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Foreword

MACSIMUS is essentially a “one man software”. Its development started in 1991 in the John
Perram’s group in Odense, Denmark, under project PROSIS (PROtein SImulation Software).
The first sufficiently general version is from 1993. In 1999, PROSIS was renamed to MACSIMUS
(MACromolecule SIMulation Software), the name invented by John Perram. However, the
development has declined from macromolecular simulations and has focused rather on fluids,
ionic systems, polarizability, surface and two-phase phenomena, etc.

MACSIMUS makes use of the traditional Unix (now Linux) front-end of command prompt.
Graphics is based on hot keys and old-style buttons for most common task. Midnight
Commander is supported.

Basic components of MACSIMUS with the most important file types follow:

@
@
@
@
@
@R

.che

?

.che

?

.pdb

any text
editor

‘draw’ molecule

makepept

make simple
peptides

PDB

protein database

pdb

convert to
MACSIMUS
format, assign
charged states..

charmm,
gromos, water

force fields

-
.par

�
.mol, .plb

blend

single molecules:
optimize, edit,
prepare force

field..

?

.ble

any text
editor

prepare data

cook*

molecular
dynamics

-
.def, .get

-
.plb

?

.cp

�
�

�
�

�
�	

.rdf, .z

?

.nff (.pov)

@
@

@
@
@
@R

.mol

show

visualization of
trajectories

ray (povray)

raytracing

showcp

analysis of time
series

rdfg,
densprof..

analysis: RDF,
density profiles..
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blend version 2.4e and the force field
parameter file
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Odense, October 1993 (V0.663), November 1995 (V1.5), August 1996 (V1.6g)
Guelph April 1996 (V1.6d)

Evanston December 1995 (V1.6c), July 1996 (V1.6f)
Prague 1996 (V1.7)

1999 PROSIS renamed to MACSIMUS
More updates: 2001–2025

Program blend assigns a force field to (a mixture of) molecules and prepares thus data in the
ble-format to be used as input in molecular dynamics simulation programs of the cook family.
The input to blend is either in a che-format (2D ASCII pseodogragraphics) or mol format
(ASCII-based table of molecular topology).

Other blend features include: essential dynamics, 2nd virial coefficient, normal modes of
vibration (more general code is available in cook, editing etc.

Unfortunately, not all models are implemented; e.g., Gaussian charges are not, see Sect. 15.6.1.
Consequently, there is more work with obtaining ble and mol files needed for cook and show.



Chapter 1

Introduction

1.1 Force fields

Force fields describing complex organic molecule are composed of many elementary energy
terms, typically including Lennard-Jones and Coulomb interactions for non-bonded forces, and
bond, bond angle, dihedral and improper torsion potentials for intramolecular bonded forces.

Our task is to assign a force field to a molecule given by a chemical formula without additional
information with the exception of partial charges attached to atoms which cannot be easily
derived from the chemical formula only and must be defined for each residue or calculated by
quantum chemistry. This requires a comprehensive analysis of the molecular structure. Since
the rules of assigning a force field to the molecular structure differ from one package to another,
and even from one version of the same package to another, and are often on purpose obscured
by the authors to prevent any other use of the force fields than buying their expensive and
inefficient programs, program blend has become much more complicated than was originally
intended.

1.2 ‘blend’ overview

Program blend assigns a force field to (a mixture of) molecules and prepares thus data for
molecular dynamics simulation program cook (better said, many versions of this).

blend analyses the structure of a molecule and finds the required energy terms (bonded and
non-bonded) by looking in tables. Partial charges are usually not part of the force field and are
given separately.

The molecules are described internally in a table-based format (originally produced by graphical
Molecule Editor MEDIT which unfortunately has died)[1]. They can be input by a user in a text
format close to the chemical structure formulas or via external sources (PDB interfaced by
utility pdb).

Using the constructed force field, blend can find the (local) energy minimum of the molecule
(from given configuration or from random input) and also fill missing atom coordinates
(typically hydrogens).

Several molecules can be blend-ed together and the prepared mixture can be simulated by the
MD program cook. In other words, blend creates a file that contains a full description of the
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force field of given molecules and this file is used by cook.

Although blend was developed originally with the CHARMM force field in mind, an attempt
was made to be more general if possible.

During years, many features have been added to blend: support of polarizability, molecular
editing features, essential dynamics, normal mode vibrations, inertia matrices and radii of
gyration, internal coordinates, etc.

1.3 Versions

See blend/metamake.mmk for compilation instructions.

Major versions of ‘blend’ are:

POLAR This version supports scalar and tensor polarizabilities of atoms. With the Busing
(exp-6) potential, it supports the ‘shell-core’ model. The polarizability may also be
saturated (see Sect. 25). Use #define POLAR for compiling.
BUG: Gaussian charges and BK3 water is not supported (however, it is in cook).

site-site potential The used site–site potential: Lennard-Jones, exp-6, WCALJ, Busing,
RGL (metal) and more.



Chapter 2

Running blend

2.1 Environment

Environment variable BLENDPATH can be set to point to the path that contains the parameter
files (with extensions .bin and .par). If it is empty, the parameter files are looked for in the
working directory.

Example (sh, bash):

export BLENDPATH=/home/jiri/blend/data

Other environment variables are:

BLENDGEOMETRY = window geometry, see also option -g

BLENDINIT = initial keystroke, see also option -I

GUI = common GUI setup, see page (g)ui after running blend without a parameter

2.2 Synopsis

WARNING: This may be somehow out-of-date, run blend without any parameter
to obtain the up-to-date (but brief) info!

blend \

[-o file | -s] \

[-lnumber] [-vnumber] [-znumber] [-gnumber] \

[ par-options ] [ parset.par | parset.bin ] \

[ charges.pch ] [ reactions.rea ] \

[ mol-options ] { species | species.mol | species.che } \

[ mol-options { species | species.mol | species.che } ] \

...

The options are parsed from left and thus, e.g., -s must precede any parameter that generates
output. Option X is switched on (i.e., set to value 1) by one of -X -X+ -X1 and switched
off (cleared to value 0) by -X- or -X0. The options of blend are case sensitive (most

18
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other MACSIMUS programs use case-insensitive options). Numerical options may be given
in decimal, octal (number begins with 0) or hexadecimal (number begins with 0x).

If blend is run without any parameter, a brief description of options is printed.

2.2.1 Global options

These options apply to the whole run and should be placed before any molecule is processed.

-gnumber Graphical show of minimization (by number steps). Valid for X-Windows or DOS
Turbo C versions. The default is -g3 for DOS but -g0 (no graphics) for UNIX (X-
Windows)

-lnumber Size of the line buffer for reading files (default=256). You may find this option
useful if you have a complicated formula in the chemical format.

-o file This option sets the batch mode. Output from blend is written to file; if file does not
have extension, .ble is appended. No keyboard input is requested; in the case of error,
the calculations exit with a nonzero return code. The space between -o and the file name
is optional. Cannot be combined with option -s.

-snumber (Deprecated) Enable scrolling (screen buffer = number kB). If no number is given,
the default is 31 kB (this is also maximum for DOS). Cannot be combined with option
-o. blend must be compiled with option -DSCR to enable this feature.

-v Sum of (note that the option may be octal or hexadecimal, e.g., -v11 = -v013 = -v0xb)

-v0 Neither force field information nor the table of sites are printed. This is the default
for the interactive mode (no output file specified by -o option).

-v1 List sites and their parameters. Tables of bonds, angles, dihedrals and impropers
are not printed.

-v2 Print tables of bonds, angles, dihedrals, impropers etc.

-v3 The same as -v1 + -v2: Print the full force field information (as required by cook*).
This is the default for the batch mode (file.ble is created).

-v4 Verbose (info on topological analysis, selection of terms, etc.).

-v8 List the used pair site–site parameter terms.

-v16 POLAR only: print convergence rates.

-v256 List all pair site–site parameter terms (even for atoms not present in the
molecules), may be very lengthy.

-v4 -J1e-11 -v0 (Debugging Jacobi diagonalization: shows the diagonalization
progress and turns off verbose mode otherwise. See -J, -N, -E for details.)

-znumber (0) Seed for random number generator. If -z is not specified, the seed is derived
from time so that it is different for each run.

- digit (6) (Underscore) Output precision of force constants. Most of the force field terms
(like force constants K) are printed with digit decimal digits, some of them (to have
comparable relative precision) with precision digit-1 or digit+1. Must be 0 < digit < 9.
In addition, negative values of digit force fine adjustment of rounding of partial charges
when a mol-file is (re)created so that their sum for a molecule is an exact integer. Useful
for charges pasted to a mol-file from a quantum-mechanical calculation.
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2.2.2 par-options and parameter files

Normally, the parameter set to be used is defined in the mol-file (keyword parameter set). If
not defined, it can be specified as a parameter (but note that all molecules blended together
must use the same parameter set!). The options that control the force field assignment logic
have their defaults defined in the parameter file and may be changed using a command line
parameter. See Sect. 19.1.4, for more information. A list of par-options follows:

parset.par Name of the parameter file in text format.

parset.bin Name of the parameter file in binary format. The default is charmm21.bin. The
binary file is created from the text file if option -b is given. It is faster to use binary files
for parameters (well, in 21st century the difference is negligible, but on 386 it used to
make a difference). WARNING: binary files of full and TINY versions are not compatible.

-anumber For number ≥ 0: scale all angle force constants number% times. For number < 0:
set all angle force constants to −number kcal/mol. For number = 0: constrain angles
(inefficient minimization algorithm).
See also -b. Note that the changed -a0 value is exported to a ble-file. -a0 does not work
accurately enough in some cases like planar molecules (e.g., TIP4P water); a large value
may help, but the algorithm becomes inefficient.

-b parset.par (Deprecated) Make binary image parset.bin from parset.par. The name of
the source parameter file parset.par must be specified after option -b. blend version
number is written to the header of parset.bin and two major digits (e.g., 1.2) are tested
whenever blend reads the binary file.

-bnumber For number > 1: scale all bond force constants number times. For number < 0:
set all bond force constants to −number kcal/mol/Å2. For number=0: constrain bonds
(inefficient minimization algorithm).
Warning: -b1 is reserved for making binary files (see above).

-fnumber Fabricate (make up) bond or angle terms that are missing in the parameter file.

-f0Missing bond or angle terms issue a warning and no term is added.

-f1 A missing bond parameter is added with length 1.5 Å and force constant K = 50
kcal/mol.

-f2 A missing angle parameter is added with equilibrium angle 120◦ and force constant
K = 20 kcal/mol.

-f3 Both -f1 and -f2.

-inumber (default=5) Calculate the maximum angle potential energy (over all angle
potential terms in a molecule) and print a warning if this energy exceeds number kcal/mol.
Such a warning for “normal” molecules means that the configuration is wrong, e.g.,
methane is in a wrong “pyramidal” conformation:

The default -i5 should detect such cases.
Use -i0 if it is OK and the warnings bother you.

-xnumber Lennard-Jones scaling; the default is -x1000100 (all scaling factors are unities).
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-xEEE (three digits) All Lennard-Jones energy terms (ϵ = −Emin) are multiplied by
factor EEE/100.

