditions surrounded
by a dielectric continuum (dielectric constant ε′r) in infinity is in SI

4πε0U =
∑

j<l, rlj<rc

qjql αe(αrlj) (24.2)

+
∑

→

k 6=
→

0, |
→

k/
→

L|<κ

exp[−(π/α)2(
→

k/
→

L)2]

2πV (
→

k/
→

L)2
Q(
→

k)2 (24.3)

+
2π

2ε′r + 1

M2

V
− α√

π

∑
j

q2
j (24.4)

where

Q(
→

k) =
∑
j

qj exp[2πi(
→

k/
→

L) · →r j] (24.5)

→

M =
∑
j

qj
→
r j (24.6)

and the symbol for “division of vectors” is interpreted as vector

(
→

k/
→

L) = (kx/Lx, ky/Ly, kz/Lz) (24.7)

The first sum in (24.4) (the r-space or pair sum) assumes that the cutoff rc is less than half the

minimum box size.
→

M is the dipole moment of the simulation cell. It is well-defined only for
configurations of neutral molecules which are never split by a periodic cell boundary.

The implementation of e(y) in MACSIMUS is based on the following two functions,

eru(x) = βαe(α
√
x) (24.8)

erd(x) = −βα3 e′(α
√
x)

α
√
x

(24.9)

287

24: Ewald summation [Contents] – [Index] 288

where e′(x) = de(x)/dx and β = 1. Note that the term appearing in the r-space sum is
αe(αrlj) = eru(r2

lj), where r2
lj is directly available. These functions are implemented by splines,

See Sect. 11.6.

The forces are

4πε0
→

f j = −4πε0
∂U

∂
→
r j

=
∑

l, rlj<rc

qjql α
3 e′(αrlj)

αrlj

→
r lj NB: α3 e′(αrlj)

αrlj
= erd(r2

lj)

+ qj
∑

→

k 6=
→

0, |
→

k/
→

L|<κ

exp[−(π/α)2(
→

k/
→

L)2]

V (
→

k/
→

L)2
2(
→

k/
→

L) Im
{
Q(k)∗ exp[2πi(

→

k/
→

L) · →r j]
}

+
4π

2ε′r + 1
qj

→

M

V

The electrostatic potential is

4πε0Φ(rj) = 4πε0
∂U

∂qj

=
∑

l, rlj<rc

qle(αrlj)

+
∑

→

k 6=
→

0, |
→

k/
→

L|<κ

exp[−(π/α)2(
→

k/
→

L)2]

2πV (
→

k/
→

L)2
2 Re

{
Q(k) exp[2πi(

→

k/
→

L) · →r j]
}

+
4π

2ε′r + 1

→
r j ·

→

M

V
− 2α√

π
qj

Note that contributions of
→

k and −
→

k are the same in the k-space sums, which is (along with

treating null components of
→

k separately) used in the code.

For ready-to-code formulas including the pressure tensor, see [20]. Differences from our notation
are:

• h = 2π(
→

k/
→

L) (vector)

• the r-space parameter is called κ (here: α, while κ means k-space)

• dielectric response ε′r

24.2 Gaussian charges

Gaussian charge i at
→
r i has the charge density

ρi(
→
r) =

qi
(2πσ2

i)
3/2

exp

[
−(

→
r − →r i)2

2σ2
i

]

The interaction energy of a pair i, j of these charges r apart is

4πε0u =
qiqj
r

erf(αr), α = 1/
√

2σ2
i + 2σ2

j

24: Ewald summation [Contents] – [Index] 289

Replacing point charges by Gaussian charge distribution[37] leads to more complicated formulas,
and from the implementation point of view to a necessity to have a separate spline for r-space
contributions for every charge-charge pair. In addition, hyperbolic splines cannot be used and
have to be replaced by (slightly slower) cubic splines (#define SPLINE 3).

The r-space contributions are

4πε0Ur =
qiqj
r

[
erf(αgijr)− erf(αsgir)/2− erf(αsgjr)/2

]
where

αgij = 1/
√

2σi + 2σj, αsgi = 1/
√

2σi + 1/α2

which are to be summed up for all pairs upto a cutoff. The corresponding forces are

4πε0
→

f j = −4πε0
∂U

∂
→
r j

=
∑

l, rlj<rc

qjql
r3
lj

[
erf(αgijrlj)− erf(αsgirlj)/2− erf(αsgjrlj)/2

]

+
qjql
r2
lj

1√
π

(
2αg12e−α

2
g12r

2
lj − αsg1e−α

2
sg1r

2
lj − αsg2e−α

2
sg2r

2
lj

)
Since the underlined terms above correspond to the interactins of the original Gaussian charges,
by omitting them we get the Ewald corrections for 1–2 and 1–3 interactions; the extension to
1–4 forces is straightforward.

To calculate the k-space contributions, we define

Q(
→

k) =
∑
j

qj exp[2πi(
→

k/
→

L) · →r j]

T (
→

k) =
∑
j

qj exp[2πi(
→

k/
→

L) · →r j] exp[−2π2σ2
j (
→

k/
→

L)2]

S(
→

k) =
∑
j

qj exp[2πi(
→

k/
→

L) · →r j] exp[−2π2σ2
j (
→

k/
→

L)2]σ2
j

The k-space energy is

4πε0Uk =
1

2πV

∑
→

k 6=
→

0

p((
→

k/
→

L)2)[ReQ(
→

k)ReT (
→

k) + ImQ(
→

k)ImT (
→

k)]

where

p(kk) =
exp(−π2x/α2)

kk
, kk ≡ (

→

k/
→

L)2

The k-space forces are

4πε0
→

f j =
qj
V

∑
(
→

k/
→

L)p (kk)
{

ReTsj − ImTcj

+ exp
[
−2π2kkσ2

j

]
(ReQsj − ImQcj)

}
cj + isj = exp(2πi(

→

k/
→

L)
→
r j)

The self-energy is

Us = − 1√
π

∑
i

αsgiq
2
i

24: Ewald summation [Contents] – [Index] 290

The k-space virial components (to calculate the pressure tensor) are

4πε0Wab =
1

2πV

[
− 4πε0Ukδab

+2
∑ →

ka
→

La

→

kb
→

Lb
p(kk)

(
1

kk
+
π2

α2

)
p(kk)

{
[ReQ(

→

k)ReT (
→

k) + ImQ(
→

k)ImT (
→

k)]

+(2π2)[ReQ(
→

k)ReS(
→

k) + ImQ(
→

k)ImS(
→

k)]
}]

Chapter 25

MD of Polarizable Force Fields

Jǐŕı Kolafa, 1999

25.1 Notation

Vector from i to j:
→
r ij =

→
r j −

→
r i, rij = |→r ij|

Gradient:
→

∇i = ∂/∂
→
r i,

→

∇i rij = −→r ij/rij,
→

∇j rij =
→
r ij/rij

Direct (tensor) product:
↔

A =
→
a
→

b

Dot (scalar) product of two vectors: A =
→
a ·

→

b

Dot (matrix) product of two tensors:
↔

C =
↔

A ·
↔

B

Inverse tensor:
↔

A ·
↔

A
−1

=
↔

A
−1

·
↔

A = 1

25.2 Polarizability

Induced dipole on particle i is generally a function of field
→

Ei at position
→
r i:

→
µi =

→
µi(

→

Ei) (25.1)

where we assume that
→
µi = 0 for

→

Ei = 0. As we shall see later, field
→

Ei is rather an “effective”
field which may contain certain terms behaving as electrostatic field. We shall consider two
cases, the linear polarizability

→
µi(

→

Ei) =
↔
αi ·

→

Ei

where
↔
αi is the polarizability tensor, and a simple model of hyperpolarizability exhibiting

saturation given implicitly by

→
µi(

→

Ei) =
↔
αi ·

→

Ei

1 +
→

Ei ·
→
µi/Esat

which can be solved for
→

Ei:
→

Ei =

↔
α
−1
i ·

→
µi

1− →µi ·
↔
α
−1
i ·

→
µi/Esat

291

25: MD of Polarizable Force Fields [Contents] – [Index] 292

The “saturation energy” Esat has a physical meaning of the energy of significant deviation from
the linear law. For the denominators in the above formulas it holds

(1 +
→

Ei ·
→
µi/Esat)(1−

→
µi ·

↔
α
−1
i ·

→
µi/Esat) = 1

Finally, for
↔
αi = αi (scalar):

→
µi(

→

Ei) =
αi
→

Ei

1
2

+
√

1
4

+ αiE2
i /Esat

25.3 Pair operators of electrostatic interaction

Tij =
1

rij

→

T ij =
→

∇iTij =

→
r ij
r3
ij

= −
→

∇j Tij = −
→

T ji

↔

T ij =
→

∇i
→

∇j Tij =
→

∇j
→

T ij = −
→

∇i
→

T ij =
1

r3
ij

− 3
→
r ij
→
r ij

r5
ij

↔
T ij =

→

∇i
↔

T ij = −
→

∇j
↔

T ij = 3

↔

1
→
r ij
r5
ij

+ 3
(
→
r ij)

r5
ij

+ 3

→
r ij
↔

1

r5
ij

− 15

→
r ij
→
r ij
→
r ij

r7
ij

where
↔

1 is a unit isotropic tensor,
↔

1αβ = δαβ, and (
→
r)αβγ = δαγ

→
rβ so that

→
a · (→r) ·

→

b = (
→
a ·

→

b)
→
r .

25.4 Electrostatic energies

Charge-charge: UCC(i, j) = qiTijqj

Dipole-charge: UDC(i, j) =
→
µi ·

→

T ijqj

Dipole-dipole: UDD(i, j) =
→
µi ·

↔

T ij ·
→
µj

Polarization self-energy of dipole
→
µi is

Uself(
→
µi) =

∫
d
→
µi ·

→

Ei(
→
µi)

where the integration is along any path from zero induced dipole to
→
µi and

→

Ei is the total
effective electrostatic field acting on the dipole (what “effective” means becomes clear later).
For the linear and saturated models, respectively:

Ulin(
→
µi) =

1

2

→
µi ·

↔
α
−1
i ·

→
µi =

1

2

→

Ei ·
→
µi

Usat(
→
µi) = −Esat

2
ln

1−
→
µi ·

↔
α
−1
i ·

→
µi

Esat

 =
Esat

2
ln

1 +

→

Ei ·
→
µi

Esat

Note that limEsat→∞ Usat(

→
µi) = Ulin(

→
µi).

25: MD of Polarizable Force Fields [Contents] – [Index] 293

Repulsive antipolarization (shell-core model, deformable dipole model—how shall we call it?)
is based on an idea that close contact of two atoms pushes the electron shell around atom
(normally anion) out of center giving rise to a dipole in the opposite direction that is the
polarized dipole:

Urep = −κi
→
µi ·

→

f ij (25.2)

where i is a polarizable atom, j any other atom, and

→

f ij = −
→

∇iuij(rij) =

→
r ij
rij
u′ij(rij) = −

→

f ji

is the repulsive pair force acting on atom i due to atom j and uij is the repulsive pair potential.
This potential does not include electrostatic interaction1. In the typical case i is an anion, j a
cation, and then κi is positive.