-xRRRREEE (more than 3 digits) In addition, all Lennard-Jones radii (σ or RvdW are
multiplied by factor RRRR/1000.

-x-DDD Energy terms are scaled x = exp(DDD/1000) times and radii x−1/3 times. This
means that density is scaled x-times with the structure unchanged.

-@number POLAR only: Output multiplication factor in % for the value of shell (number
of shell electrons for auxiliary charges for MD with polarizabilities). Only exported to
MD because blend uses exact point dipoles. Default=100%.

-^number

-~number POLAR only: polarizability multiplication factor in %. Default=100%.

-[number POLAR only: saturation energy multiplication factor in %. Default=100%. Rarely
used.

-[number Active with -n-1 only: reorder sites in molecules of number sites in increasing site
mass. E.g., -[3 -n-1 will reorder TIP3P water to HHO.

2.2.3 mol-options and molecular files

These options can be changed before each molecule is processed. Once an option is set or
cleared, its new value remains active until it is cleared or set again (i.e., it is not re-set to the
default).

species.mol Molecule file (mol-file) generated by blend, pdb (and originally by the molecule
editor MEDIT) is read and processed.

species.che File in the chemical format (che-file) is read and processed. The corresponding
file species.mol is created or rewritten (in this case the old species.mol is backed-up as
species.mol (species.mox for DOS). See Sect. 4.2.

species If no extension is specified, species.mol is tried first. If it exists, it is read and
processed, otherwise species.che is processed instead and the corresponding species.mol
is created. Thus, if you call blend for the second time, species.mol and not species.che
is read.

-cnumber This option affects how chirality information on CH1E and other chiral atoms is
treated. See Sect. 3.8.6.

-c0 Chirality info is taken from the .mol file or determined by using z-coordinates in
the .che file (default). If a 3D configuration is available and the calculated chirality
differs, a warning is printed.

-c1 Calculate unknown (i.e., not given in the .mol file) chiralities from the configuration
(.plb, .che, etc.) and write them to the .mol file. The old species.mol is backed-up
as species.mol (species.mox for DOS).
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-c2 Calculate all chiralities from the configuration (.plb, .che, etc.) and write them
to the .mol file. The old species.mol is backed-up as species.mol (species.mox
for DOS). Warning is printed if the calculated chirality does not match the former
chirality from the .mol file.

-dnumber Automatic bond generation. For positive number, a bond is added if the atom-
atom distance is less than number% of the bond equilibrium distance. For negative
number, all bonds are erased first. Useful, e.g., if some bonds are missing in the PDB
file but the coordinates are good, or if ionic bonds are created (cation-anion strong force)
and these should be turned into explicit bonds. Bond info must be present in the par-file.
Useful range of —number— is between 110% and 120%; values larger than 130% may
lead to extra bonds when atoms are accidentally close together. Values less than 100%
issue a warning. Note: bonds are not created if there is a record in the PAR file for the
bond, but the force constant is zero. This is the case of fake “bonds” as H-H in water to
define a rigid molecule.

-e [no 2D input] Selects editing (adding/removing atoms/bonds). Cannot be combined
with a 2D input (see below). If file species.edt exists then the edit information is read
from this file, otherwise from standard input.

Note that any editing is performed BEFORE the molecule is minimized and shown. The
recommended style of interactive work is to run two instances of blend, one for showing
atom ID’s, and the second for editing. After editing, kill the first blend.

Available commands are

? Print brief help

aa id type charge [id1 [id2 [...]]] Add Atom and connect it to atoms id1, id2, ...
It will be marked as ‘missing’ and its position will be calculated later (cf. option -k).
Note: thus, after short minimizing, you should start minimizing again with keep=0

or re-run blend.

af id type charge [id1 [dist]]

af id type charge = X Y Z Add Free atom (not connected). It will be placed dist
from atom id1 on the opposite side than id1’s neighbors (or randomly if id1 does
not have neighbors) and will not be marked as ‘missing’. The second form adds the
atom with given absolute coordinates X,Y,Z. Blend should be called with -y0 or -y2

aw [id1 [dist [#]]]

aw = X Y Z Add Water molecule (TIP3P model). Its oxygen will be placed dist from
atom id1 on the opposite side than id1’s neighbors (or randomly if id1 does not
have neighbors) and will not be marked as ‘missing’. Both water hydrogens will be
marked as ‘missing’. The atom ID’s are W#-O, W#-H1, and W#-H2; if # is missing, it
is advanced by 1 from previous aw command (or is 1 for the 1st aw command). The
default dist is 2. See the note for aa statement. The second form places the water
oxygen to X,Y,Z specified. Note: Equivalent to the following sequence of commands:

af W#-O OW -.834 ID1 DIST

aa W#-H1 HT .417 W#-O

aa W#-H2 HT .417 W#-O

ra id Remove Atom.
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rm id Remove whole Molecule. id is the ID of any atom in the molecule.

ab id1 id2 Add Bond.

rb id1 id2 Remove Bond.

i id newid Change ID (rename atom)

q id charge Change charge.

t id type Change type.

p idPrint info on atom(s) id.

pf id type charge [grid [shell [NforPLB]]]

pw [grid [shell [NforPLB]]] Probe using Free atom / Probe using Water. Given
probes (atom for pf, TIP3P water for aw) are placed to a grid around the molecule
and the energy is calculated; in the case of water, the water molecule is first rotated
to give the minimum energy. The minimum energies are then printed and optionally
the playback files containing the molecule and NforPLB minimum energy probes are
generated. This may be optimized by a special patch: compile-time option causing
omitting all atoms kept on place from energy calculations (#ifdef OMITKEPT in
blendmin.c)

react rea-file where rea-file is a reaction-file (extension .rea, see Sect. 2.3). Thus,
‘reaction’ can be performed during editing. Example:

af prot HP 1 16-OAC .8

react p.rea

.

ff parset Sets the force field (parameter set), also parameter set=parset. If set,
the editing commands are performed only if the current force filed matches the
ff command. Turned off by empty parset (i.e., editing is on). This allows to have
different editing statements for different force fields in one .edt file. Example:

ff charmm22

! this applies for charmm22 only

t CYS13aSG S

ff charmm21

! this applies for charmm21 only

t CYS13aSG ST

ff

! this applies for any force field

q CYS13aSG -0.8

! Any comment.

.

end End of editing (not needed for input from species.edt)

Blank lines are simply ignored. Wildcards ? (matches exactly one character) and * (only
at the end of id, matches any number of characters) can be used in id’s. Example: if your
mol-file has been created for the che-file (in some previous blend run), it has atom ID’s
of the form 12-CH2E. Specify 12-* if you know the number but not the atom type.



2: Running blend [Contents] – [Index] 24

-enumber [2D input] Scaling for 2D input given in % of the default values. If number is
positive, the plane configuration is “waved” to prevent numerical problems with pure 2D
starting configuration. This can be switched off by using negative number. Active only
if 2D input has been specified (option -r2 or -r12, or .che file as the only source of
information: in this case option -e does not mean editing!).

-hnumber Constraint bond angles containing light atoms (typically hydrogens). This
information is written to a ble-file applies for a subsequent cook* simulation, not the
optimization performed by blend!

abs(number)+0.5 is the mass limit (in atomic units) to treat bond angles constrained.
Thus, -h- (default) sets the limit to 0.5 (all bond angles with hydrogens can bend), -h or
-h1 sets the limit to 1.5 (bond angles with hydrogens are fixed but all other atoms not).
This applies only to output passed to cook where the bonds corresponding to constrained
angles are marked by K=0.0 in the table of bonds.

If the argument of -h is negative, all angles containing light atoms are constrained,
irrespective of overdetermination and singularities.

Normally the argument of -h is positive. Then the program removes the overdetermined
bond in groups like -CH3 and constraints only one bond of two possible in a chain
like -C-NH-C- and does not constraint the H-N-H angle in -NH2. No general algorithm
detecting overdetermination or singularities is used but the used algorithm constraints
correctly hydrogens in proteins and TIP3P water.

Using -h improves generally energy and constraint conservation with a marginal impact
on the generated trajectory. Higher values of -hnumber are not recommended.

The new bond force constant exported to a blend-file is equivalent to the angle bending
(the same vibrational frequencies) provided that the adjacent bonds are constrained. If
also the bonds are vibrating (e.g., -u9999 on cook), the vibration spectrum differs.

-jnumber This option has two purposes:

1. Allows adding special bonds (harmonic springs between atoms). Useful e.g. for
keeping certain distances (nearly) constant (if the force constant is high). These
bonds are used while energy minimization and, if option -o is used simultaneously,
exported to cook. These ‘bonds’ are specified either in file species.jet, or, if this
file does not exist, may be given from keyboard. The format of data is similar to
the format of the table of bonds, See Sect. 3.6, only atom IDs replace atom types.
Example:

!REMARK : Distances to keep tail from folding up:

! id id K length

ASN3CA TYR159CA 1 61

LEU22CA TYR159CA 1 52

ALA26CA TYR159CA 1 84

end

where K is in [kcal/mol] and length is in [A]. Single statement end or . marks the
end of data (not needed if data are read from file).

HINT: if you want to use these constraints only within blend and not in cook, re-run
blend with these options: -m- -w- -o file, but without -j.

2. Dihedrals to constrain can be also given in this file. Example:



2: Running blend [Contents] – [Index] 25

! ID ID ID ID ANGLE/degree(0,180)

5-CT 6-CT 7-CT 8-CT 120

BUGs (in V2.1k): cos(angle) is used internally, 0 and 180 are not allowed and the
sign of ANGLE is not distinguished.

-knumber This options allows to keep some atoms in fixed positions during minimization.

-k0 All atoms (incl. those marked by * in the 1st column in species.mol) are free and
can move during minimization.

-k1 The *marked atoms are kept fixed; however, atoms with missing coordinates are
always free to allow energy minimization.

-k2 Atoms with missing coordinates are free, known ones are kept fixed (marking is
irrelevant).

-k3 If there is any missing atom, -k2 applies, otherwise -k1. This is the default.

-k4 Read keep info from file species.keep. Should be combined with -k1 to be active
(keep=1), i.e., use -k5 to read the keep info and minimize using it.

-k8 Read mark info from file species.mark.

-k-1 -k-2 -k-3 As above with the exception that single atoms are always free.
Particularly, option -k-3 is intended to initial minimizing a protein with charges
compensated by counterions: protein skeleton is kept, unknown hydrogens and
counterions are free (note that hydrogens are filled by blend while counterions have
been exported from pdb and are inaccurate and may clash with hydrogens).

-mnumber Energy minimization (optimization). If number is positive, then number steps of
the conjugate gradient method is performed. If number is negative, -number/4 steepest
descent steps are performed and then -number steps of the conjugate gradient method.
The default is -m-100.

-nnumber Number of molecules. Not used by blend, only passed via a ble-file to program
cook.

-n-number If the argument is negative, blend tries to split a ‘molecule’ into submolecules
(clusters). The format of output ble-file is changed and understood by cook as a
configuration. PDB-file with crystal water or insulin consisting of two identical chains
are typical examples.

BUG: The algorithm for determining whether two clusters are identical is simplified.
Clusters having the same numbers and types of atoms and bonds on each atom are
considered identical. Thus, clusters written with different order of atoms are not
recognized as identical. On the other hand, the following two clusters will be incorrectly
considered as identical:

A--B A--B

| | and \/

| | /\

D--C D--C
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WARNING: If the mol-file has been generated from a che-file, it may happen that numbers
in atom ID’s do not match the real numbering because sites might have been renumbered
to have consecutive numbering of clusters.

TECHNICAL NOTE: since blend does not know the final number of species, it first
writes nspec=<number> !? to the ble-file. After all molecules are processed, and if -o
has been specified, it re-reads the ble-file and writes the correct final number of species in
the form nspec=<number> !fixed. This does not work if -o has not been specified (i.e.,
you use option -v0 and either -s with $w command or redirection of standard output).

-pnumber Write configuration in the playback-compatible format. Optional number > 0
means that number% of the van der Waals radii of atoms will be used as the radii of
atom spheres (default is 70%). Two files, species.plb and species.gol, will be created.

-p-number As above with reversed endian of species.plb. To be used for transferring binary
data between computer architectures using the same format of floating point numbers
(e.g., IEEE) but different order of bytes (endianness, sex). E.g., x68 (IBM-compatibles)
and Dec Alpha are little endians while Sun, SGI are big endians. If this does not help,
ASCII data should be transfered (utility plb2asc).

-qnumber Scaling of charges in %. The default is 100%. Note that scaling is done on
input, i.e., the scaled charges are written to output. At the same time, warning on
fractional charges is suppressed. Hint: use -q100 to suppress the warning and keep
charges unchanged

-rnumber Read configuration option:

-r0 Initial configuration will be read from available configuration (tried in the order of
types species.plb, .pla, .3db, .3dt), if not available then derived from 2D data
in species.che (or deprecated species.2db, species.2dt), and if this does not help,
then filled with random numbers. This is the default.

-r1 Initial configuration is random. No action is taken to prevent atoms overlap. Note
that certain force fields (Busing) may fail for atoms very close together.

-r2 Initial configuration will be obtained from 2D screen coordinates. If the molecule is
given by species.mol file, then species.2db (binary) file will be read, if the molecule
is given by species.che, then the 2D coordinates are derived from it. See also option
-e.

-r12 (Deprecated) If the molecule is given by species.mol file, then species.2dt
(text) file containing screen coordinates will be used to determine the initial 3D
configuration. See also option -e.

-r3 Initial configuration will be read from species.3db (binary) file. Note that format
.3db is deprecated since V2.1a and replaced by .plb.

-r13 Initial configuration will be read from species.3dt (text) file.

-r4 Initial configuration will be read from the playback file species.plb. Special sub-
options can be specified:

-r4:frame Selected frame is read from the playback file. frame = 1 is the 1st
frame, frame = −1 denotes the last frame, frame = −2 the second last, etc.
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-r4:from:to:by[:file] For special functions (see options -A -E -G -H -R) as well
as the PDB output (options -w10, -w20, -w30), the range of frames analyzed
is specified. The default is [-r4:1:-1:1]. Parameter file must be given with
extension (usually .plb); if omitted, species.plb is the default.
NOTE: for PDB output, see also pdb -pFROM:TO:BY.

-r-3 Initial configuration will be read from deprecated species.3db file with reversed
endian.

-r-4 Initial configuration will be read from the playback species.plb file with reversed
endian. Use for transfering data between machines with the same format of floating
point numbers (now usually IEEE) but different order of bytes (endian, sex).

-r5 Alpha helix, old algorithm

-r6 (Added in version 1.6d, changed in 1.7k; see also -k7 and -k5.) The initial
configuration is alpha-helix. The molecule must be a protein (or peptoid, i.e., N-
substituted glycine; the N-backbone may need finer minimization). The backbone
is recognized by atom types (see Sect. 3.4.10). The alpha-helix configuration is
generated and the backbone atoms are marked as to be kept during minimization
(cf. option -k2). The side-chains are very approximate and thus the first step should
be energy minimization which should not include the backbone: the keep status is
set to -k1 (see option -k. As the second step, the backbone atoms should be included
in the minimization (use keep=0 or re-run blend). Example:

blend -r6 -g -t10 polyval.che # creates alpha-helix

# + optimizes side-chains

blend -o xxx -g polyval # optimizes whole config.

-r7:phi:psi:omega (Added in version 2.0k.) The initial configuration is described by dihedral
angles phi (-C-N-Ca-C-), psi (-N-Ca-C-N-), and omega (-Ca-C-N-Ca-) (in degrees). If no
phi, psi, omega are given, the default is phi=psi=-51, omega=180, which is approximate
alpha-helix (to be optimized). If more molecules are processed, the default is the values
of previous molecules.

-tnumber The range [C1,C2] for the cutoff switch function will be C1=number-1 and
C2=number+1. The default is no cutoff (infinite range). See Sect. 3.5.

-t-number The range [C1,C2] for the cutoff switch function will be C1=int[number/100]/10
and C2=C1+(number mod 100)/10. E.g., -t-12345 gives C1=12.3, C2=12.3+4.5.

-unumber All non-bonded pair energies (i.e., site–site [typically Lennard-Jones] and Coulomb
ones) are recorded and first number highest terms are printed. Thus, possible atom
overlaps are easily visible. If number is negative then first -number terms with lowest
energy are printed.

-w Write configuration in some special formats:

-w Write configuration to species.3db. If this file already exists, the old one is backed
up as species.3db (species.3dx for DOS). This was the default prior V2.1a; the 3db
format is now deprecated—plb is recommended instead.

-w- -w0 Do not write configuration; does not apply to the plb format (use -p0 to
suppress writing species.plb). This is the default.
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-w-1 As option -w with reversed endian.

-wdigit If digit > 1 then write configuration to ascii species.3dt. digit is the number
of decimal digits printed. If this file already exists, the old one is backed up as
species.3dt (species.3dx for DOS).

-w10[:Hstyle] Creates PDB file species.pdb using backbone analysis. To be used for
che-file based peptides created, e.g., by makepept. BUGS: This is a simple code
that may fail in complex cases. Does not recognize PRO as the 1st residue. Uses
non-standard numbering of H and perhaps also other atoms. None or very limited
support for residues like HEM, etc. Knows only some termini. Some problems can
be solved by hand-editing the resulting PDB file.

-w10:0 Hydrogen on beta C is ‘ HCB1’

-w10:1 Hydrogen on beta C is ‘ HB1 ’ (C as Carbon omitted). Hydrogen on the
backbone N is always NH1 (N is not omitted).

-w10:2 Hydrogen on beta C is ‘1HCB ’

-w10:3 Hydrogen on beta C is ‘1HB ’

-w10:4 Hydrogens are omitted (default)

Can be used with option -r4 to create a series of PDB files.

-w20 Re-creates PDB file species.pdb using id names in mol-file, to be used for files
created by the pdb converter. BUGS: 1 backbone only; changes order of atoms (in
this case, try utility pdb2pdb, see Sect. 23.1.) Can be used with option -r4 to create
a series of PDB files.

-w30 Selects -w10 or -w20 automatically

-w40 Write file species.atm with a header containing the number of atoms, a blank line,
and then 1 line/atom in 4 columns At x[A] y[A] z[A].

-w80 Write a cfg-file in the cook format (V2.7a and newer. Cf. plb2cfg.

-w160 Write a cfg-file in the cook format (older than V2.7): deprecated.

The -w options may be combined (-w125 = .3dt in 5 digits + .atm + .cfg); however, .3db
and .3dt cannot be combined (only one is written).

-ynumber Center molecule or create box. Sum of flags:

1 Center molecule before minimizing; box size (if contained in the plb-file) is not
changed. Recommended to show a molecule.

2 Center molecule after minimizing and set box size (written to the .plb file) to zero
(free boundary conditions). Note that cook with init<0 reads only the contents
from such a plb-file (the box size is derived from cook initialization).

4 Make all coordinates positive, incl. Lennard-Jones sigma. This means that min
and max in all coordinates are determined and the molecule is moved so that all
coordinates are positive.

8 Box molecule after minimizing, incl. Lennard-Jones sigma. Maximum of all
coordinates is written as box size to the plb-file. Recommended with -y4. Note
that cook with init<0 reads such a plb-file including the box size.

16 Modifies -y4 and -y8: do not add Lennard-Jones sigma to coordinates (may lead
to overlaps in periodic b.c.). (To modify the box size, use plbbox).
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The default, suitable for making a blend-file, is -y3. To work with a configuration in
periodic b.c., use -y13

2.2.4 Extra-options

-A Generate species.ang of independent internal coordinates. File species.plb (and
species.mol) will be read (see option -r4) and the following files will be generated:

species.ang protocol about angle analysis

species.1, species.2 ... angle files

Option -A implies -w0,-p0 (no write), -m0 (no minimization), and all dihedrals=0 (one
dihedral per bond).

The angle analyzing algorithm takes into account only the following structures:

3- and 4- bonded atoms 1 dependent angle is removed, 2 angles and 1 improper are
left

6-cycles of 6 dihedrals and 6 angles, 6 are removed

5-cycles of 5 dihedrals and 5 angles, 6 are removed

merged rings 1 additional improper removed

NOT SOLVED other cycles than 5- and 6- (like if there are CYS-CYS bridges); complex
merged rings (like in the heme)

Actually, the topological analysis to get only independent angles is not easy. The formula
2*ns-5 works for trees only (no cycles). WARNING (?): tested with CHARMM21 only.

-Cnumber (-1) Reference atom for dipole and quadrupole calculations, and for the second
virial coefficient (see -V; in this case, both molecules must have the same atom as the
reference). Note that the dipole value depends on the reference point for ions only, and
similarly the quadrupole value depends on the reference point for dipolar molecules.

number>=0 Atom number.

-1 The reference point is the centroid of atomic charges (default).

-2 The reference point is the center of mass.

-3 The reference point is the geometric center.

-D File species.msd of mass-weighed MSD (mean square displacement) is calculated. Implies
-w0,-p0 (no write), -m0 (no minimization).

-E Essential dynamics. The essential dynamics (ED) algorithm analyzes the trajectory (in
playback file, see option -r4) and by diagonalizing the covariance matrix calculates the
“essential motions”. Implies -w0,-p0 (no write), -m0 (no minimization).

-EA use all atoms in ED

-EH use all heavy atoms (not hydrogens)

-EC use only C-alpha (cheapest but usually sufficient)

-EB use all atoms in the backbone (omits all sidechains)

It is assumed that atom IDs have been derived from a PDB file.
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Algorithm:

1. Reads frames and matches frames with the 1st frame which means that rN is rotated
and displaced so that

∑
(ri − r0i)

2 is minimum (simple MC minimization).