25.5 Electrostatic field

Field at
→
r i caused by charge qj at

→
r j:

→

Ei = −qj
→

T ij

Field at
→
r i caused by dipole

→
µj at

→
r j:

→

Ei = −→µj ·
↔

T ij

Fictitious field caused by repulsive antipolarization:
→

Ei = κi
→

f ij
This is not real electrostatic field but as regards its interaction with dipoles, (25.2) and (25.1),
can be treated in the same way.

25.6 Total energy

The total electrostatic energy of a set of n polarizable atoms is

U =
∑
i,j,i<j

qiTijqj +
∑
i,j,i6=j

→
µi ·

→

T ijqj +
∑
i,j,i<j

→
µi ·

↔

T ij ·
→
µj −

∑
i,j,i6=j

κi
→
µi ·

→

f ij +
∑
i

Uself(
→
µi) (25.3)

This U({→µi}) as a functional of {→µi} reaches a minimum for {→µi} satisfying (25.1) for all i where

→

Ei ≡
dU(

→
µi)

d
→
µi

=
∑
j,j 6=i

(
−qj

→

T ij −
→
µj ·

↔

T ij + κi
→

f ij

)
(25.4)

is the total (real electrostatic and fictitious) field at
→
r i.

For κi = 0 (term (25.2) is missing), we can get a somehow simpler expression not containing
the dipole-dipole energy by inserting (25.1) and (25.4) into (25.3):

U =
∑
i,j,i<j

qiTijqj +
1

2

∑
i,j,i6=j

→
µi ·

→

T ijqj (25.5)

+

0 for linear polarizability∑
i

1

2

[
Esat ln(1 +

→

Ei ·
→
µi/Esat)−

→

Ei ·
→
µi

]
for saturated polarizability

which is especially simple if the polarizability is linear.

1There is a question whether it should generally include dispersion forces; the Tosi et al. potential does not
include cation-anion dispersion forces at all.

25: MD of Polarizable Force Fields [Contents] – [Index] 294

25.7 Forces

Let us take a minus gradient of (25.3). Since
→
µj depend on

→
r i, several terms containing

→

∇i
→
µj

appear, however, they all cancel out as a consequence of (25.1) with (25.4)2. The resulting
force ready for implementing is

→

f i = −
→

∇iU =
∑
j,j 6=i

(
−qi

→

T ijqj +
→
µi ·

↔

T ijqj − qi
↔

T ij ·
→
µj −

→
µi ·

↔
T ij ·

→
µj − κi

→
µi ·

→

∇i
→

f ij

)

−

→
µi ·

→

∇i
↔
α
−1
i ·

→
µi for linear polarizability

→
µi ·

→

∇i
↔
α
−1
i ·

→
µi(1 +

→

Ei ·
→
µi/Esat) for saturated polarizability

25.7.1 Gradient of the repulsive antipolarization

The force caused by the repulsive antipolarization term is

→

f rep,i = −κi
→
µi ·

→

∇i
→

f ij = κi

[
u′ij
rij

→
µi +

→
µi ·

→
r ij

rij

(
u′ij
rij

)′
→
r ij

]
, (25.6)

to be completed by
→

f rep,j = −
→

f rep,i.

25.7.2 Gradient of the polarizability tensor

For isotropic and constant (=not depending on configuration) polarizability,
↔
αi =

↔

1αi,
→

∇j αi = 0, the last term in (25.6) is zero. Let us consider the simplest case of axial polarizability
of atom i where the polarizability in the direction of a chemical bond (towards certain atom
with position

→
r t) is αzz and in the perpendicular directions it is αxx = αyy. The polarization

tensor is
↔
αi = αxx

↔

1 + (αzz − αxx)
→
r it
→
r it
r2

(25.7)

The inverse tensor is
↔
α
−1
i = α−1

xx

↔

1 − αzz − αxx
αzzαxx

→
r it
→
r it
r2

(25.8)

by taking the gradient we obtain the corresponding ‘axial polarization’ force term

→

f ax,i = −→µi ·
→

∇i
↔
α
−1
i ·

→
µi =

αzz − αxx
αzzαxx

[→
µi ·

→
r it

r2
it

→
µi −

(
→
µi ·

→
r it)

2

r4
it

→
r it

]

and finally
→

f ax,t = −
→

f ax,i.

25.7.3 Fluctuating charge

Currently, MACSIMUS implements the fluctuating charge model of water with four charges.
The method comes from the FQ models [27].

2That is why it is more convenient to take a gradient of (25.3) and not of the simpler form (25.5) which

would in fact lead to more complicated calculations to eliminate terms containing
→

∇j
→
µi

25: MD of Polarizable Force Fields [Contents] – [Index] 295

Let us consider a neutral molecule with four interaction sites numbered i ∈ {0, 1, 2, 3} which
do not lie in a plane. Each site bears a permanent charge qi0, i ∈ {0, 1, 2, 3}, ∑i qi0 = 0. In
electric field with potential Φi at site i the charges change into qi = qi0 + δqi. We write the
electrostatic energy as

U = Uself +
∑
i

(qi0 + δqi)Φi, (25.9)

where the self energy is [27]

Uself =
∑
i

∑
j

Aij
2
δqiδqj.

At fixed field Φi the configuration of charges minimizes energy U under constraint
∑
i δqi = 0.

By adding term λ
∑
i δqi to (25.9) (λ is the Lagrange multiplier) and taking derivatives over

δqi, we arrive at four equations ∑
j

Aijδqj + Φi + λ = 0. (25.10)

Given Aij and Φi, these linear equations (along with
∑
i δqi = 0) yield the unknown charges.

The polarizability tensor α can be calculated by applying homogeneous fields in three directions
and calculating the response dipole moment. However, in constructing the force field the
task is opposite: to determine ten independent components of symmetric matrix Aij given six
independent components of α. The task is overdetermined, but all solutions are equivalent
because the set of shifted constants

A′ij = Aij + ai (25.11)

gives the same charges and thus the same energy (the Lagrange multiplier λ need not be the
same, though). The dimensionality of this space is four.

For the FQ4 model of water there are a number of symmetries. We have five independent
components of matrix A

A =

AHH AH′H AHL AHL

AH′H AHH AHL AHL

AHL AHL ALL AL′L

AHL AHL AL′L ALL

 (25.12)

where HH stands for the diagonal (quadratic) terms, HiHi, while H′H denotes the off-diagonal
terms, HiHj, i 6= j. There are only two independent conditions (25.11). We therefore we will
impose AH′H = AL′L = 0. The solution is

δqH1 =
(4AHL − 2AHH − ALL)ΦH1 + (ALL − 4AHL)ΦH2 + AHH(ΦL1 + ΦL2)

2AHH(AHH + ALL − 4AHL)
(25.13)

and the remaining qi can be obtained by H1 ↔ H2 and H ↔ L symmetries.

For the FQ4 model of water in the standard orientation the polarizability tensor is diagonal
and thus the remaining three values, AHL, AH′H, AL′L, can be determined from the diagonal
components of the polarizability tensor.

Let the positions of charge sites are (with respect to Oxygen):

→
rH1 = (Hx, Hy, 0)

→
rH2 = (Hx,−Hy, 0) (25.14)

→
rL1 = (Lx, 0, Lz)

→
rL2 = (Lx, 0,−Lz) (25.15)

25: MD of Polarizable Force Fields [Contents] – [Index] 296

The the polarizability tensor is

α = diag

(
2(Hx − Lx)2

AHH + ALL − 4AHL

,
2H2

y

AHH

,
2L2

z

ALL

)
(25.16)

from which the unknown constants AHH, ALL, AHL can be readily calculated.

25.7.4 Implementation

Fluctuating charges are stored in the 2nd vector (rpol). ASPC is directly applicable.

Chapter 26

Time-reversible predictors for
Verlet+SHAKE with a
velocity-dependent rhs

26.1 The task

Our task is to integrate numerically by the Verlet method (with optional SHAKE) the following
set of equations

ẍ = a(x, ẋ)

where x stands for the set of
→
r i and the Nose variable ξ = ln s. The Verlet algorithm reads as

x(t+ h) = 2x(t)− x(t− h) + h2a(t)

where ẋ(t) (needed to calculate a(t)) is not known. It may be expressed by

ẋ(t) =
x(t+ h)− x(t− h)

2h
+O(h2)

but the resulting equations have to be calculated by iterations. If SHAKE is involved, the
SHAKE part must be repeated in this iteration. Another possibility is the velocity Verlet with
RATTLE.

26.2 MACSIMUS solution

MACSIMUS implements a set of predictors with a good time-reversibility. The velocity
predictor can be written in the form

ẋp(t) =
1

h

k+1∑
i=0

Aix(t− ih),

The k + 2 Ai, i = 0, ..., k + 1 can be determined from the Taylor expansion of the right-hand
side

k+1∑
i=0

Aix(t− ih) =
∞∑
i=0

Xix
(i)hi

297

26: Time-reversible predictors for Verlet+SHAKE with a velocity-dependent rhs [Contents] – [Index] 298

It must hold (k + 2 equations)

X0 =
k+1∑
i=0

Ai = 0

X1 = −
k+1∑
i=0

iAi = −1

X2 =
k+1∑
i=0

i2Ai = 0

X4 =
k+1∑
i=0

i4Ai = 0

...

X2k =
k+1∑
i=0

i2kAi = 0

The odd terms are not nullified because they are time-reversible.

The solution is

A0 =
2k + 1

k + 1

A1 = −2(2k + 1)
1

k + 2

A2 = +2(2k + 1)
k

(k + 2)(k + 3)

A3 = −2(2k + 1)
k(k − 1)

(k + 2)(k + 3)(k + 4)
...

MACSIMUS code uses expansion in the first differences

ẋp(t) =
k∑
i=0

Bi
x(t− ih)− x(t− (i+ 1)h)

h

with B0 = A0 and

Bj = (−1)j(2k + 1)
k(k − 1) · · · (k + 1− j)

(k + 1)(k + 2) · · · (k + 1 + j)

or recursively

B0 =
2k + 1

k + 1

Bj = −Bj−1 ·
k + 1− j
k + 1 + j

, j > 0

which is directly coded in MACSIMUS. The default is k = 2.

26.3 Algorithm

One step of the combined Verlet+SHAKE method is

26: Time-reversible predictors for Verlet+SHAKE with a velocity-dependent rhs [Contents] – [Index] 299

• calculate forces (accelerations) a(t) from known x(t)

• predict velocities ẋ from known x(t) − x(t − h), x(t − h) − x(t − 2h), . . . , x(t − kh) −
x(t− (k + 1)h)

• perform one step of the Verlet method (12.1) to get r(t+ h)

• run the SHAKE algorithm; x(t+ h) is modified and x(t+ h)− x(t) recalculated

• calculate the kinetic temperature (MACSIMUS supports several formulas, see the switch
VERLET; VERLET=9 uses the predicted value)

• perform one step of the Verlet method (12.1) to get ξ̇(t+ h) and ξ(t+ h)

• advance time, t := t+ h, and evaluate the Hamiltonian

Chapter 27

Always Stable Predictor-Corrector
(ASPC) instant

27.1 Task

To integrate numerically the Newton equations of motion

r̈i =
1

mi

f i(r1, . . . , rN ;µ1, . . . ,µm)

where ri are positions of atoms (nuclei) and µi are any variables which are given by an implicit
equation of a self-consistent field type:

µi = M i(r1, . . . , rN ;µ1, . . . ,µm), i = 1, . . . ,m

This equation must converge for all r1, . . . , rN from the trajectory and (a linearization of)
Mij = M i(µj) must be symmetric.

Example of µ: induced dipoles, µi = αiEi(r1, . . . , rN ;µ1, . . . ,µm), where Ei is the electric
field

27.2 ASPC

The recommended version with O(h7) time reversibility follows:

Predictor:

µp(t) = 2.8µ(t− h)− 2.8µ(t− 2h) + 1.2µ(t− 3h)− 0.2µ(t− 4h)

where µ ≡ {µ1, . . . ,µm}, and similarly below.

Corrector:
µ(t) = ωM(r(t);µp(t)) + (1− ω)µp(t)

where ω = 4
7

guarantees stability (for any converging SCF equation), but a certain ω > 4
7

may
give more accurate results.

In the above equation, M(r(t);µp(t)) is calculated at time t and current r(t). Normally the
forces f(t) (along with E) are calculated at the same step. Then one step of Verlet gives r(t+h)

300

27: Always Stable Predictor-Corrector (ASPC) instant [Contents] – [Index] 301

(which becomes r(t) in the next step) and the corrector gives µ(t) (which becomes µ(t− h) in
the next step, ready for the predictor).

The method may work also in certain cases of asymmetric Mij. It will probably work also for
complex µ.

Chapter 28

Specific heat CV in the molecular
dynamics microcanonical ensemble

In the canonical ensemble we have for the kinetic energy Ek and potential (configurational)
energy Ep:

VarEx = kT 2∂Ex
∂T
≡ kT 2E ′x

where x ∈ {k, p} and
Cov(Ep, Ek) = 0

E ′k = fk/2

E ′p + E ′k = CV

where f is the number of degrees of freedom and CV is the heat capacity (at constant volume)
of the whole system.

Thus the (unnormalized) probability distribution for given T and a state with given Ek and Ep
is:

w(T,Ep, Ek) ∼ exp

[
−

(δEp − E ′pδT)2

2 VarEp
− (δEk − E ′kδT)2

2 VarEk

]
where we linearize at certain point (T,Ep, Ek) = (T0, Ep,0, Ek,0), δX ≡ X − X0. In the MD
NVE ensemble there is Ep + Ek = const. We write Ep = −Ek ≡ E and express E ′x via VarEx:

w(T,E) ∼ exp

[
−
(

1

2kBT 2E ′p
+

1

2kBT 2E ′k

)
δE2 −

(
E ′p

2kBT 2
+

E ′k
2kBT 2

)
δT 2

]

Note that there is no δEδT cross term! Thus, from the term at δT 2,

VarT =
kT 2

E ′p + E ′k
=
kT 2

CV

which is known formula for the fluctuation of temperature in the microcanonical ensemble —
useless for MD because we do not know T (the “kinetic temperature” derived from Ek is not
T).

From the term at δE2 we have

VarE = VarEp = VarEk =
kBT

2

1/E ′p + 1/E ′k
=

kBT
2

1/(CV − E ′k) + 1/E ′k

302

28: Specific heat CV in the molecular dynamics microcanonical ensemble [Contents] – [Index] 303

and because we know E ′k finally

CV =
fk

2

(2T 2

f VarTk
− 1

)−1

+ 1

where Tk ≡ Ek/(fk/2) is the “kinetic temperature”.

Chapter 29

Dielectric constant in SI

The permittivity ε is defined via the electric field intensity
→

E and the induction (displacement

field)
→

D. In SI it holds
→

D = ε
→

E = ε0εr
→

E

where ε0 = 8.85418782e-12 F/m is the vacuum permittivity and εr is the relative permittivity
which equals the dielectric constant defined in the CGS units. The permittivity of an isotropic
medium is a scalar.

In CGS simply
→

D = εr
→

E (usually subscript r is not used, but we will keep it for clarity).
Note that MACSIMUS uses internally CGS-like (Gaussian electrostatic) units, however, it
transparently transforms the units mostly into SI; one notable exceptions is the dipole moment
where the internal units are used because it is not clear whether to prefer Debye or Cm.

The electric induction (displacement field) is

→

D = ε0
→

E +
→

P SI
→

D =
→

E + 4π
→

P CGS

where
→

P =

→

M

V

is the electric polarization which equals the volume density of dipole moment
→

M ; this equation
in SI and CGS is formally identical, only the units differ.

For completeness, note the electric work per unit volume in both systems:

dW

V
=

→

E · d
→

D SI

dW

V
=

→

E · d
→

D

4π
CGS

29.1 Dielectric constant from external field

In simulations we apply an external (microscopic) field
→

E
ext

(entered as Eelst[] in input data

in the SI units of V/m). The total intensity
→

E is a sum of the the external field and the

304

29: Dielectric constant in SI [Contents] – [Index] 305

field caused by charges in the system. It depends on the boundary conditions. In the Ewald
periodic boundary conditions we have a continuum (of relative permittivity1 ε′r = el.epsinf)
surrounding the infinite array of periodic boxes spherically in infinity; to be able to write

formulas, we will consider the radius R� L. The polarization
→

P of the sphere is equivalent to
a point dipole 4

3
πR3P placed in the center. It induces charges at the surface of the R-cavity

and hence a field which damps the external field. It holds [28] (in SI):

→

E =
→

E
ext

− 1

ε0

→

P

2ε′r + 1
(29.1)

or equivalently
→

E =
3

2 + ε′r

→

E
ext

(29.2)

Let the external field acts in the direction of z (Eelst[2]). During simulation we determine
quantity

χz =
〈Mz〉
ε0Eext

z V
(29.3)

or in the units used by MACSIMUS

χz =
4.4266218e+09× (Mz/prog.unit)

[Eext
z /(V/m)]× (V/Å

3
)

The dielectric constant is then

εr =
ε0Ez + Pz
ε0Ez

= 1 +
2ε′r + 1

2ε′r + 1− χz
χz = 1 +

1
1
χz
− 1

2ε′r+1

(29.4)

where we inserted Ez from (29.1). Some like the equivalent implicit formula,

χz =
(εr − 1)(2ε′r + 1)

2ε′r + εr
(29.5)

For the tin-foil boundary conditions (ε′r = el.epsinf =∞) it holds εr = 1 + χz.

It is inefficient to use ε′r = 1 for models with large εr, because then χz is close to 3 and we
have 3 − χz in the denominator of (29.3). On the other hand, large ε′r increases correlation
length and may also lead to dipole moments close to saturation and systematic errors. Anyway,
stronger external field is needed to get the same response for small ε′r.

Formula (29.4) is exact for both polarizable and nonpolarizable systems provided that the
field is small enough. It is recommended to run several simulations with decreasing field (and
increasing length to compensate for decreased accuracy).

29.2 Fluctuation formulas

For the dipole moment of the simulation cell (one configuration of charges) under influence of
the external electric field in the z-direction it holds

→

M(
→

E
ext

) =
→

M(0) +
∂
→

M

∂
→

E
ext

→

E
ext

1For the short-range (cutoff) electrostatics el.epsinf = 1 (?)

29: Dielectric constant in SI [Contents] – [Index] 306

where ∂
→

M/∂
→

E
ext

stands for the induced dipole moment per unit electric field at constant
positions of atoms. (Generally, it is a tensor, however, the off-diagonal terms are small and
their average in isotropic systems is zero.) By repeating the derivation of the fluctuation formula
[28] we get a response caused by a small external field. We write it in the z-direction

〈Mz(E
ext
z)〉 =

(〈
∂M

∂Eext

〉
+

VarMz

kBT

)
Eext
z

In isotropic systems VarM = 3 VarMz. We will express the direct response by a dimensionless
number χhf (a sort of high-frequency susceptibility including boundary conditions2)

χhf =
1

ε0V

〈
∂Mz

∂Eext
z

〉
SI

χhf =
1

V

〈
∂Mz

∂Eext
z

〉
CGS

and the total response

χ = χhf +
VarM

3ε0V kBT
SI

χ = χhf +
VarM

3V kBT
CGS

Similarly as (29.4) and (29.5) one can derive

εr = 1 +
1

1
[4π]χ
− 1

2ε′r+1

(29.6)

or implicitly

[4π]χ =
(εr − 1)(2ε′r + 1)

2ε′r + εr
,

where [4π] = 1 applies for SI and [4π] = 4π for CGS. Note that MACSIMUS calculates VarM
as 〈M2〉 unless an external field is applied; in the latter case 〈Mz〉2 is subtracted.

For polarizable models it remains to determine 〈χhf〉. MACSIMUS offers a direct numerical
method based on applying an external field (scf.E) and iterations until the dipoles are accurate
enough (scf.epsx, scf.omegax); the original and new dipole moment are subtracted and
divided by the field.

By the same arguments which lead from (29.1) to (29.4) one can relate the “susceptibility” χhf

to the high-frequency (instantaneous, optical) dielectric constant εhf ,

[4π]χhf = (εhf
r − 1)

1 + 2ε′r
2ε′r + εhf

r

It can be approximated by the the Clausius-Mossotti formula from the total polarizability
(assumed to be linear), see eq. (2.6) in [29] (with εhf

r = ε∞)

εhf
r − 1

εhf
r + 2

=
1

3ε0V

∑
i

αSI
i =

4π

3V

∑
i

αi (29.7)

In the formula above, αSI
i is the SI polarizability of particle i and αi = αSI

i /4πε0 is its
polarizability volume (identical to “polarizability” in CGS and usually referred to as just

“polarizability”; in MACSIMUS measured in Å3). The induced dipole in SI is
→
µ = αSI

→

E =

4πε0α
→

E.

2Note that χSI = 4πχCGS

29: Dielectric constant in SI [Contents] – [Index] 307

29.2.1 Notes

Clausius-Mossotti

Eq. (29.7) is an approximation based on the assumption that a polarizable dipole is in a
spherical cavity surrounded by a continuum of the optical dielectric constant εhf

r . An error in
determination of εhf

r propagates to the final result more for ε′r = 1 and less for ε′r = ∞. E.g.,
for the DC97 water model, the error εhf

r ± 0.01 causes the error εr ± 7 with ε′r = 1 while only
negligible εr ± 0.01 with ε′r =∞.

Eq. (29.6) for ε′r =∞ (tin-foil b.c.) reduces to

εr = εhf
r + [4π]χ

which is identical to the formula in [30].

Bug in cook V2.6e and older

In cook V2.6e and older, formula (SI):

χhf =
4π

V

∑
i

αi (29.8)

was incorrectly used. This formula neglects mutual interactions of induced dipoles. This
formula is identical to (29.7) for ε′r = 1 and also for small εhf

r (a second-order term in
(εhf
r − 1) ≈ 4π

V

∑
i α

2
i is neglected). E.g., for water at 25 ◦C there is 4π

V

∑
i αi = 0.616 and

εhf
r = 1.775. The error caused by using equation (29.8) instead of (29.7) is 0.16, to be compared

to the bulk water value εr = 78.