2. Calculates the covariance matrix Cov(ri, rj) (all coordinates separate, i.e.,
rank=3*# of atoms).

3. Calculates its eigenvalues.

More about ED:

• Essential dynamics files with extension .ess####.plb use the average frame as the
center

• This average frame is also written as essr0.plb (if -F# is odd, this is the same is
the central frame)

• The amplitude of essential motion in .ess####.plb is the same as to reproduce
the stdev (mean square amplitude), i.e., cos-amplitude is sqrt(2)*stdev and linear
/\/\/\ amplitude=sqrt(3)*stdev (if the essential motions were harmonic or /\/\/\
, respectively, the ess####.plb would show the correct motion). This holds for -M1
(the default), -M# just multiplies the motion by #

• File .ess.cp is written containing development of coordinates in the basis of
eigenvectors. There are -P# items (columns) in ess.cp. Use showcp -a or showcp
-p etc. to analyze ess.cp, ignore bad headers of columns 0 (Etot) and 1 (T)

• the matched trajectory (with rotations and translations removed) is written
to essmatch.plb if option -P. blendess.c must be compiled with #define

WRITEMATCH.

Note: try blend/esstest.c

-Fnumber For essential dynamics and normal mode analysis. Number of frames in the output
playback files used to visualize the motion. Positive number denotes harmonic motion,
negative denotes linear motion between min and max. Cheap: use -F2, better: -F7 or
so. See also -M and -P. Of course, -F-2=-F2, -F-3=-F3.

-G Calculate eigenvalues of the gyration (-G) matrix (see below)

-H Calculate eigenvalues of the inertia matrix. Three files are produced (for -G they are
gyration.cp, etc.)

inertia.cp Convergence profile of 7 items: Ixx, Iyy, Izz, Rx, Ry, Rz, Rg.

inertia.mol Mol-file file for show to visualize inertia.plb. ‘inertia’ is viewed as a
‘molecule’ of 6 atoms

inertia.plb Playback file for ‘inertia’. The following Cartesian cross or ‘molecule’:

O

| O

|/

O----+----O

/|

O |

O
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where the masses of ‘atoms’ O are 1/2 and the lengths of axes (O–center) are Rx,
Ry, Rz, has the same tensor (matrix) of inertia as the original molecule

BUG: The sign of both vectors in each O–O ‘bond’ is undefined. This does not cause
any problems while showing, but might cause problems in further calculations

Theory: The gyration or inertia matrix is calculated first

↔

G =
∑
i

mi∆
→
r i∆

→
r i (2.1)

↔

I =
∑
i

mi

[
∆

→
r
2
i

↔

δ −∆
→
r i∆

→
r i

]
(2.2)

where
↔

δ is the unit tensor (matrix) and

∆
→
r i =

→
r i −

→
rcenter of mass (2.3)

The diagonalized tensor is

E = U(I or G)U−1 =


Ex 0 0

0 Ey 0

0 0 Ez

 (2.4)

where U is a unitary matrix. In the same spirit of “radius of gyration”, the following
“partial radii of gyration” Ra are defined from diagonalized G (and similarly I, if this
makes sense).

Ra =
√
Ei/mtot, (2.5)

where mtot is the total mass of the molecule. Finally,

Rgyr =
√
R2

x +R2
y +R2

z (2.6)

For diagonalized I, the principle moments of intertia vs. axes are Ey + Ez, Ez + Ex,
Ex + Ey.

-Jnumber Essential dynamics and normal mode analysis: accuracy for the diagonalization
(Jacobi method)

Essential dynamics: sqrt(number)*0.2 is used as the error threshold for configuration
matching when the configurations are translated and rotated to match best each other
(before the covariance matrix is calculated)

-Mnumber For essential dynamics and normal mode analysis. Amplitude of the visualized
motions. The units are Å for normal mode analysis, and standard deviation of the
essential motion for the essential dynamics. The default is 1 (Å or standard deviation).

-M-number For normal mode analysis, the same as number ·ns1/2. -M-0.2 gives a reasonably
good amplitude irrespective of molecule size.
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-Nnumber Calculate the normal mode frequencies (vibrational spectrum). If number is given,
it denotes dr for numerical calculation of second derivatives; default dr=1e-5 Å. File
species.nmf is created. See also -M, -P, and -F. See Sect. 14.9 for the theory.

The input configuration should be well minimized: use -mBIG NUMBER or cg=BIG NUMBER

and wait until the minimization stops; to be on a very safe side, repeat once more with
-m-100 or sd=100. The output file species.nmf contains frequencies ν in THz and wave
numbers in cm−1, ordered.

If the eigenvalue is negative (saddle point—not enough minimized or numerically
imprecise), then ν printed is negative, too.

Accuracy: If the step ∆r ≈ (machine precision)1/3 ≈ 10−5, then U ′ is known with
precision of 10 digits. Six (for a general molecule) eigenvalues corresponding to rotations
and translations should be zeros ⇒ they will be calculated with relative (to other
eigenvalues) precision of about 1e-10. Since the frequencies are square roots of eigenvalues,
they will be given with relative precision of 1e-5. Consequently, frequencies slower than
1e-5 of the fastest ones, i.e., slower than about 1 GHz, cannot be calculated.

Diagonalization method: threshold Jacobi method

Example (especially didactic): Create file biphenyl.che:

biphenyl

HA HA^

| |

HA-C6R--C6R C6R^--C6R^-HA^

| | | |

HA-C6R C6RP--C6RP C6R-HA

| | | |

HA-C6R--C6R C6Rv--C6Rv-HAv

| |

HA HAv

then do the following:

blend -p -N -M.4 -P99 -F7 -m-9999 biphenyl

(biphenyl.nmf and biphenyl.nm0000.plb, ... created)

show biphenyl biphenyl.nm0006

rotate the molecule (left mouse button)

type hot keys: $iwwsss

You can also use script nmf.sh biphenyl, then (from blend) click button [finish] or hot

key . . Use buttons < or > or hor keys PgUp , PgDn to switch modes.

BUG: Cannot be used for models with zero masses of some particles (as TIP4P water)
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-Pnumber For essential dynamics and normal mode analysis. Number of playback files
generated. number of the most significant eigenvalues is considered (-number least
significant if number is negative). Files have extensions .ess####.plb or .nm####.plb,
where #### is 0000, 0001, ... Use also ‘blend -p’ to get the gol-file, then show to view
the motion. The default is -P0 (no playback files).

-Rnumber Core size for the second virial coefficient (see -V). The center of this spherical core
is given by -C.

-Snumber POLAR ONLY: maximum number of self-field iterations before an error is printed.
The default is 200. With virial calculation (see -V), divergence is treated as infinity
potential. Since the internal accuracy is 1e-8, this means that the convergence rate must
be better than 1e-81/200 = 0.91; increase -S if you have such an ill-defined model. On the
other hand, you may decrease -S if you are sure the convergence is fast enough. Also,
the number of SHAKE iteration. Was -I before V2.2h

-Tnumber Temperature (in K) for the second virial coefficient (see -V).

-Vnumber Number of random samples for the second virial coefficient. Negative value means
that twice as many samples are used and every second is generated with molecule 1
reflected. Use this if both molecules are dipolar.

Caveat: both molecules are treated as rigid (after separate optimizations).

To calculate the second virial coefficient, use 1, 2, or 3 mol-files as blend arguments:

1 The second virial coefficient of pure compound is calculated.

2 The cross second virial coefficient (for a mixture) is calculated.

3 For development purposes: the third argument must correspond to a mol (or che)
file with both molecules merged (in the same order of sites).

An example of the 2nd virial calculation at 373 K is:

blend -C1 -V-1000000 -T373 spce

The algorithm is based on the formula:

B2 =
2π

3
R3 − 2π

∫ 1/R

0
⟨f(1/x,Ω)⟩Ω1/x4dx (2.7)

where f(r,Ω) = exp(−u(r,Ω)/kBT ) − 1, Ω, stands for all angles, and R is the core size
(option -R; the potential can be assumed infinity inside the core).

First, the configuration is split into molecules. Both are minimized separately (in two
steps, with the other molecule shifted far away).

Then, the above integral is calculated by the naive Monte Carlo (random shooting) If the
-V option has a negative value, every second configuration is created instead by inverting
(r → −r) the first molecule. This is necessary for both molecules dipolar because the
integrand is then limiting to a constant as r → ∞ (otherwise it would be infinity and the
integral would be unsuitable for the MC method).

Works with polarizability, too; note that a diverging self-field is treated as infinity
potential. (See -I for the number of iterations.)
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2.3 File extensions

File names of all molecule-related files are derived from species or species.mol or species.che
specified at command line. A list of extensions follows. ‘(i)’ means that the file is can be read
by blend, ‘(o)’ that it is created or rewritten.

Suffix ~ denotes a backup (previous file before rewriting).

.2db (i) DEPRECATED, do not use! 2D screen configuration (binary). Produced by
MEDIT (?).

.2dt (i) DEPRECATED, do not use! 2D screen configuration (2 column x-y ASCII file).
Produced by MEDIT (?).

.3db (io) DEPRECATED, rather use .plb instead. 3D configuration (binary file). It
consists of number of atoms vectors, each consisting of three single precision floating-
point numbers containing x-y-z.

.3dt (i) 3D configuration in ASCII (3 column x-y-z). Deprecated.

.che (i) Chemical format. See Sect. 4.2.

.edt (i) Edit molecule file. See option -e.

.dep Dependant info file, with lines of the form dependants : base sites. See Sect. 5.10.

.keep Info on atoms kept (frozen) while minimizing. Can be written by hot key @k , read

by @K or option -k4. The file format is simple:

! comment

2 ! atom number

3 ! atom number

.mark Info on marked atoms. Can be written by hot key @m , read by @M or option -k8.
The file format is the same as for .keep

.pch (i) Partial charge replacement file, must be in the current directory or in the directory
given by BLENDPATH. If present in the input line, all patterns for groups of atom types
replace the respective patterns found in the molecule, overriding any charge specified in
the .che or .mol files. Mol-file will be rewritten with the new charges. Example of the
pch-file:

! >C=O

C=0.55 O=-0.55

! -NH2

NT=-0.3 H=0.15 H=0.15

The first atomtype=charge item on line is the ‘central’ atom, all other atoms are connected
by bonds. Ordering of atoms but the first one defining the center is irrelevant. The charge
assignment algorithm takes sites in a molecule one by one and for each tries to match all
possible groups of this site and its nearest neighbors to patterns in the .pch file. If there
are several matches possible, the first one applies; thus, the following trick is possible:
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CT=-0.4 HA=0.1 HA=0.1 HA=0.1 HA=0.1

CT=-0.3 HA=0.1 HA=0.1 HA=0.1

Using this, the first line will be used for (full-atom) methane and the second one for
ethane.

If an atom is a member of several groups, its charges is calculated as a sum over all group
contributions and info is printed.

.pro (o) Results of probing. See 2.2.3, option -e, commands pa and pw. See also utility
showpro (??).