CGS to SI conversion

quantity CGS → SI

c c→ 1/
√
ε0µ0

X =
→

E,U X →
√

4πε0X

D D →
√

4π/ε0D

X = Q, I,
→

P ,
→
µ X → X/

√
4πε0

ε ε→ ε/ε0

χ χ→ χ/4π

R R→ 4πε0

Example: The CGS energy density (of linear material)

1

4π

→

E ·
→

D

transforms into
1

4π

√
4πε0

→

E ·
√

4π

ε0

→

D =
→

E ·
→

D

29: Dielectric constant in SI [Contents] – [Index] 308

29.3 Controlling saturation

The saturation of the dipole moment of the cell is for simulations with external electric
field in the z-direction defined by

S =
Mz∑
µ
, averaged: S =

〈Mz〉∑〈µ〉
where Mz is the z-component of the cell dipole moment and the sum is over molecule dipole
moments. Thus, the denominator is the maximum dipole moment of the cell with all molecules
aligned. (For nonpolarizable models µ are constants, for polarizable models the molecule dipole
moments depend on the field. In either case the maximum saturation is 100 %.)

For zero-field simulations (fluctuation formula route) we define the saturation as

S =
|M |∑
µ
, averaged: S =

〈M2〉1/2∑〈µ〉 =

√
VarM∑〈µ〉

The systematic error of the dielectric constant depends quadratically on the saturation,
δεr ∝ S2. In contrast, the statistical error is inversely proportional, δεr ∝ S−1. Usually
S = 0.1 guarantees the systematic error about S2 ≈ 1 % which is comparable to a statistical
error in moderately long runs. In addition, the flucutation formula route is ususally more
efficient than the external field route.

It may be difficult to set the parameters (ε′r in the fluctuation route and Ez in the external
field route). MACSIMUS supports an automatic procedure for this setup. Variable el.sat is
the target saturation. The controlling parameter, xinf = 1/(2ε′r + 1)3 or Ez, is adjusted by
a procedure similar to the Berendsen thermostat or barostat with estimated correlation time
tau.sat (in ps). Recommended tau.sat are a few ps for setting the electrostatic field; the real
tau.sat is only slightly longer. For the fluctuation route much longer tau.sat is needed, in
addition, the real correlation time is shorter. The correlation time grows with system size. In
both cases the simulation time should be several correlation times.

The values of parameters el.epsinf and Eelst are not stored in the .cfg file, however, they
are not reset between sweeps unless explicitly specified. If you wish to restart the simulation,
you should take the last average from the .prt file (section “saturation autoset”) and use it in
the input data. Alternatively, you may use a negative tau.sat which works as for |tau.sat|
and the following actions are performed:

• The calculated average4 is assigned to the respective variable, el.epsinf or Eelst.

• init=1 is assigned to be used for the next sweep (you may override it, e.g., by init=2 at
next sweep start).

• tau.sat=0 is assigned.

This way a productive run may start. In case of restart you still MUST write the used
el.epsinf or Eelst to the data! Examples:

3This is the M2 coupling constant, see (24.4)
41/(2ε′r + 1) for zero field

29: Dielectric constant in SI [Contents] – [Index] 309

• field route:
el.sat=0.1 tau.sat=1 Eelst[2]=2e8 no=10/(h*noint);

tau.sat=-3 no=10/(h*noint);

no=1000/(h*noint);;;;;

It is useful to add Ez to the .cpi-file to monitor convergence; it is in the program units, 1
p.u. = 3.52259e8 V/m.

• fluctuation route:
el.sat=0.1 tau.sat=1000 el.epsinf=50 no=500/(h*noint);

tau.sat=-3000 no=500/(h*noint);

no=1000/(h*noint);;;;;

It is useful to add xinf (= 1/(2*el.epsinf+1) = 1/(2ε′r + 1)) to the .cpi file to monitor
convergence; also available but less useful is einf (= el.epsinf = ε′r). The obtained
ε′r as well as 1/(2ε′r + 1) may be negative. There is no problem with the method and
calculated values of εr if ε′r is “unphysically” negative.

In the first approximation, the dielectric constant demends on the saturation by

ε(S) = ε(0) + aS2

where the typical values of a are between −ε and −ε/2. Thus, to obtain ε with a 1% precision
the saturation should be S ≤ 0.1; smaller values increase the statistical error.

29.3.1 Extrapolation to zero saturation

Some efficiency is gained by extrapolation. We assume that the dependence of the dielectric
constant on S2 is linear, ε(S) = ε(0) + aS2, where a is a constant. Our task is to determine S1,
S1 < S2, as well as the corresponding computer times, t1 and t2 (given the sum t = t1 + t2) so
that the resulting dielectric constant is as accurate as possible. From two equations

ε(S1) = ε(0) + aS2
1

ε(S2) = ε(0) + aS2
2

one can readily calculate

ε(0) =
S2

2ε(S1)− S2
1ε(S2)

S2
2 − S2

1

(29.9)

The standard error δε(0) of ε(0) is given by

δε(0)2 =

(
S2

2

S2
2 − S2

1

)2

δε(S1)2 +

(
S2

1

S2
2 − S2

1

)2

δε(S2)2. (29.10)

If the saturation is small, the error in determining 〈Mz〉 may be considered as independent on
the saturation. Hence from (29.3) and the saturation definition it follows that the error of χz
is inversely proportional to the saturation and if this error is small enough, the same holds
true for the error in the dielectric constant. For long enough simulations, the error is inversely
proportional to the square root of the time. We may then write

δε(S) =
δ

t1/2S
.

29: Dielectric constant in SI [Contents] – [Index] 310

By inserting this approximation into (29.10) and denoting x = S2
1/S

2
2 , we arrive at

δε(0)2 =
δ2

S2
2

1

(1− x)2

(
1

xt1
+

x2

t− t1

)
(29.11)

which is to be minimized for x ∈ (0, 1) and t1 ∈ (0, t). The result is x = 1/4 (i.e., S1 = S2/2)
and t1 = 8

9
t.

We will therefore run two simulations, one with external field Ez,2 (chosen so that the
saturation does not exceed the linear region) and time (number of steps) t2, and the other
with Ez,1 = Ez,2/2 and time t1 = 8t2.

In order to assess the impact of nonlinearity of ε(S2), let us assume that the first nonlinear
term b in the expansion ε = ε(0) + aS2 + bS4 is at least very approximately known.

From (29.9) it follows that the systematic error of ε is then

δsysε = −S2
1S

2
2b = −bS

4
2

4
.

Typical values of b are usually aroud a/2; for b ≈ a and target precision 1 % we have S2 ≤ 0.45.
or, to be even more pessimistic, S2 ≈ 0.4.

The statistical error of the optimized (29.11) is

δstatε =
3δ

t1/2S2

.

This error for S2 = 0.4 is 7.5/t1/2 while for the method without extrapolation (S = 0.1) it is
10/t1/2, i.e., the extrapolation method is almost twice as efficient (half CPU time is sufficient).

The algorithm may be:

1. Run a short simulation with el.sat = S2 = 0.4 or so using the autoset freture (el.sat)
and determine the field Ez.

2. Run a productive simulation with this field Ez.

3. Run an 8 times longer simulation with field Ez/2.

4. Extrapolate using (29.9).

Similar optimization formula for the fluctuation method contains values of εr and χ∞, which
are unknown in advance. In addition, the saturation itself is determined with low precision
which makes reliable extrapolation (with error estimation) difficult.

Note: cook does not print dielectric constant calculations if there are free ions in the system.

Chapter 30

Fourier transform

30.1 Basic formulas

The basic formula in 1D is
f̃(k) =

∫ ∞
−∞

f(x) exp(−ikx)dx

and the inverse transform is

f(x) =
1

2π

∫ ∞
−∞

f̃(k) exp(ikx)dk.

In 3D

f̃(
→

k) =
∫
f(
→
r) exp(−i

→

k · →r)d
→
r, f(

→
r) =

1

(2π)3

∫
f̃(
→

k) exp(i
→

k · →r)d
→

k. (30.1)

If f(
→
r) is spherically symmetric, then (30.1) becomes

f̃(k) =
∫ ∞

0
r2dr

∫ 1

−1
d cos θ

∫ 2π

0
f(r) exp(−i cos θkr).

After performing the integration over angles

kf̃(k) = 4π
∫ ∞

0
sin(kr)rf(r)dr

and back in the same way

rf(r) =
1

2π2

∫ ∞
0

sin(kr)kf̃(k)dk.

30.2 Implementation

The Fourier transforms in MACSIMUS (see gen/fourier.c, gen/fft.c and gen/fft.h), are
implemented as generalized fast Fourier transform. The number of points n is factored and the
algorithm proceeds recursively by taking the prime factors. The cases 2 and 3 are optimized.
The efficiency deteriorates for large factors.

In addition to the basic complex Fourier transform, transforms of real, even and odd functions
as well as the 3D Fourier transform are available.

311

30: Fourier transform [Contents] – [Index] 312

30.3 Structure factor

To derive formula (14.14) for SIJ , let us start from the definitions of gIJ :

gIJ(r) = V 〈δ(rij − r)〉 ×
{

1− 1/NI for I = J
1 for I 6= J

, (30.2)

where i(j) is any atom of type I(J), respectively, and δ is the Dirac delta-function. By taking
the Fourier transform of (30.2) (for I 6= J):

∫
(gIJ(r) exp(−i

→

k · →r)d
→
r = V 〈exp(i

→

k · →r i) exp(−i
→

k · →r j)〉 = V
〈Q∗I(

→

k)QJ(
→

k)〉
NINJ

and using (30.3), one gets the partial structure factors

SIJ(k) = 1 +N

〈Q∗I(→k)QJ(
→

k)〉
NINJ

− 1

and finally (14.14).

30.3.1 Mixtures

Formula (14.14) comes from the following ‘combining rule’ for the ‘partial structure factors’
SIJ , where uppercase letters I, J index species:

S =
∑
I

∑
J

wIJSIJ , wIJ =
NIbINJbJ
(
∑
I NIbI)2

and NI is the number of atoms of species I. Note that
∑
I NIbI =

∑
j bj.

For the ‘partial structure factors’ SIJ it holds

SIJ = 1 +
N

V

∫
(gIJ − 1) exp[−2πi

→

k · →r]dr (30.3)

Chapter 31

Slab cutoff corrections

MACSIMUS supports two ways how to correct for cutting off the site-site (Lennard-Jones-like)
interaction in the slab geometry:

1. Post-processing – cheaper, easier, faster, less accurate: The correction is estimated from
the calculated Z-density profiles at the end of the simulation, see Sect. 31.2. The
simulation runs with the truncated potential; consequently, the structure (mainly liquid
density) of the slab is not corrected.

2. Fourier tranform slab cutoff correction – slower (by a few %), more difficult to set up, more
accurate: Integrated forces and energy in the z-direction are added during the simulation;
consequently, the structure of the slab is corrected as well and the liquid density is more
accurate, See Sect. 31.1.

Additional corrections should be in general taken into account:

1. The stacking correction caused by van der Waals attraction of the z-periodic array of
slabs, see Sect. 31.3 and variables slab.ext.*.

2. Dipole-dipole attraction of slabs (Yeah–Berkowitz correction), see variable el.corr, also
see Sect. 15.8.

3. Physical finite-size effects caused by capillary waves.

31.1 Fourier transform slab cutoff correction

This method is available since V2.9b, slab geometry in the configuration of cook (or #define

SLAB) is required.

31.1.1 Truncated site-site potential

Let u(r) be the interatomic potential at atom-atom separation r. In the simulation, we use a
truncated and smoothed (but not shifted) potential uMD(r),

u(r) = uMD(r) + ∆u(r),

where the correction ∆u(r) = 0 for r < C1 and C1 is the inner cutoff, see Sect. 11.4.

The following formulas are implemented with in sim/xforces.c and sim/slabmeas.c.

313

31: Slab cutoff corrections [Contents] – [Index] 314

31.1.2 One atom: energy correction

For estimating the correction we will approximate the discrete distribution of identical particles
by the z-density profile, ρ(z), where z ∈ [0, Lz] and Lx, Ly, Lz are the sides of the rectangular
periodic simulation box. The density profile is defined as the x, y-averaged number density so
that there are LxLy

∫ b
a ρ(z)dz particles in interval z ∈ [a, b]. Since we use the periodic boundary

conditions, we define ρ(z+nLz) = ρ(z) for integer n; i.e., we interpret the system as composed
of z-periodic layers. The correction to energy of a particle at point

→
r i = (xi, yi, zi) interacting

with the layers is given by the functional

S(ρ(z); zi) =
∫ ∞

0
2πrdr

∫ ∞
−∞

dz ρ(z)s(r2 + (z − zi)2), (31.1)

where s(r2) = ∆u(r) and we chose x0 = y0 = 0 because of the x,y translational invariance. In
addition, the lower bound of the first integral can be replaced by [max{C2

1 − (z − zi)2, 0}]1/2
because s(r2) = 0 for r < C1.

Let us approximate the z-density profile by the Fourier series up to certain number of waves
K. In the complex notation

ρ(z) =
K∑

k=−K
ρke

2πikz/Lz ,

where

ρk =
1

Lz

∫ Lz

0
dz e−2πikz/Lzρ(z).

For a discrete set of N particles (one configuration)

ρk =
1

V

N∑
i=1

e−2πikzi/Lz ,

where V = LxLyLz is the volume.

Correction (31.1) with one density wave e2πikz/Lz instead of ρ(z) can be again approximated by
the Fourier series up to K,

S(e2πikz/Lz ; zi) =
K∑

m=−K
Skme2πimzi/Lz ,

where

Skm =
1

Lz

∫ Lz

0
dzi e

−2πimzi/LzS(e2πikz/Lz ; zi)

=
1

Lz

∫ Lz

0
dzi e

−2πimzi/Lz

∫ ∞
0

2πrdr
∫ ∞
−∞

dz e2πikz/Lzs(r2 + (z − zi)2).

Let us substitute z− zi → ∆z. The Jacobian of this transformation is unity. After rearranging

Skm =
2π

Lz

∫ ∞
−∞

d∆z
∫ ∞
√

max{C2
1−∆z2,0}

rdrs(r2 + ∆z2)
∫ Lz

0
dzi e

2πi[k∆z+(k−m)zi]/Lz .

The last integral equals Lz for k = m and zero otherwise; thus, only the diagonal terms Skk are
nonzero. By substitution r2− (z− zi)2 → 1/u (note that the London term 1/r6 is transformed
to u3 so that no singularity appears) we get

Skk = π
∫ ∞
−∞

d∆z e2πik∆z/Lz

∫ 1/max{C2
1 ,∆z

2}

0
du

s(1/u)

u2
.

31: Slab cutoff corrections [Contents] – [Index] 315

It follows from the ∆z → −∆z symmetry that Skk are real. Thus we can integrate over positive
∆z and take twice the real part of the result; in addition, non-negative wave numbers, k ≥ 0,
are enough (so they are for ρk; we do not assume a symmetry of the z-density profile and keep
the imaginary parts of ρk, though). Therefore

Skk = 2π
∫ ∞

0
d∆z cos(2πk∆z/Lz)

∫ 1/max{C2
1 ,∆z

2}

0
du

s(1/u)

u2
.

The range of the second integral gets narrower as ∆z increases and the correction decays fast
with the distance; thus, replacing

∫∞
0 ∆x by

∫ 8Lz
0 ∆x is accurate enough and still fast to evaluate.

In some cases even
∫ Lz/2

0 ∆x may be sufficient, but not for determining the zz component of
the pressure tensor for, e.g., vapor-liquid phase equilibria.

Coefficients Skk can be tabulated in advance. The integration over u is implemented via the
Gauss formula 4-th order formula, over ∆z and zi by the trapezoidal rule.

At every MD step, ρk are calculated first. We use the direct evaluation (the only optimization
is that e−2πimzi/Lz is calculated as powers [e−2πizi/Lz]m), but “particle mesh” algorithms known
from the k-space sums of the Ewald summations are possible.

The final expression for the energy correction in the complex notation is

S(zi) =
K∑

k=−K
Skkρke

2πikzi/Lz (31.2)

which with the complex numbers expanded becomes

S(zi) = S00<ρ0 + 2
K∑
k=1

Skk [<ρk cos(2πkzi/Lz)−=ρk sin(2πkzi/Lz)] .

31.1.3 One atom: force correction

The correcting force is simply minus the gradient of S(zi),

f(zi) =
4π

Lz

K∑
k=1

kSkk [<ρk sin(2πkzi/Lz) + =ρk cos(2πkzi/Lz)] .

This force also enters the virial of force needed to evaluate the pressure tensor.

31.1.4 Mixture of sites

The extension to mixtures is tedious, but straightforward. Let the number of site types be m.
For every correction, we have to calculate m density profiles, with K k-components for each,
ρjk, j = 1..m. The constants Skk must be precalculated for all pairs, Sjlkk, j = 1..m, l = 1..m.
The correction for atom of type l is (in the complex notation)

Sl(zi) =
m∑
j=1

K∑
k=−K

Sjlkkρke
2πikzi/Lz

and analogously for forces.

31: Slab cutoff corrections [Contents] – [Index] 316

31.1.5 Total energy correction

The total energy correction is one half (to avoid counting the pair interactions twice) of the
sum of the corrections over all atoms,

1

2

∫ Lz

0
dzρ(z)S(z).

It can be approximated in the k-space by replacing both functions by their (truncated) Fourier
expansions. The result is

Ecorr =
V

2

K∑
k=−K

|ρk|2Skk.

This result is identical to one half of the sum of (31.2) over all atoms are identical because both
formulas are based on the same truncated expansion and either can be used in the computer
code.

The extension to mixtures is straightforward,

Ecorr =
V

2

K∑
k=−K

m∑
j=1

m∑
l=1

ρjkρ
l∗
k S

jl
kk,

31.1.6 Virial of force correction

The virial of force (its zz component) cannot be calculated in the periodic boundary conditions
by summing up the terms zifi. The contribution to the pressure tensor component can be
obtained by scaling the box in the z-direction:

Pzz,corr = − dEcorr

LxLydLz
=

1

V

Ecorr −
1

2

K∑
k=−K

|ρk|2S ′kk

where

S ′kk = 2π
∫ ∞

0
d∆z sin(2πk∆z/Lz)(2πk∆z/Lz)

∫ 1/max{C2
1 ,∆z

2}

0
du

s(1/u)

u2
.

In the x, y directions, the contribution is related to the energy in the same way as for the
homogenerous corrections, namely

Pxx,corr = − dEcorr

dLxLyLz
=

1

V
Ecorr.

The surface tension is (15.10)

γ = −3

4
LzPt = −1

4
Lz[Pxx + Pyy − 2Pzz].

Thus, the terms containing Ecorr cancel out in Pt. The correction is

γcorr =
Lz
4V

K∑
k=−K

|ρk|2S ′kk. (31.3)

The extension to mixtures is straightforward.

31: Slab cutoff corrections [Contents] – [Index] 317

1 2 3

C2/nm

6

7

8

γ
/[

m
N

/m
]

uncorrected

post-corrected

Figure 31.1: Post-corrected surface tension, calculated from one configuration of liquid argon,
N = 8000, σLJ = 3.405 Å, εLJ = 119.8 K kB, in dependence on the cutoff C2 = LJcutoff, see
(11.8).

31.2 Post-processed slab corrections

A less accurate (and a bit faster) slab cutoff correction method is bases on a simulation with
uncorrected forces. Cutoff corrections are calculated after the simulation from the final z-
density profiles by a 2D numerical integration over slabs. This was the only method available
prior V 2.9b. Since the structure of the slab (slab width, density at slab center) is affected by
the cutoff, this method captures only a part of the correction and does not correct the z-profiles.
The protocol is requested by slab.mode&1. Note that the correction is over periodically stacked
slabs in the z-direction (see the stacking correction below).

Generally, the Fourier transform slab cutoff correction method is preferred.

The homogeneous correction, corr&3 should be zero with this method; however, since the
trajectory is not affected, the correct (back-corrected) results are printed even if you forget to
turn off corr&3.

The algorithm has been described in [26]. We write the total interatomic potential as

uij = uij,MD + ∆uij. (31.4)

Let ρi(z) denote the z-density profile of atom (site) i. The correction in the averaged potential
energy E (residual internal energy) can be approximated by integration over all (assuming
uncorrelated) positions of pairs ij and then by summing over all pairs

∆E =
∑
i<j

∫
ρi(zi)d

→
r i
∫
ρj(zj)d

→
r j ∆uij(rij)∫

ρi(zi)d
→
r i
∫
ρj(zj)d

→
r j

. (31.5)

31: Slab cutoff corrections [Contents] – [Index] 318

This can be partly integrated and rearranged to a 3-dimensional integral,

∆E =
∑
i<j

∫
ρi(zi)dzi

∫
ρj(zj)dzjIij(|zi − zj|)

LxLy
∫
ρi(zi)dzi

∫
ρj(zj)dzj

, (31.6)

where

Iij(z) =
∫ ∞

0
2πrdr∆uij(

√
r2 + z2) = 2π

∫ 1/max(c1,z)

0

dt

t3
∆uij(1/t). (31.7)

In practical evaluation we first calculate, for all atom type pairs ij, tables Iij(z) by a fourth-
order Gaussian integration over dt. The same grid given by slab.grid is used for both Iij(z)
and ρi(z). Then the integrals over dzi and dzj are numerically evaluated by the trapezoidal
rule with the same grid as ρi(z). For determining the surface tension correction, term ∆u in
the above formulas should be replaced by

∆u −→ Lz
4V

x2 + y2 − 2z2

r
∆u′(r) (31.8)

and then

Iij(z) =
Lz
4V

2π
∫ 1/max(c1,z)

0

dt

t2
[1/t2 − 3z2]∆u′ij(1/t) (31.9)

in (31.6) gives ∆γ instead of ∆E.

The performance of the algorithm is seen in fig. 31.1. The surface tension was calculated
from one configuration of liquid argon (thus, the influence of the cutoff on the structure is not
taken into account) in the slab geometry, N = 8000, box=(72, 72, 216)Å, vdW radius=3.822 Å
(σLJ = 3.405 Å), 512 histogram bins in the z-range. The correctness of the algorithm is proven.
The systematic error is better than 1% for the cutoff less than about 4 Lennard-Jones sigmas;
this value depends on the grid used, though.