.rea (i) Chemical reaction file. Performs a special form of ‘chemical reaction’ on groups
defined by reaction patterns. Can be given also by command ‘react’ during editing.
Example: to perform the following reaction

O OT--H

/ /

HP + -C -> -C

\ \

OAC OA

the rea-file should contain a line like this:

HP + O <1.2 *C OAC += H-.6 OT+.35 C+.05 OA+.2 > -100

< the reaction takes place if the distance of HP and O is less than the distance given
by the ‘<’ command (here 1.2 Å, default = previous line, if nothing given = 1 Å)

* *C means that C is the central atom of the group (if no * is given, 1st atom after
‘+’ is central)

+= += means that partial charges (numbers after atom types) will be added to already
present partial charges

= = instead of += means assignment of partial charges

> energy of the reaction follows (negative=exothermic). This energy is written to the
mol-file as the ‘zero energy’ field.

\ EXTRA lines: if the charge redistribution extends over one group, ‘continuation’
lines may be added. They start with ‘\’, e.g.

\C5RE + N5R H C5R += C5RE+.05 N5R+.1 H+0.05 C5R+0.05

Here, ‘+’ does not denote a reaction but an atom that has been marked in previous
reaction step (=line without ‘\’ + any number of lines with ‘\’); it must be bonded
to the next atom (here C5RE–N5R) which itself must not be marked. Marking of
other atoms in the group is irrelevant. Note that any such marking is canceled by a
new reaction (=line without ‘\’). The above example changes charges in the group:

H--N5R---C5R

/

C5RE

where C5RE has been affected by a reaction but N5R not
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.geo (i) If this file is present, blend prints selected distances and angles on hotkey ‘E’ and
after minimizing is finished. species.geo is just file of lines with sites of bonds or angles

! comment

1 2 # bond 1-2

1 2 3 # angle 1-2-3

The comments are printed, too.

BUGS: very ugly implementation, should unify with ‘clicking’, should add dihedrals...

.gol (o) DEPRECATED. File containing a 2-line header followed by colors and radii of
atoms. Used by show. Originally the goal file goal.fil for PlayBack. Generated by
blend prior V2.3, removed since blend V2.4a and show V2.2a. (Show still uses gol-file if
one is present).

.jet (i) File determining additional constraints. See Sect. 2.2.3, option -j.

.mol (io) Molecule description file. See Sect. 4.1.

.plb (io) 3D configuration (binary file), See Sect. 21.1 for the format. The recomended
format in MACSIMUS.

Note that blend normally uses the free (vacuum) boundary conditions, other format
options are used by cook and show, etc.

.sym (i) File defining some symmetry conditions to be kept while minimizing. Very
primitive. Turned off if -N specified. Example:

z 0 2

z 3-4

z 5

.

z 0 2 means that sites 0 and 2 are kept symmetric with respect to z=0 plane.
z 5 means that site is kept in z=0 plane.
z 3-4 means that sites 3 and 4 are kept in z=0 plane.” . stops
Instead of x,y,z, one may use X,Y,Z or 0,1,2.

Other extensions (not related to individual species):

.par (i) Parameter file in text format, typically in directory blend/data (pointed to by
environment variable BLENDPATH).

.bin (io) Its binary image, deprecated.

.ble (o) Default extension for the output file.
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2.4 Run-time control

If no option -o is given, blend runs in the interactive mode. The user can interactively control
the course of minimization and respond to error messages. The output is written to stdout.1

(Do not confuse with key and mouse control in the graphical window!)

If option -o is given, only few messages are printed to stderr. The only user interaction is
typing Ctrl-C (see Sect. 2.4.4).

2.4.1 “get data” format for input

The “get data” format resembles the GET DATA statement in the old good PL/1 or NAMELIST
in FORTRAN. It is used as user-friendly input format in several places.

The input data consist of assignments of the form variable=numeric expression.

A set of such assignments is ended by a semicolon. The numeric expression may contain
numbers, variables (qualified as a.b, but not indexed arrays), operators + - * / ^ ( ) # %

and elementary functions, where symbol ^ denotes exponentiation and # the result of previous
assignment. Operators += -= *= /= ^= %= are also allowed if # is not used.

If used interactively, some additional commands are available so that you can use the “get
data” module as a calculator.

Example:

ran=1/3 ! this is comment

by *= 2; ! by is doubled (WARNING: not allowed in cook’s

! def-file because it is read twice)

! x = L[2] ! indexed variable not allowed in the r.h.s

List of commands:

? Get help

?? List all variables.

expression Evaluate expression and store it into #

variable=numeric expression Evaluates expression and assigns the result to variable

?variable=numeric expression Evaluates expression, assigns the result to variable, and prints
the result

?= Toggle auto echo mode (NOTE: this is useful in case of errors during input, as wrong
identifier or syntax)

?format Set output format (C-style), e.g. ?%.15g is g-format with 15 digits

! Comment to the end of line

; End of data block

$command To enter scrolling (see below)
1DEPRECATED: If option -s is also given, a user can watch several last screens of output.
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2.4.2 Scrolling

Deprecated feature from the old times of simple 80x25 terminals. It is activated by option -s#,
where # is the buffer size in kiB.

Scrolling is called from the “get data” module by $ and a command. Then, prompt $ appears; it
is not repeated in next scroll commands. Scrolling is also available if an error occurs. Standard
screen of 25 rows and 80 columns is the default screen.

A list of scroll commands follows:

$? $h Get help

$u Scroll by one screen up

$number Number lines down (up if negative)

$- One line up

$t $g Go to the top of stored screens

$d $SPACE Scroll by one screen down

$b $G Go to the bottom of stored screens

$wfile Write whole buffer to file file

$ifile Include file as if typed in

$/string Find string

$/ Repeat last find

$Lnumber Set number of lines on screen

$Cnumber Set number of columns on screen. Lines longer than this limit are truncated; if
you see garbage on the screen, try to re-set the number of columns. WARNING: Some
screens have that bad habit of eating ends of lines longer than number of characters/line
which does not fit the scroll’s assumptions. If this is the case, set C to a large number.

$!number Set clear screen mode (try if the screen clears badly or slowly)

$Q Emergency quit (=exit(1))

$. $q Return control to the “get data” module or error handling

$exit Kill program (nothing saved!)
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2.4.3 Error handling

Error messages (Warnings, Errors and Disasters) are self-explanatory and contain also the
name of the source file in C and the line number. They are printed both to stderr and the file
defined by option -o (or stdout if not specified); the latter contains more information needed
for analyzing the source of the error.

When an Error occurs in the batch mode (option -o file), the program exits with a nonzero
return code. When a Warning occurs, message is printed and execution continues.

When either an Error or Warning occurs in the interactive mode, the user is prompted for an
appropriate action (by typing a letter followed by RETURN ).

(a)bort Abort (with a core dump if configured).

(e)xit Exit without a core dump (see above for the return code).

(c)ontinue (Warnings only) If you wish, it is safe to continue.

(i)gnore Ignore the Error and continue. Your risk – it is not guaranteed that it will not
crash later.

(s)croll Use scroll (see above). Active only if option -s has been specified.

2.4.4 Interrupts

You can interrupt energy minimization by pressing Ctrl-C ; if the course of minimization is

shown graphically, then ESC is preferred (in the X11 environment, ESC must be typed in
the graphical window).

In the interactive mode (no option -o) you will get back to “get data”.

In the batch mode (option -o file) just the current minimization is interrupted; type Ctrl-C
twice to break the program.

Under UNIX, the interrupt is caught immediately and you only have to wait until one
minimization step is finished. Under DOS, you must wait until the first I/O; for some extenders

and Windows no Ctrl-C is accepted at all.

2.5 Showing molecules graphically

blend generates output mol- and plb-filed for program show2

2.5.1 X11 Graphics

blend since V2.3 cannot be compiled without graphics support, but it runs without graphics
unless option -g is used.

2Its precessor was PlayBack written by Niels Jacobsen; then show in DOS/Turbo C followed. Later, moil
by C. Simmerling, University of Chicago, was ported via tomoil.
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If blend runs with option -gnumber, the course of minimization is shown each number-th
step. Pressing ESC interrupts the minimization and you can watch the molecule, rotate it,
etc. From the interactive input for minimization, graphics is called by entering gr=1; (bonds
only, fast), gr=2; (balls-and-sticks, slower), gr=3; (shaded balls, slow), or gr=4; (anaglyph –
blue-red glasses needed).

On-line help is obtained e.g. by pressing F1, context help on buttons by right-click.

Mouse:

drag left button Rotate molecule (or marked atoms in the ‘move’ mode) around x and y
axes

drag middle button Move molecule (or marked atoms in the ‘move’ mode) in x and y
directions

drag right button Rotate molecule (or marked atoms in the ‘move’ mode) around z axis

wheel Resize (rescale)

click left button Print info on the selected atom and mark the atom (e.g., for moving).
Second click on any atom gives atom-atom distance, third click gives the angle. Does not
work in the stereo (anaglyph) mode (gr=4).

click middle button Flood-mark, i.e. marks all atoms connected by bonds until any other
marking. See also hot key M . To mark a group, left-click first the nodal atom(s) (which
connects the group to the rest of the molecule), then middle-click any atom in the group.

click right button Unmarks the atom.

Hot keys NB: may be somehow out-of-date because the current GUI uses buttons, although
all of them are also accessible by hot key. Some less common functions are accessible by hot
keys only.

cursor arrows Move the molecule in x and y directions; if the ‘move’ function is active (see
yellow info bar in the bottom of the screen), the marked atoms are moved.

Home End Move the molecule in z direction, i.e., move the eye for central projection

x X y Y z Z Rotate molecule around given axis. Lowercase rotates in positive

direction (anticlockwise), uppercase in negative direction.

w Write (remember) molecule position (in fact, erases a list of translations and rotations)

W Undo all translations and rotations (but those made with parts of a molecule) W and

w are intended for editing a configuration which can be pasted back to cook. Example:

blend -o SYS A B C # prepare SYS.ble

cook SYS # simulate+write SYS.plb

molcfg A B C SYS # generates SYS.mol

blend -o SYS -n-1 -g -y0 -r4:-1 SYS # move molecules, then type W .
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NOTES: If original molecules A B C consist of non-connected parts, file SYS.def (variable
N[]) will have to be changed. Option -y0 to blend is essential. Option -n-1 is required
in the periodic b.c. These are not treated properly in blend so that -m0 or -mSMALL is
needed. Then, -tSMALL is recommended. BUG: Inefficient implementation, memory
consuming (problems with DOS version)

+ - Resize (rescale) the screen. Do not confuse with Home End !

* Double step size for the above functions

/ Halve step size for the above functions

r R Decrease/increase radii of atoms (draw styles 2 and 3 only)

1 Show bonds only (fastest)

2 Stick-and-ball model

3 Stick-and-ball model, spheres are shaded (slowest)

4 Anaglyph, bonds shown in blue and red for the right and left eye, respectively. To view
in 3D, red (left) and cyan (right) glasses are needed

g G Toggle among the above four graphics modes

i Label atoms by atom identifiers. For proteins taken from PDB database, this is something
like ALA12CA

t Label atoms by atom types

n Label atoms by atom numbers

q Label atoms by (partial) atomic charges

l Toggle labeling style

f Find atom. One of the above labeling styles must be set. For atom identifiers and types,
wildcards ? and * are accepted, however, * works only as the last character. For charges,
you must enter two numbers, charge value and inaccuracy. Thus, e.g., 0.3 0.05 will find
all charges in the range [0.25,0.35].