31.3 Slab stacking corrected

The above corrections apply for an infinite array of z-stacked slabs. However, we are interested
in slabs of infinite thickness of both phases. The final correction for the stacking may be
estimated from the calculated z-density profiles (post-processing, see below) by comparing two
results:

1. The original calculation based on the calculated z-profiles (section in the protocol (*.prt)
named “surface tension”).

2. A calculation with density profiles extended in the z-direction (both slabs are thicker). See
variables slab.ext.center, slab.ext.span, slab.ext.zero and section of the protocol
called “EXTENDED SLABS”.

Numerical results indicate that the stacking correction is small; nevertheless, greater than the
correction explained above.

Fine enough z-histogram grid and long LJ cutoff are neeed for the calculation.

31.3.1 Stacking error for van der Waals forces

Since the stacking error is small, it may be useful to have a simple analytic formula.

31: Slab cutoff corrections [Contents] – [Index] 319

Surface tension in simulations

Let us consider N particles in a periodic box of dimensions (Lx, Ly, Lz) in the “slab geometry”,
i.e., with a liquid slab perpendicular to the z axis. Typically Lx = Ly and the ratio Lz/Lx is
about 2–3.

The surface tension is determined by formula (15.10),

γ = −3

4
PtLz, (31.10)

where the tangent stress is

Pt =
Pxx + Pyy − 2Pzz

3

and (Pxx, Pyy, Pzz) are the diagonal components of the pressure (stress) tensor. They are
calculated from the energy of the box by derivatives over volume, which are interpreted with
respect to the desired change of the volume and shape (see also 15.6 and 15.7.2)

Pxx =
NkBT

V
−
(

dE

dV

)
x-scaled

=
NkBT

V
− 1

LxLy

dE

dLz
. (31.11)

In the simulation, energy E is the averaged internal energy (or total energy if velocity-dependent
constrained forces are present). The ideal gas (kinetic) parts, NkBT/V , cancel out in Pt.

Stacking error

Surface tension should be calculated from one slab of liquid; however, in the slab geometry
there is an infinite sandwich of slabs stacked in the z-direction. These slabs attract each other
by the van der Waals forces causing the “stacking error”. Here we will estimate this error
assuming vacuum instead of the gas phase (zero vapor pressure) and homogeneous liquid slab.

Let us consider N identical particles in the box interacting at separations of the slabs only by
the van der Waals pair potential

u(r) = −Cr−6.

One particle interact with an xy-periodic infinite plane containing a smooth distribution of
particles of surface density one particle per area LxLy by potential

u2(z) = − C

LxLy

∫ ∞
0

2πrdr

(
√
z2 + r2)6

= − C

LxLy

π

2z4
,

where z is the distance of the particle from the plane.

31.3.2 Thin slabs

As a reference, let us consider first thin slabs stacked Lz apart. The energy of the mutual
interaction of these slabs is (per one box)

E0 = −N2
∞∑
i=1

u2(iLz) = −N
2C

LxLy

π5

180L4
z

.

The sum is over positive subscripts only to avoid including the pair interactions twice.

31: Slab cutoff corrections [Contents] – [Index] 320

The corresponding pressure contribution in the z-direction is obtained by the virtual scaling of
the box,

Pz0 = −dE0

dV
= − 1

LxLy

dE0

dLz
=

π5CN2

45L5
zL

2
xL

2
y

,

where the ideal gas part was omitted. Components in the x and y directions are obtained in
the same way. From (31.10) we get the correction

γ0 = −π
5C

120

N2

L4
zL

2
xL

2
y

.

Thick slabs

We assume that the thickness of a liquid slab is s and that it contains N uniformly and smoothly
distributed particles . The interaction energy between slabs (excluding any interaction within
a single slab) is

E =
∞∑
i=1

∫ iLz+s

iLz
dz2

∫ s

0
dz1

N

s
u2(z2 − z1) = E0f(s/Lz), (31.12)

where function f is

f(x) =
15π2x2 cot2(πx) + 10π2x2 − 15

π4x4
.

Note that limx→0 f(x) = 1 and f(0.5) = 1.589.

The corresponding surface tension is

γ = γ0f(s/Lz) (31.13)

with the same function f because the derivatives in (31.11) are performed at x = s/Lz
constant (the whole configuration is scaled). The above correction is negative (the attraction
of slabs decreases the apparent surface tenson); −γ (positive number) should be added to the
simulation-based value to get the corrected result.

Algorithm test

As a fool-proof test of the algorithm, we compared the above formulas with the corections
calculated using the post-processing calculation from extended z-profiles using a Lennard-Jones
crystal1. We used the Lennard-Jones argon (σLJ = 3.405 Å, εLJ = 119.8 K kB) and a slab of the
fcc crystal with 4 atoms in a unit cell of side 5.2488179 Å. The box was (10a, 10a, nza) with
the slab 20a thick. The cutoff was C2 = 20 Å (note that the slabs are farther away than C2).
The results are:

nz x = s/Lz −E/J mol−1 −γ/µN m−1

eq. (31.12) crystal eq. (31.13) crystal

43 0.465 139.7071 138.518 12.631 12.522

68 0.294 17.4346 17.247 1.5763 1.5584

136 0.147 0.9776 0.965 0.0884 0.0871

1Of course, the surface tension of a crystal cannot be calculated from the tangent stress; however, the
corrections can.

Chapter 32

Correcting the angular momentum

The linear momentum is exactly conserved (if the symmetry allows) with any finite-difference
integrator, it is thus subject to rounding errors only. In contrast, the angular momentum is
conserved (in the free boundary conditions) subject to numerical errors proportional to some
power of the timestep (h2 with Verlet).

If a body or a configuration rotates with angular velocity
→
ω, then the velocity of atom i is

→
v i =

→
ω × →r i. (32.1)

The angular momentum is
→

M =
∑
i

→
r i ×mi

→
v i. (32.2)

By inserting for
→
v i from (32.1) we get

→

M =
∑
i

→
r i ×mi(

→
ω × →r i) =

∑
i

mi

[
r2
i

→
ω − ri(ri ·

→
ω)
]

=
↔

I · ω, (32.3)

where
↔

I is the inertia tensor (see also (2.2))

↔

I =
∑
i

mi(
→
r

2
i

↔

δ − →r i
→
r i), (32.4)

↔

δ denotes the unit tensor and
→
r i
→
r i is the tensor (outer) product of both vectors.

To set the angular momentum to zero,
→

M is calculated first from (32.2), then the inertia tensor
↔

I from (32.4). The velocities are corrected by

→
v i :=

→
v i −

→
ω × →r i, where

→
ω =

↔

I
−1

·
→

M.

For the implementation, see variable drift.

321

References

[1] H. C. Andersen: Molecular dynamics simulations at constant pressure and/or temperature,
J. Chem. Phys. 72, 2384 (1980).

[2] J. Applequist, J. R. Carl, K.-K. Fung: J. Am. Chem. Soc. 94, 2952 (1972).

[3] Z. Akdeniz, G. Pastore, M.P. Tosi: Phys. Chem. Liq. 32, 191 (1996); Z. Akdeniz, G.
Pastore, M.P. Tosi: Nuovo Cimento, 20, 595 (1998).

[4] J. Kolafa: Numerical integration of equations of motion with a self-consistent field given
by an implicit equation, Mol. Simulat. 18, 193-212 (1996)

[5] J. Genzer, J. Kolafa: Molecular dynamics of potential models with polarizability:
comparison of methods, J. Mol. Liq. 109 63–72 (2004)

[6] J. Kolafa: Time-Reversible Always Stable Predictor-Corrector Method for Molecular
Dynamics of Polarizable Molecules, J. Comput. Chem. 25 335–342 (2004)

[7] J. Kolafa: Gear formalism of the always stable predictor-corrector method for molecular
dynamics of polarizable molecules, J. Chem. Phys. 122 164105 (2005)

[8] S. Nosé: Mol. Phys. 52, 255 (1984).

[9] W.G. Hoover: Phys. Rev. A 31, 1695 (1985).

[10] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M.
Karplus: CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics
Calculations, J. Comput. Chem. 4, 187, (1983).

[11] M. L. Bjerking: Grafisk brugerinterface til et Molekyle-dynamik (MD) program, MSc.
thesis, Odense University (1993).

[12] QUANTA Parameter Handbook, Polygen Corporation (1990).

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery:Numerical Recipes in
FORTRAN, Cambridge University Press (1992), Chap. 10.6.

[14] A.D. MacKerell et al.: All-atom empirical potential for molecular modeling and dynamics
studies of proteins, J. Phys. Chem B 102, 3586–3616 (1998).

[15] Jorgensen et al.: J. Chem. Phys. 79, 926 (1983); Jorgensen et al.: Molec. Phys. 56, 1381
(1985).

[16] M Levitt., M Hirshberg., R Sharon., V Daggett.: Comput. Phys. Commun. 91, 215 (1995).

322

32: References [Contents] – [Index] 323

[17] J. Kolafa, F. Moučka, I. Nezbeda: Handling Electrostatic Interactions in Molecular
Simulations: A Systematic Study Collect. Czech. Chem. Commun. 73, 481–506 (2008).

[18] G.J. Gloor, G. Jackson, F.J. Blas, E. de Miguel: Test-area simulation method for the
direct determination of the interfacial tension of systems with continuous or discontinuous
potentials, J. Chem. Phys. 123, 134703 (2005).

[19] C. Yeh, M.L. Berkowitz, J. Chem. Phys. 111, 3155 (1999).

[20] A. Aguado, P.A. Madden: J. Chem. Phys. 119, 7471 (2003).

[21] J. Kolafa, J.W. Perram: Cutoff errors in the Ewald summation formulae for point charge
systems, Mol. Simulat. 9 351-368 (1992).

[22] D.E. Smith, L.X. Dang: J. Chem. Phys. 100, 3757 (1994).

[23] J.P. Brodholt: Chem. Geol. 151, 11 (1998).

[24] M. P. Allen: Back to Basics, in Computer Simulation in Chemical Physics, ed. M.P.
Allen and D.J Tildesley, Proceedings of the NATO Advanced Study Institute on New
Perspectives in Computer Simulation in Chemical Physics, Alghero, Sardinia, Italy,
September 14-24 (1992).

[25] R. L. Davidchack, B. B. Laird: Direct calculation of the crystal–melt interfacial free energies
for continuous potentials: Application to the Lennard-Jones system, J. Chem. Phys. 118,
7651 (2003).

[26] J. Picalek, B. Minofar, J. Kolafa, P. Jungwirth: Phys. Chem. Chem. Phys. 10, 5765–5775
(2008).

[27] S. W. Rick, S. J. Stuart, B. J. Berne: J. Chem. Phys. 101, 6141 (1994).

[28] S. W. de Leeuw, J. W. Perram, E.R. Smith: Simulation of electrostatic systems in periodic
boundary conditions. I. Lattice sums and dielectric constants. Proc. R. Soc. Lond. A 373,
27–56 (1980).

[29] A. D. Buckingham: A Theory of the Dielectric Polarization of Polar Substances, Proc. R.
Soc. London A 238, 235–244 (1956).

[30] G. Lamoureux, A.D. MacKerell, Jr., B. Roux: J. Chem. Phys. 119, 5185 (2003).

[31] B. Dünweg, K. Kremer: J. Chem. Phys. 99, 6093 (1994).

[32] In-Chul Yeh, G. Hummer: System-Size Dependence of Diffusion Coefficients and Viscosities
from Molecular Dynamics Simulations with Periodic Boundary Conditions, J. Phys. Chem.
B 108, 15873-15879 (2004).

[33] J. Malohlava (University of Ostrava) and J. Kolafa (2010), unpublished results.

[34] G. J. Martyna, D. J. Tobias, M. L. Klein: Constant pressure molecular dynamics
algorithms, J. Chem. Phys. 101, 4177–4189 (1994).

[35] G.J. Martyna, M. E. Tuckerman, D. J. Tobias, M. L. Klein: Explicit reversible integrators
for extended systems dynamics, Mol. Phys. 87, 1117–1157 (1995).

32: References [Contents] – [Index] 324

[36] S.W. de Leeuw, J.W. Perram, H.G. Petersen: Hamilton equations for constrained dynamic-
systems, J. Stat. Phys. 61, 1203–1222 (1990).

[37] Baranyai A., Kiss P.T.: A transferable classical potential for the water molecule, J. Chem.
Phys. 133, 144109 (2010).

[38] Daivis P.J., Evans D.J.: Comparison of constant pressure and constant volume nonequi-
librium simulations of sheared model decane, J. Chem. Phys. 100, 541 (1993).

[39] Bedrov D., Smith G.D.: Temperature-dependent shear viscosity coefficient of octahydro-
1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): A molecular dynamics simulation study, J.
Chem. Phys. 112, 7203 (2000).

[40] Briggs J.M, Matsui T., Jorgensen W.L.: Monte Carlo Simulations of Liquid Alkyl Ethers
with the OPLS Potential Functions, J. Comput. Chem. 11, 958–971 (1990).

[41] F. Cleri, V. Rosato: Tight-binding potentials for transitional metals and alloys, Phys. Rev.
B 48, 48–33 (1883).

[42] J. Kolafa, M. Ĺısal: Time-Reversible Velocity Predictors for Verlet Integration with
Velocity-Dependent Right-Hand Side, J. Chem. Theory Comput. 7, 3596–3607 (2011).

[43] S. G. Moustafa, A. J. Schultz, D. A. Kofke: Harmonically Assisted Methods for Computing
the Free Energy of Classical Crystals by Molecular Simulation: A Comparative Study, J.
Chem. Theory Comput. 13, 825 (2016).

Index

.1, 103

.3db, 34, 250

.3dt, 34, 250

.acc, 98

.anc, 103

.ang, 29

.asc, 98, 103

.bin, 37

.ble, 37, 69

.cfg, 103, 228

.che, 34, 66

.cp, 103, 229

.cpa, 103

.cpi, 103

.cpz, 105

.dcp, 105

.ddh, 105

.def, 105

.dep, 34

.dia, 105

.dih, 105

.dpr, 106

.edt, 34

.fix, 106

.for, 98, 106

.g, 106

.geo, 36

.get, 106

.gol, 36

.gra, 98

.jet, 25, 36

.keep, 34

.loc, 99, 106

.mark, 35

.mkr, 221

.mol, 22, 36, 65, 250

.msd, 30

.nff, 276

.par, 20, 37, 45, 251

325

32: Index [Contents] – [Index] 326

.pch, 35

.pdb, 250

.plb, 36, 230, 250

.pol, 100, 106

.ppm, 279

.pro, 35

.prt, 106

.prtx, 106

.ps, 279

.rdf, 106

.rea, 35

.rep, 250

.s-s, 106

.sel, 250

.sfd, 106

.sfr, 106

.sta, 106

.stp, 106

.sym, 36

.vel, 98

.wid, 107

.z, 107

accuracy, 142
of constraints, 118, 143
of Ewald, 116
of induced dipoles, 130, 144

alpha helix, 27
alternate location, 251
aminoacid, 255
anchor, 219
angular momentum, 321
aromatic dihedral, 63
asc2plb, 269
atomdist, 271
autocorr, 265

barostat, 135, 161
bin, 20
blefilt, 284
blend-file, 69
BLENDPATH, 249
bonds, 284

cache, 109
calculator, 247
Car-Parrinello, 204
center forces, 132
center molecule, 28
center of mass, 28

32: Index [Contents] – [Index] 327

CGS to SI conversion, 307
che, 22
chemical file, 66
chemical potential, 224
chirality, 22, 62
cleaving, 212
cluster, 26

analysis, 182
Na4Cl4, 80

combining rule, 50
conductivity, 179
conjugate gradients, 44
constrained

dihedral, 25
constraint, 36
constraint dynamics, 147
constraint force, 219
convergence profile, 97, 103, 170, 229
coordn, 264
cp2cp, 261
cppak, 264
crambin, 79
cross section, 138
crystal, 168
cutoff, 28, 112, 121, 153
cutoff electrostatics, 201
cutplb, 269
cutprt, 285
cystein bond, 251

density, 129, 272
density profile, 131
densprof, 270
dependant, 76, 150
dielectric constant, 115, 116, 304, 308
diffusivity, 173, 176
dihedral

angle distribution, 112
constrained, 25
potential, 59

dipole moment, 43
DOS, 17
DOS graphics, 18
drift, 112
Drude

pressure tensor, 207

Einstein relation, 176
endian, 247
energy conservation, 115, 143

32: Index [Contents] – [Index] 328

energy minimization, 44
essential dynamics, 30
ev, 247
Ewald parameters setting, 144
Ewald summation, 287
Ewald test, 117

filtplb, 273
fix atom, 199
force field, 16

parameter file, 45
Fourier transform, 311
frame, 269
fundamental frequencies, 187
fundamental mode, 32

get data, 37, 107
GPL, 1
graphics, 40
GUI, 17
gyration matrix, 31

hbonds, 264
Henry constant, 224

improper torsion, 59
inertia matrix, 31
initial configuration, 119, 167
insertion of particle, 224
integration method, 98
interface

Gibbs energy, 212
internal coordinate, 29
interrupt, 39, 97, 139

keep atom, 199
keep atoms, 25
kinetic quantity, 173

lattice, 285
Lennard-Jones potential, 153
linked-cell list, 125, 140
lock file, 99, 106

makemake, 240
makepept, 283
mar, 283
mark, 220
matching rule, 64
mean square displacement, 30
mergeplb, 273

32: Index [Contents] – [Index] 329

mergetab, 246
metal wall, 216
minimize energy, 25
mirror inversion, 123
missing coordinate, 44
mixing iteration parameter, 131
mixing rule, 50
molcfg, 275
molecular dynamics

equilibrium, 173
molecule description, 65
moment of inertia, 31
MSD, 30

neutral file format, 276
normal mode, 32
normal modes, 187
normalize configuration, 112
NPT, 135, 161
NVT, 158

optimization, 44
optimize, 25

pair energy, 28, 220
parallelization, 140
parameter set, 65
partial charge, 35
PDB

write, 28
pdb, 249
pdb2pdb, 282
periodicity, 64
permittivity, 115, 304
playback, 43

write, 26
playback file, 230
plb2asc, 269
plb2cryst, 270
plb2diff, 274
plb2nbr, 271
plb2plb, 269
plbbox, 270
plbcheck, 268
plbconv, 268
plbcut, 270
plbinfo, 268
plbmerge, 271
plbmsd, 272
plbpak, 273

32: Index [Contents] – [Index] 330

plot, 240
polarizability, 202
portable pixel map, 279
PostScript, 279
ppm2ps, 279
ppminfo, 280
precision, 142
pressure tensor, 152, 205
probe, 35
protein in water, 79, 231

quadrupole moment, 43

radial distribution function, 181, 262
radial distribution functions, 129
ram, 283
ramachan, 282
Ramachandran plot, 282
ray, 276
raytracing, 276
RDF, 129, 181, 262
rdfg, 262
reaction, 35
relaxation parameter for SHAKE, 126
rescaling, 128
residue, 255

saturation, 308
scroll, 38
scrolling, 19, 100, 253
sfourier, 263
SHAKE, 126, 147
shear viscosity, 175
shift, 131
show, 276
show molecule, 40
showcp, 258
shownear, 274
showpro, 285
slab, 132, 208
slit pore, 215
smoothg, 262
smoothpl, 271
sortcite, 248
spectrum, 266
spline, 155
stacking correction, 318
staprt, 263
statistical error, 171
statistics, 121

32: Index [Contents] – [Index] 331

steepest descent, 44
stereo, 281
stress tensor, 152, 205
structure factor, 179, 312
sum, 283
surface tension, 208

tab, 247
tabproc, 246
temperature, 134
thermostat, 136, 158
time measurement, 100
timestep, 119, 154
tomoil, 274
torsion, 59

units, 131

Verlet, 147
vibrations, 187
virtual area change, 210
virtual volume change, 114, 211
viscosity, 175, 222
vshift, 137

wall, 215
Widom method, 224

X11, 17

z-profile, 131

	I Program `blend' version 2.2h
	1 Introduction
	1.1 Force fields
	1.2 `blend' overview
	1.3 Versions

	2 Running blend
	2.1 Environment
	2.2 Synopsis
	2.2.1 Global options
	2.2.2 par-options and parameter files
	2.2.3 mol-options and molecular files
	2.2.4 Extra-options

	2.3 File extensions
	2.4 Run-time control
	2.4.1 get data format for input
	2.4.2 Scrolling
	2.4.3 Error handling
	2.4.4 Interrupts

	2.5 Showing molecules graphically
	2.5.1 X11 Graphics
	2.5.2 Playback output

	2.6 Energy minimization
	2.7 Missing coordinates

	3 Force field and the parameter file
	3.1 Structure of the parameter file
	3.2 Force field generation options
	3.3 Table of atoms
	3.4 Non-bonded forces
	3.4.1 Selection of site-site and Coulomb energy terms
	3.4.2 Combining rules for the Lennard-Jones parameters
	3.4.3 Table of site-site parameters
	3.4.4 Non-bonded fixes
	3.4.5 Table of polar atom parameters
	3.4.6 Table ``shellrep'' of repulsive counterparts
	3.4.7 Table of axially polar bonds
	3.4.8 Table of 1–3 axially polar groups
	3.4.9 Table defining water models
	3.4.10 Table defining the protein backbone types

	3.5 Non-bonded potential cutoff
	3.6 Bond potential
	3.7 Bond angle potential
	3.8 Torsions
	3.8.1 Torsion angle
	3.8.2 Torsion potential
	3.8.3 Conversion of dihedrals
	3.8.4 Cis and trans-dihedrals
	3.8.5 Implementation of the torsion potential
	3.8.6 Chirality
	3.8.7 Dihedrals in aromatic rings
	3.8.8 Tables of dihedrals and impropers
	3.8.9 Atom matching rules for finding the energy terms

	4 Description of molecules
	4.1 Molecular file (mol-file) format
	4.2 Chemical file format

	5 Output format (ble-file)
	5.1 Global parameters
	5.2 Site types
	5.3 Non-bonded fixes
	5.4 Header of molecule
	5.5 One species (molecule) data
	5.6 Table of sites
	5.7 Tables of bonds and bond angles
	5.8 Tables of dihedrals, impropers and aromatics
	5.9 Table of axial polarizability tensors
	5.10 Table of dependants
	5.10.1 Lone (out-of-plane) dependants

	6 Examples
	6.1 Example 1: Protein in water
	6.2 Example 2: Cluster Na4Cl4
	6.3 Crystals

	7 Problems
	7.1 Bugs and caveats
	7.2 Trouble shooting
	7.3 Frequently asked questions
	7.3.1 Free molecules
	7.3.2 Prevent molecules from evaporating
	7.3.3 One or more molecules?