F Cancel finding, i.e., label ALL atoms again

d POLAR only: Show induced dipoles in eA

D POLAR only: Show induced dipoles in Debye

p POLAR only: Show polarizabilities in Å3

s POLAR only: Show saturations (in the saturated polarizability model only)

SPACE Cancel any labeling and redraw
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m Toggles the ‘move’ function. Atoms to be moved must have been marked: click the atom

centers by mouse or use the ‘find atom’ function (hotkey f ), alternatively use hot keys

M and u . The selected atoms are moved either by cursors and hot keys x X y Y

z Z or by the mouse. Rotations twist around the least clicked atom (=in green) as

the center. Type m again to leave the moving mode; hot keys like . ESC , cancel
moving. BUG: There is no ‘undo’.

L Mark all labeled atoms (see hot key f)

M Flood mark. Marks all bonded atoms connected by bonds until an already marked atom
is found. Groups can be readily marked. Equivalent to middle button click.

u Unmark all marked atoms

I Invert marking (swap marked ↔ not marked)

k Show keep status. Atoms kept while minimizing (cf. option -k, variable ‘keep’, and * in
the 1st column of the mol-file or in front of atom id in the che-file) are marked.

K Inverse to hot key k: Will keep the marked atoms while minimizing. In addition, “get

data” is forced after ESC .

A Average charges of marked atoms and unmark. Useful, e.g., for editing quantum-
mechanical charges: mark a group of equivalent atoms (e.g., all three hydrogens in a

-CH3 group), then press A .

b B Recolor bonds, cycles through 9 preferably light colors: yellow (default), white, gray,
dark gray, blue, green, cyan, red, magenta

c Recolor carbons, cycles through 3 colors: cyan (default), gray, dark gray.
BUG: Dump screen functions fail for dark gray.

# = Toggle none/ 1 Å / 0.1 Å grid (graphic modes 2 and 3 only).

’ Cycles through different styles of showing atom centers (graph modes 2,3 only) or turns
centers off.

e Erase/draw-over toggle. Useful while minimizing to see conformational changes. The
default is writing over with gradual shading off old positions, first value is ‘animation’
(old molecule is erased, new drawn), second value is writing over (without shading, fastest
option).

P Printscreen. A menu appears with further options:

p PPM (raw Portable PixMap, P6) dump of screen to file blend000.ppm; further

dump is blend001.ppm, etc. Colors are inverted for draw styles (graphic modes) 1
and 4, with the exception that the background (black on screen) is always white.
Bug: dark gray for carbons (see hotkey c) does not work well.

P PPM on black background.

e Color EPS on white.

E Color EPS on black.
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c Color PS on white.

C Color PS on black.

o Grey PS on white. Colors are translated using 0.3R+0.59G+0.11B.

O Grey PS on black.

NOTE: for fancy pictures, use show and ray.

E Calculate Energy, dipole moment, quadrupole moment, and geometry (according to the
.geo file). The quadrupole moment tensor Q is defined by

Q =
1

2

∑
i

qi(3
→
r i

→
r j − r2I) (2.8)

where I is the unit tensor. Tensor Q is then diagonalized.
NOTE: This form is common in chemistry. In physics, it is used without factor 1/2.
NOTE: the diagonalized tensor is not ordered and the molecule is not rotated into the
principal axes. To get also the non-diagonalized tensor, use option -v (verbose).

ESC Escape showing: if option -s has been specified, you may enter data and continue
interactively.

, Minimize again (conjugate gradients); if cg=0, then cg=1 is used. The same as ESC

and ; Enter

; As above with preceding steepest descent minimizing (with sd=cg, or sd=1 if cg=0)

’ Toggle center points (when atoms are shown). (The center points help clicking.)

Q Ctrl-Q Kill blend (nothing saved!)

F1 h ? Display help for hot keys

2.5.2 Playback output

Output in the playback-compatible format is generated by default. Option -pnumber means
that number% of the van der Waals radii of atoms will be used as sphere radii (the default is
70%).

Playback files with long trajectories are generated by cook and can be also read in by blend.

To get technical info on the format of the playback file, run

plbinfo +t

For more about available utilities, see Sect. 21.
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2.6 Energy minimization

Energy minimization (optimization) module implements two common methods: the greedy
(steepest descent) gradient method and the conjugate gradient method.

The steepest descent method simply moves by certain step in the direction of forces; the step
size increases in the case of success and decreases on failure. The conjugate gradient method is
the Polak-Ribiere version [2]; the algorithm to find a minimum along a line was optimized so
that in most cases only two evaluations of forces are required by one conjugate gradient step.

The steepest descent method is usually less efficient than the conjugate gradient method. It
is recommended for initial high energy configurations with atom overlaps. Once energy drops,
the conjugate gradients should be used.

The force field used by this minimization is the full force field including bond
vibrations which may be replaced by fixed bond-length constraints in simulations. Options
-a0 -b0 to contrain bond lengths in blend are not reliable.

The energy minimization is called by -m option. If the molecular configuration is to be generated
from random input, -r1 is used. There is no guarantee that the resulting configuration is
close to global energy minimum, a locked high-energy configuration may arise for complicated
molecules; then, button [ran] or hot key : will randomize the coordinates before another cycle
of optimization.

In the interactive mode, the user is after one minimization cycle prompted for entering new
data. (See Sect. 2.4.1, for the data format.) On-line help is obtained by entering

help=1;

2.7 Missing coordinates

The initial configuration can have missing atom coordinates. These appear as blank lines
in input text files or as values bigger than 9e5 in the binary input files. blend calculates
approximately the missing coordinates by using known positions of bonded atoms; if it has
not got enough information, a random position is generated. The configuration should be
energetically minimized, preferably with the atoms with known coordinates kept in place (see
option -k). Useful to fill missing hydrogens.



Chapter 3

Force field and the parameter file

Program blend first reads in the parameter file (or its binary image); while reading the file,
various checks (e.g., on duplicated entries) are made.

Then, blend analyses the structure of the molecule and finds both bonded and non-bonded
energy terms. It looks in the tables to assign the potential parameters. The rules that apply
as well as the format of the parameter file are described in this section.

3.1 Structure of the parameter file

The parameter file is recognized by extension .par. Its format is close to the format provided
by CHARMM. Its general structure is:

<options>

<table "atoms">

<table of site-site terms>

<table "bonds">

<table "angles">

<table "dihedrals">

<table "impropers">

<table "nbfixes"> [obsolete name: <table "NBFIX">]

<table "polaratoms"> [POLAR only]

<table "polarbonds"> [POLAR only]

<table "waters">

<table "backbone">

The exclamation mark ! denotes a comment.

Each table begins with a header (single keyword on a line) and ends by a blank line; hence,
blank lines are not allowed within tables (any lines without a header after a blank line are
omitted). Detailed explanation is given below.

3.2 Force field generation options

Example of table <options> is:

45
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all_dihedrals=0 ! one dihedral per central bond

ar_dih_limit=1 ! inclusion limit for dihedrals in aromatic rings

all_impropers=0 ! one improper per central atom

column_X=0 ! column X disabled (all atoms match = all X=1)

comb_rule=0 ! no sqrt combining rule for LJ energies

LJsigma=0 ! vdW radii used

factor14=0.5 ! multiplicative factor for 1-4 interactions

distance14=4 ! 1-4 interactions are really 1-4

ar_14_limit=0 ! 1-4 also for aromatic rings (use 3 for GROMOS)

polar=0 ! polarizability not included

; ! end of data set

The assignments may be in any order and must end by ; (see Sect. 2.4.1).

Description of options:

all dihedrals Number of dihedrals generated.

all dihedrals=1 All possible dihedrals are generated for each central bond. Thus,
ethane has 9 dihedrals. Used in newer versions of CHARMM. (This is the default if
all dihedrals is missing).

all dihedrals=0 Only one dihedral is generated for each central bond. Thus, ethane
has one dihedral. Required by old versions of CHARMM. The rules which dihedral
from generally several possibilities to select are mainly aesthetic. It is preferred that
the four atoms of the dihedral be part of a longer chain.

all dihedrals=-1 No dihedrals nor aromatics are generated.

all dihedrals=2,3 As all dihedrals=0,1 and dihedrals with multiple periodicities are
shifted (i.e.m absolute term K[0] is set) to give Emin=0.

ar dih limit Maximum aromaticity of dihedrals. The default is ar dih limit=-1 which
turns off special treatment of dihedrals in aromatic rings. See Sect. 3.8.7, for detailed
explanation.

ar 14 limit Controls 1–4 interactions in aromatic rings (see Sect. 3.8.7). Implemented with
distance14=4 only.

ar 14 limit=4 The 1–4 interactions of atoms that are all in an aromatic ring are
excluded (their nonbonded interactions are zero).

ar 14 limit=3 As above and also atoms attached to the aromatic ring do not interact
with the aromatic atoms (X does not interact with B but X and Y do interact).

A

/ \

B F-X

| |

C E-Y

\ /

D

ar 14 limit=2 As above and also atoms attached to the aromatic ring do not interact
themselves (X and Y do not interact). This is used for GROMOS96.
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ar 14 limit=0 No special treatment of aromatic atoms. A and D, X and B, and X and
Y in the above molecule interact by 1–4 interactions. This is the default.

all impropers all impropers=-1 No impropers are generated.

all impropers&1 = 1 All three impropers are generated for each central atom.

all impropers&1 = 0 Only one improper is generated for each central atom (default).
The rules which improper from three (or six if all impropers&2) possibilities to
select are mainly aesthetic—symmetry and bond length criteria are applied. See the
comments in the blendgen.c for details.

all impropers&2 = 2 Swapping of central and ending atom is allowed when generating
the impropers. Thus, one line C I J K is enough in the table of impropers for both
these cases:

I I

\ \

C--K K--C

/ /

J J

This is used for CHARMM21.

all impropers&2 = 0 Swapping of central and ending atom is not allowed. Thus, the
second improper in the above figure will not match C I J K: a separate term for K
I J C (or K J C I or K C I J) is required.

column X Enable/disable column X in the atom table in parset.par.

column X=0 Any atom can match wildcard atom X in the tables of dihedrals and
impropers (default).

column X=1 Only the atoms marked by 1 in column X in the table of atoms can match
X. Rarely used option.

comb rule The combining rule, See Sect. 3.4.2

distance14 Normal value for this option is 4. If, however, distance14=3 or distance14=5,
then everything written in this manual about 1–4 interaction (incl. factor14) applies for
1–3 or 1–5 interactions, respectively.

distance14=0 turns all 1–4 etc. exceptions. This can be set in the generated ble-file if
all molecules blended are without 1–4 to supress unnecessary 1–4 calculations and prints.
NB: cook checks the presence of 1–4, but does not turn the calculations automatically.

factor14 1–4 interactions are interactions for atoms connected by three bonds (1–2–3–4).
All Coulomb interactions for 1–4 atoms are multiplied by factor14. Lennard-Jones
interaction for which no explicit 1–4 terms or nbfixes are available are also multiplied
by factor14. The default is factor14=0.5.