	II Program `cook' version 2.9
	8 Overview
	8.1 Features of cook
	8.2 History
	8.3 Compile-time versions of cook
	8.4 Disclaimer

	9 Running cook
	9.1 Where is
	9.2 Synopsis
	9.2.1 File parameters
	9.2.2 Options
	9.2.3 File extensions
	9.2.4 Program flow
	9.2.5 Input data
	9.2.6 Interactive and batch control
	9.2.7 Interrupt

	10 Parallelization
	10.1 Compiling
	10.2 Running
	10.3 Linked-cell list and Ewald parallelized
	10.4 Ewald k-space and r-space running in parallel
	10.5 Pair sums for a single big molecule parallelized

	11 Algorithms and parameters
	11.1 Accuracy
	11.1.1 Errors of constraints
	11.1.2 Energy conservation
	11.1.3 Self-consistent field accuracy

	11.2 How to set Ewald parameters and
	11.2.1 Simple way
	11.2.2 More accurate way
	11.2.3 Most accurate way

	11.3 Constraint dynamics
	11.3.1 The SHAKE algorithm with Verlet integration
	11.3.2 Constraint dynamics with Gear integrators
	11.3.3 Constraint forces by Lagrange multipliers
	11.3.4 Correcting constraints
	11.3.5 Dependants

	11.4 Site-site potential cutoff
	11.5 The timestep
	11.6 Functions for r-space Ewald sums

	12 NVT and NPT ensembles
	12.1 Kinetic temperature
	12.1.1 Should we subtract 1 from nf for energy conservation?

	12.2 Constant temperature simulations
	12.2.1 The Berendsen (friction) thermostat
	12.2.2 Decoupled translational and intramolecular thermostats
	12.2.3 The Nosé–Hoover canonical ensemble
	12.2.4 Maxwell–Boltzmann thermostat
	12.2.5 Langevin thermostat
	12.2.6 Which thermostat

	12.3 Constant pressure simulations
	12.3.1 Friction (Berendsen) barostats
	12.3.2 MTK thermostat and barostat
	12.3.3 Simulation along given V(t) time dependence
	12.3.4 Adjusting force field parameter to pressure

	13 Initial configuration
	13.1 Random-shooting algorithm
	13.2 Crystal initial configuration
	13.3 Immersing a large solute into solvent

	14 Measurements
	14.1 Units of measurements
	14.2 Convergence profile
	14.3 Analysis of statistical errors
	14.4 Kinetic quantities from equilibrium molecular dynamics
	14.4.1 Diffusivity
	14.4.2 Conductivity
	14.4.3 Viscosity

	14.5 Kinetic quantities from the Einstein relations
	14.5.1 Requirements
	14.5.2 Usage
	14.5.3 Results
	14.5.4 Analysis of results

	14.6 Structure factor
	14.6.1 Structure factor for pure simple fluids
	14.6.2 Structure factor for mixtures

	14.7 Radial distribution functions
	14.8 Cluster (oligomer) analysis and bond kinetics
	14.8.1 Cluster overview
	14.8.2 Compilation and synopsis
	14.8.3 Input data
	14.8.4 Results
	14.8.5 Bugs and caveats
	14.8.6 Bond kinetics

	14.9 Normal modes of vibration
	14.9.1 Without constraints
	14.9.2 With constraints
	14.9.3 Harmonic Verlet correction

	14.10 Thermodynamic integration from a harmonic crystal
	14.10.1 Consistent and inconsistent models
	14.10.2 Reference state
	14.10.3 Thermodynamic functions
	14.10.4 Classical crystal
	14.10.5 Gas and liquid
	14.10.6 Finite-size effects
	14.10.7 Miscelaneous notes

	15 Special versions
	15.1 Fixing positions of selected atoms
	15.2 Notes on water models
	15.3 Cut off electrostatic forces
	15.4 Gravity simulation (STARS)
	15.5 Polarizable dipoles
	15.5.1 Polarizability models
	15.5.2 Integration methods

	15.6 Pressure tensor
	15.6.1 Pressure tensor for Drude oscillators

	15.7 Slab geometry and surface tension
	15.7.1 Surface tension via pressure tensor
	15.7.2 Surface tension via virtual area change
	15.7.3 Surface tension via virial pressure
	15.7.4 Surface tension via virtual volume change

	15.8 Slab geometry and vapor-liquid equilibrium
	15.9 Interfacial Gibbs energy by the cleaving method
	15.9.1 The method
	15.9.2 User interface

	15.10 Simulations at walls
	15.10.1 Atom-surface force field
	15.10.2 Atom-metal force field
	15.10.3 Using WALL and GOLD versions
	15.10.4 Wall versions and integrals of motion
	15.10.5 Initial configuration
	15.10.6 Input data for the WALL versions
	15.10.7 Wall visualization and more

	15.11 Anchor sites and axes and measure forces
	15.12 Analyze pair energies
	15.13 Viscosity by shear stress
	15.14 Widom and scaled insertion particle method
	15.15 Metals
	15.15.1 Tight-binding potential

	16 File formats
	16.1 Configuration
	16.2 Convergence profile
	16.3 Playback file

	17 Examples
	17.1 Example 1: Protein in water
	17.2 Example 2: Melting point of a model of NaCl
	17.2.1 Force field and molecules
	17.2.2 Crystal Na4Cl4
	17.2.3 Preparation of data for the simulation
	17.2.4 Crystal Na108Cl108
	17.2.5 Equilibrium simulation of the crystal
	17.2.6 Melt
	17.2.7 Melt–crystal equilibrium

	III Utilities
	18 General utilities
	18.1 makemake: Makefile and project interface
	18.2 plot: Plot a graph (with formulas and mouse-rescaling)
	18.3 tabproc: Command-prompt spreadsheet
	18.4 mergetab: Merge columns of data
	18.5 tab: Column table of consecutive numbers
	18.6 ev: Calculator
	18.7 endian: Change endian (order of bytes) in binary files
	18.8 start: Start application according to file extension
	18.9 sortcite: Sort LaTeX citations

	19 Program `pdb' version 1.4a
	19.1 Running
	19.1.1 Environment
	19.1.2 Synopsis
	19.1.3 Files
	19.1.4 Options

	19.2 Residues
	19.2.1 Format of residues
	19.2.2 Termini
	19.2.3 List of residues

	19.3 Bugs and caveats

	20 Data analysis
	20.1 showcp: Show and analyze convergence profiles
	20.2 cp2cp: Manipulate convergence profile files
	20.3 rdfg: Analyze and show radial distribution functions
	20.4 smoothg: Smooth histogram-based RDF
	20.5 staprt: Print a sta-file
	20.6 sfourier: Structure factor from RDF
	20.7 coordn: Coordination number
	20.8 hbonds: H-bonds for liquid water
	20.9 cppak: Loss (de)compression of convergence profile files
	20.10 autocorr: Statistical analysis using autocorrelation function
	20.11 spectrum: Spectrum (Fourier transform)

	21 Working with playback files
	21.1 plbinfo: Get information on plb-files
	21.2 plbcheck: Some checks on binary playback files.
	21.3 plbconv: Converts old and new plb formats
	21.4 plb2plb: Extract selected sites
	21.5 plb2asc: Conversion of plb-files to ASCII
	21.6 asc2plb: plb-files from ASCII
	21.7 frame: Extract one frame from a plb-file
	21.8 cutplb: Edit plb-files
	21.9 plbcut: extracts parts of a playback file
	21.10 plbbox: Change box size of a plb-file
	21.11 densprof: Selected density profile angular correlations.
	21.12 plb2cryst: Sort sites to files according to crystal-like structure.
	21.13 plb2nbr: Sort sites to files according to the number of neighbors.
	21.14 plbmerge: Merge several plb files
	21.15 atomdist: Atom-atom distances
	21.16 smoothpl: Smooth the playback file
	21.17 plbmsd: Mean square displacement of atoms
	21.18 density: Calculate local density
	21.19 mergeplb: Merge several plb files into one
	21.20 filtplb: Convert a plb-file for a subset of atoms
	21.21 plbpak: Loss (de)compression of playback files
	21.22 plb2diff: Diffusion and conductivity
	21.23 shownear: re-color atoms according to their distance
	21.24 tomoil: Conversion to MOIL

	22 Molecule visualization
	22.1 molcfg: Create configuration mol- and gol-files
	22.2 show V 2.0a: Viewing playback (trajectory) files
	22.3 ray: The raytracer
	22.4 ppm2ps: PPM, PBM, PGM to PostScript conversion
	22.5 ppminfo: Get information on ppm,pbm,pgm-files
	22.6 stereo: Stereogram

	23 Miscellaneous utilities
	23.1 pdb2pdb: Rearrange pdb-files
	23.2 ramachan: Ramachandran plot from blend and playback files
	23.3 makepept: Makes a peptide in che-format
	23.4 blefilt: Blend-file filter.
	23.5 bonds: Make (show-able) mol-file from coordinates
	23.6 cutprt: Shorten a prt-file
	23.7 lattice: Make a cubic lattice
	23.8 showpro: Show sorted pro-files

	IV Appendixes
	24 Ewald summation
	24.1 Point charges
	24.2 Gaussian charges

	25 MD of Polarizable Force Fields
	25.1 Notation
	25.2 Polarizability
	25.3 Pair operators of electrostatic interaction
	25.4 Electrostatic energies
	25.5 Electrostatic field
	25.6 Total energy
	25.7 Forces
	25.7.1 Gradient of the repulsive antipolarization
	25.7.2 Gradient of the polarizability tensor
	25.7.3 Fluctuating charge
	25.7.4 Implementation

	26 Time-reversible predictors for Verlet+SHAKE with a velocity-dependent rhs
	26.1 The task
	26.2 MACSIMUS solution
	26.3 Algorithm

	27 Always Stable Predictor-Corrector (ASPC) instant
	27.1 Task
	27.2 ASPC

	28 Specific heat CV in the molecular dynamics microcanonical ensemble
	29 Dielectric constant in SI
	29.1 Dielectric constant from external field
	29.2 Fluctuation formulas
	29.2.1 Notes

	29.3 Controlling saturation
	29.3.1 Extrapolation to zero saturation

	30 Fourier transform
	30.1 Basic formulas
	30.2 Implementation
	30.3 Structure factor
	30.3.1 Mixtures

	31 Slab cutoff corrections
	31.1 Fourier transform slab cutoff correction
	31.1.1 Truncated site-site potential
	31.1.2 One atom: energy correction
	31.1.3 One atom: force correction
	31.1.4 Mixture of sites
	31.1.5 Total energy correction
	31.1.6 Virial of force correction

	31.2 Post-processed slab corrections
	31.3 Slab stacking corrected
	31.3.1 Stacking error for van der Waals forces
	31.3.2 Thin slabs

	32 Correcting the angular momentum
	References
	Index