LJsigma If LJsigma=1 then the RvdW column in the Lennard-Jones table is interpreted as
Lennard-Jones sigma and the sigvdW column in NBfix table also as Lennard-Jones sigma.
Affects reading the .par file only.
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polar polar=1 denotes a polarizable force field; POLAR version of blend must be used.
polar=0 is the nonpolarizable default; do not confuse with CHARMM old ‘polar’ force
field, it is NOT polarizable!
polar=2 no longer active (see table “shellrep” as a more flexible replacement)
polar=4 (in addition to 1, i.e., polar=5) (1+4) requests ADIM (induced dipole–induced
dipole terms within a molecule)

3.3 Table of atoms

The first table in the parameter file lists all atom types. Example:

atoms

!i name X A mass Z col description

1 H 0 0 1.00800 1 H Hydrogen bonding hydrogen (neutral group)

2 HC 0 0 1.00800 1 H Hydrogen bonding hydrogen (charged group)

...

10 CT 1 0 12.01100 6 C Aliphatic carbon (tetrahedral)

11 CH1E 1 0 13.01900 7 C Extended atom carbon with one hydrogen

...

Description of columns follows:

i Number of atom, extended atom or interaction site. The atom numbers must be positive.
They need not be ordered but must not duplicate.

name Symbolic name of atom, extended (united) atom or interaction site. It must be
composed of max. 4 UPPERCASE letters and digits (1st char must be letter). (Maybe
the length limit is 6, I am not sure now :-()

X 1 if the atom will match wildcard X in the tables of dihedral and improper torsions,
otherwise 0 (as for hydrogens). Active only if column X=1.

A 1 if the atom is used in aromatic rings.

mass Atomic mass in g/mol.

col (version 1.7 or higher) This is color type. Valid values are:

C Carbon (cyan or gray)

H Hydrogen (white or light gray)

O Oxygen (red)

N Nitrogen (blue)

S Sulphur (yellow)

M Metal (magenta)

X Halogen and other gases (green)

Z Atomic number. Used for determining the atomic charge centroid serving as the reference
point in dipole and quadrupole calculations (cf. hot key E ).

description Any text.
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3.4 Non-bonded forces

Non-bonded forces consist of the site–site and Coulomb forces. Typical site–site forces are the
Lennard-Jones forces, blend however supports any forces that are written in a separate module.
(sim/MODULE/sitesite[ch]). The following MODULEs are available:

lj Lennard-jones

u(r) = −ϵ
[(
σ

r

)12

− 2
(
σ

r

)6
]

(3.1)

where eps = EvdW = ϵ < 0, and sig = 2*RvdW = 21/6*LJsigma = van der Waals
diameter

wcalj WCA-cut-and-shifted Lennard-Jones potential

u(r) = −ϵ
[(
σ

r

)12

− 2
(
σ

r

)6

+ 1

]
, r < σ

= 0, r ≥ σ

In cook* data, LJcutoff = −21/6 and corr = 0 is needed.

buck Exp-6 (with #define REP12, Exp-6-12) potential:

urep(r) = Aij exp(−Bijr),

u(r) = urep(r)−
Cij

r6
+
Dij

r12

Several combining rules are available, incl. the Busing aka Kong combining rule (cf.
below).

busing Exp-6 (with #define REP12, Exp-6-12) potential in the Busing form (Busing
combining rule, equivalent to the Kong rule) is written as follows; note that parameter
Ci has a different combining rule than usual. Ri is a parameter with rough meaning of
molecule’s radous and ρi is the hardness width.

urep(r) = f(ρi + ρj) exp

(
Ri +Rj − r

ρi + ρj

)
,

u(r) = urep(r)−
CiCj

r6
+
DiDj

r12

where f = 0.05e2/Å2 (in CGS), equivalent to f = 1.15353878e-09 N = 69467.7288
J/mol/Å = 16.6031857 kcal/mol/Å (using CODATA 2019).
Note 1: nbfixes replace ρij = ρi + ρj and Rij = Ri +Rj by another values.
Note 2: Conversion from Buckingham urep(r) = A exp(−Br): ρ = 1/2B, R =
ρ ln(A/2fρ).

metal Rosato, Guillope, Legrand (RGL) potential, tight binding potential (2nd order), see
blend/data/metals.par

Parameters for the site–site potentials are calculated from the atom data in the parameter file
using combining rules. The values of partial charges needed to calculate the Coulomb forces are
not (and cannot be easily) given in the parameter file and must be specified with the molecule.

The following text assumes the Lennard-Jones potential as an example.
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3.4.1 Selection of site–site and Coulomb energy terms

The following rules, ordered from high to low priority, apply for selection of the site–site (e.g.,
Lennard-Jones) interactions between two atoms:

1. All non-bonded forces between directly bonded atoms (1–2) and between second neighbors
(1–3) are zero.

2. If the pair is separated by three bonds (1–4 interaction), energy terms are looked for in
the following order:

(a) 1–4 value from table nbfixes

(b) General value from table nbfixes with energy multiplied by factor14

(c) Atom values are taken from 1–4 columns of table Lennard-Jones and combined
according to combining rules. If no 1–4 value is available in table Lennard-Jones,
it is derived from the general value by multiplying the energy Emin by factor14.

3. Other interactions than 1–2, 1–3, 1–4 (both intra- and intermolecular): If the pair of
atoms is listed in table nbfixes, these values for the Lennard-Jones parameters are used,
otherwise table Lennard-Jones and the combining rules are applied.

The following rules apply for calculating the Coulomb interactions between two atoms:

1. All Coulomb forces between directly bonded atoms (1–2) and between second neighbors
(1–3) are zero.

2. Coulomb forces between atoms separated by three bonds (1–4 interaction) are multiplied
by factor14.

3. In all other cases (intra- and intermolecular), normal Coulomb forces are used.

3.4.2 Combining rules for the Lennard-Jones parameters

The combining rules depend on the site–site module used and you should read the comments
of the respective module (files sim/*/sitesite.[ch])

For the most usual Lennard-Jones module (MACSIMUS/sim/lj/sitesite[ch]), they are
controlled by variable comb rule (old still understood name sqrt rule):

1. comb rule & 1: 0=polarizability rule for Emin (see below), 1=geometric mean for Emin
(TIPS style)

2. comb rule & 2: 0=additive diameters (see below), 2=geometric mean for diameters
(TIPS style)

The Lorentz–Berthelot combining rule (comb rule=1) and geometric mean square rule
(comb rule=3) are typical for modern force fields. Older versions of CHARMM used the
‘polarizability rule’ (comb rule=0) based on the Kirkwood-Slater formula. The Lennard-Jones
interaction of two atoms i and j is then given by:
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1. If the values of both polarizabilities alpha in table Lennard-Jones are nonzero and neither
comb rule nor option -\ is specified:

u(rij) =
Aij

r12ij
− Bij

r6ij
(3.2)

where the combining rules for the coefficients are

Aij =
Bij

2
(RvdW,i +RvdW,j)

6 (3.3)

Bij =
αiαj

γi + γj
(3.4)

γi =
−α2

i

256Emin,iR6
vdW,i

(3.5)

2. If any of polarizabilities alpha is zero then comb rule=1 applies, i.e., geometric mean of
energy and arithmetic mean of diameters (Lorentz–Berthelot rule).

Bij = (−2Emin,i)
1/2(−2Emin,j)

1/2(RvdW,i +RvdW,j)
6 (3.6)

and Aij is as above.

NOTE: The original article [3] contains the effective number of outer shell electrons N instead
of Emin and a different formula. The conversion (see also alphatoe.c) is:

Emin = −K
4
α3/2N1/2(2RvdW)−6 (3.7)

where

K =
3

2
(4πϵ0me)

−1/2eh̄ = 362.337468 kcalmol−1Å
3/2

(3.8)

3.4.3 Table of site–site parameters

Lennard-Jones is the second table in the CHARMM and GROMOS parameter files. For other
site–site interactions, Lennard-Jones is replaced by the corresponding name, e.g., Busing,
Busing-12 – see file metamake.mmk in the blend directory. blend checks the table name not
to use a wrong force field. Example:

Lennard-Jones

! alpha Emin Rmin These columns used for

!name [A^3] (kcal/mol) (A) 1-4 interactions

H 0.044 -0.04983 0.800

HC 0.044 -0.04983 0.800

HA 0.100 -0.00447 1.468

CT 0.980 -0.09027 1.800

...

Description of columns follows:

name Symbolic name of atom, extended (united) atom or interaction site.
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alpha Polarizability α in Å3 to be used by some combining rules

Emin Minimum energy Emin of the Lennard-Jones (LJ) atom-atom potential in kcal/mol

RvdW Van der Waals radius RvdW (half of the atom-atom distance of the LJ potential
minimum), in Å. Note that if LJsigma is set than this column contains the Lennard-
Jones sigma instead!

1-4 interactions If another three columns are given, they contain alpha Emin Rmin for
1–4 interactions

For other site–site interactions, the Emin and RvdW columns may have different meaning
and more columns may be added; all columns but atom are repeated for 1–4 interactions.

The alpha column is used for combining rules and does not mean the polarizability in
the POLAR version. Often it is irrelevant.

3.4.4 Non-bonded fixes

Site–site forces between certain types of atoms cannot be accurately calculated using the
combining rules and must be listed separately in table nbfixes (old name NBFIX). If the 1–4
columns are missing, factor14 multiple of the normal value is taken for the 1–4 interactions.
WARNING: not true, also 1–4 must be present (to be fixed). If sigvdW=0 for the normal
interaction (not 1–4), the interaction is calculated from site–site (e.g, Lennard-Jones) tables
using the combining rule; thus, only 1–4 terms can be given separately in the nbfixes table
while other terms are regular. Example (from charmm22.par):

nbfixes

! names Emin sigvdW

! i j [kcal/mol] [A]

! OT OT -0.152073 3.5365 not needed

HT HT -0.04598 0.4490 -0.04598 0.4490

HT OT -0.08363 1.9927 -0.08363 1.9927

where sigvdW is twice the van der Waals radius. Note that if LJsigma is set than this column
contains the Lennard-Jones sigma instead!

WARNING (BUG/FEATURE): Emin (or other energy-like parameter, as A for Buckingham)
is in the same units as in the Lennard-Jones (or Buckingham) table, typically kcal/mol. If there
are additional parameters (as C and D for the Buckingham force field), they are in kcal/mol in
the Buckingham table. For cook* version V2.7v and older, they are in the internal units (K)
in the nbfixes table. It holds 1 kcal/mol = 503.219565 K (CODATA 2010). In version V2.8a
and newer, uniform units are used.

3.4.5 Table of polar atom parameters

This applies for the POLAR version only.

polaratoms

!atom alpha shell Esat arep

! A^3 e kcal/mol 1/e
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CL 2 -1000 0 0.22439024

I 4.5 -1000 0 0.37037037

atom Atom name

alpha Dipolar polarizability1 α in Å3

shell Number of outer shell electrons in e (normally negative because the electron shell is
negative). This value is copied to the output atoms table and used by the polar version
of cook as the charge of auxiliary site mimicking polarizability by a dipole.

Esat Saturation energy of the induced dipole. Esat=0 turns off the saturation (the same as
infinity saturation energy)

arep Parameter for the shell-core model (repulsive antipolarization), in e−1. Also denoted κ.

3.4.6 Table “shellrep” of repulsive counterparts

This applies for the POLAR&1 version only. The “repulsive antipolarization” or “shell-
core” term, equation (25.14), is not symmetric and and consists of a polarizable ion (usually
anion), i, and its “repulsive” counterpart (usually cation with none or small polarizability), j.
MACSIMUS uses this term if:

1. the atoms are more than distance14 bond apart (normally distance14=4 and 1–4
interactions cannot have the shell-core term),

2. the anion i has nonzero parameter arep alias κi,

3. the cation j is listed in table “shellrep” (one atom type per line).

Example:

shellrep

!atom

NA

LI

(In principle also anions (with κ > 0) may appear in this table. In this case there may be two
shell-core terms per a pair of atoms. This is not recommended.)

3.4.7 Table of axially polar bonds

This table describes the axial polarizability tensor of a pair of atoms connected by a bond. The
tensor is located at the first atom of the pair. alphazz is the polarizability in the direction of
the axis, alpha = alphaxx =alphayy.

polarbonds

! atom --> atom alpha alphazz Esat

! A^3 A^3 kcal/mol

H CL 1 2 300

1More precisely, the polarizability volume
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3.4.8 Table of 1–3 axially polar groups

The same as polarbonds but the second atom is a second connected neighbor (1–3). The middle
atom does not enter the formulas for induced dipoles and is used only in topological analysis
to assign the force field terms.

polarangles

! atoms alpha alphazz Esat

S C N 1.778 5.670 0

N C S 0.867 0.801 0

3.4.9 Water models

Supported water models are collected in the parameter file water.par. Other force fields may
contain water, too.

Table waters defines water model(s). The reason is that water molecule is recognized from
molecule topology and appropriate information is exported so that cook is able to use an
optimized code for water which speeds up the calculations. However, this applies only to
version without LINKCELL; i.e., makes sense for small systems only. Example:

waters

! must be in standard order recognized by cook

! name NS atom charge atom charge ...

TIP3P 3 HT .417 HT .417 OT -.834

name is the model name, NS number of sites. Atom types and partial charges follow.

More about waters in blend:

1. Command aw adds water sites in order H H O which is ‘standard’ and recognized by cook

to be rigid TIP3P water model (it only is recognized if blend -o SYSNAME is called with
-n-1 option!)

2. To treat old files with water added by aw with order of sites O H H, option -[3 should be
used (in addition to -n-1). (Precisely, -n-1 -[# causes #-atom clusters to be reordered
so that H go first.)

3. Then, in the result of blend -n-1, water line ‘species xxx.1’ should be edited to ‘species
TIP3P’ unless the appropriate table water is present.

4. If the models are rigid option -h should be given to blend to prepare the force field ble-file,
e.g.: blend -o spce -h SPCE.che Supported water models are collected in water.par.
Example:[4]

water SPC/E water model

parameter_set = sea

Hp0.4238 Hp0.4238

\ /

On.8476
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5. In CHARMM21, the TIP3p water oxygen is called OW, in CHARMM19 and CHARMM22
it is OT[5].

6. CAVEAT: Crystal water in PDB files is not (now) recognized. If blend has been called
with option -n-1, it is possible to edit the corresponding species command in the ble-file.

7. Che-file for the classical but now obsolete model by Stillinger et al., ST2.che, is:

ST2 water

parameter_set=water

! use blend -o st2 -h-1 ST2

! not real masses - not suitable for diffusivity etc.

! (real masses can be implemented by "lone dependants")

OH2--LPn.2357

/ | \

H.2357 | LPn.2357

H.2357

Only cook versions without LINKCELL support this model; however, virial pressure
reported is not correct – pressure by virtual volume change should be used. ERFCPLUS
(see ewald.c) must be at least 1.8 for ST2.

(To be moved) In versions of cook newer than Sep 96 there are special optimized functions
available for water–water interactions for standard rigid models. If option -x is given to
cook, using of these functions is turned off and general slower functions are used (ST2
is not available with -x). The CHARMM version of TIP3P and any modifications with
flexible angles and/or bonds are available with -x only.

3.4.10 Table defining the protein backbone types

This table contains three lines with atom types used respectively for N, Cα, and carbonyl C.
Example:

backbone

! types of atoms for the backbone

! peptide N types:

NH1 NH2 NH3 N

! Calpha types:

CT1 CT2 CP1

! carbonyl (>C=O) C types:

C CC CD

This information is used for:

• Writing a PDB file ‘from scratch’ (option -w10), e.g., when the source of molecule was a
che-file.

• Creating α helix conformation (option -r6).
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3.5 Non-bonded potential cutoff

If option -tnumber is specified, the non-bonded interactions (both Lennard-Jones and
Coulomb) within blend are calculated with cutoff. This speeds up the calculations.
NOTE: For cutoffs in cook, see see Sect. 11.4 and see Sect. 24 or see Sect. 15.3.

The cutoff is smooth between site–site distances C1 and C2 given by option -t (see Sect. 2.2.3).
The switch function which multiplies the potential u(r) is:

s(r) =


1, for r < C1

A[((r2 − C)2 −B)2 −D]2, for C1 < r < C2

0 for r > C2

(3.9)

where C = (C2
1 + C2

2)/2, B = (C2
2 − C2

1)/2 and constants A, D are given by the requirements
that s(C1) = 1, s(C2) = 0. Then, s′(C1) = s′(C2) = s′′(C1) = s′′(C2) = 0 and the cut-off
potential and the corresponding force are sufficiently smooth.

Note that this cutoff is used only within blend to increase performance for large molecules and
is not exported to cook, which uses a different cutoff algorithm.

Recommended values:

-t0 (Default) No cutoff (infinite range), recommended for molecules smaller than 500–1000
sites.

-t11 Minimum reasonable value for larger molecules. Typical cutoff is then 3 LJ sigma,
minimum (for larger atoms as triply bonded carbon) is 2.5 LJ sigma.

-t6 This is sufficient for filling missing hydrogens (in this case, all other atoms are kept fixed
and the most important forces are bond angles).

3.6 Bond potential

The bond potential is:
U(r) = K(r − r0)

2 (3.10)

where r is the bond length, r0 the equilibrium bond length, and K the force constant.

This potential is used for minimization in this program. In simulations by cook, bond-length
constraints may be used instead.

The format of the table of bonds is given by the example:

bonds

!atom atom K length

C C 450 1.38

C CH1E,CH2E,CH3E 405 1.52

Description of columns follows:

atom Atom type. Comma separated lists of atom types are allowed. Both atoms may be
lists, however, repeating terms are not allowed (e.g., C1,C2 C1,C2 100 1.5 is incorrect
because it expands into C1 C2 100 1.5 and C2 C1 100 1.5 which are equivalent.)
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K Force constant K in kcal mol−1Å−2.

length Equilibrium bond length r0 in Å.

An error condition is raised if blend cannot find a bond in the table.

3.7 Bond angle potential

The bond angle potential is

U(θ) = K(θ − θ0)
2 +KUrey−Bradley(|r1 − r3| − s)2 (3.11)

The algorithm to calculate the bond angle θ uses the scalar product of both bonds to calculate
cos θ. There is a substantial (mechanical) singularity for θ close to 0 or π; for the equilibrium
bond angle θ0 = 0 or θ0 = π it becomes a numerical singularity only and is fixed. In the
Urey-Bradley term, s is the 1–3 equilibrium constant

The table of bond angles in the parameter file looks like:

angles

!atom atom atom K angle [Kub s]

C C C 70 106.5

C C CH2E,CH3E 65 126.5

C C CR1E 70 122.5

S C N 40 180 100 2.879

Description of columns follows:

atom Symbolic atom name.

K Force constant K in kcal/mol.

angle Equilibrium angle θ0 in degrees.

Kub Force constant K in kcal/mol Å2. If not present, Kub=0.

angle Equilibrium 1–3 distance in Å.

An error condition is raised if blend cannot find an angle in the table.

For planar groups (like Fe in the heme):

B

|

A--X--C

|

D

where bond angles are 90◦, it is necessary to suppress generating angle terms for angles A-X-C
and B-X-D. This is not a problem if (approximate) coordinates are known: an angle larger than
150◦ is removed from the list of angle terms and a message is printed. If the coordinates are
not known, a warning message is printed; it may help to run blend again.
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3.8 Torsions

Torsions are force field terms defined by four atoms. Different types of torsions (dihedrals,
impropers, and also aromatics) differ by bonding of the atoms and by energy terms used but
not by the definition of the torsion angle.

3.8.1 Torsion angle

The torsion angle of four atoms I J K L (written in this order but not necessarily connected
by bonds in this order) is the oriented angle of plane IJK from plane JKL. The orientation is
defined as follows: let us watch the four atoms from the KJ direction so that atom K is closer
to the eye than atom J. Then the angle is the oriented angle of line segment LK from IK:

L L

. I \ angle I

. - \ <---- /

. - \ /

. - \ /

. - \ /

wiew ----> K ------- J K

If the four atoms are connected by bonds as in I–J–K–L , the torsion angle is called dihedral
(torsion) angle or proper torsion angle; it is zero for the cis conformation. If atom I is bonded
to J, K, and L, the torsion angle is called improper (torsion) angle, atom I is thus the central
atom.

3.8.2 Torsion potential

WARNING: The following text is probably imprecise. Note also that in the ble-file, ϕ0 is
not given. To be double checked: K is changed to −K for ϕ = 180◦ for odd n in blend.
Consequence: The torsion potential may be shifted by 2K with respect to the habit in other
force fields.

The torsion potential for four atoms I J K L with the torsion angle ϕ, equilibrium torsion angle
ϕ0, force constant K and periodicity n is:

U(ϕ) =

{
K(ϕ− ϕ0)

2 for n = 0
K[1 + cos(nϕ− ϕ0)] for n > 0

(3.12)

The torsion potential with n > 0 is sometimes called dihedral (torsion) potential. It is used to
describe hindered rotation as e.g. of the methyl groups in ethane.

EXCEPTION: n = 5 denotes a special cis- and trans-dihedrals (see Sect. 3.8.4).

CAVEATS: Only ϕ0=0◦ and 180◦ are supported. The case ϕ0=180◦ is replaced by the following
formula

U(ϕ) = | −K|+ (−K) cos(nϕ) (3.13)
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which is equivalent as soon asK > 0. If, however,K < 0, which is the case of some CHARMM22
terms, this formula for U(ϕ) gives shifted values of energy.

The torsion potential with n = 0 is sometimes called improper (torsion) potential. It is used
for three purposes:

1. With non-zero improper torsion angle it is used to define chirality of sp3 chiral atoms in
the extended atom representation (e.g., CH1E in aminoacids).

2. With zero improper torsion angle it is used to keep the sp2 hybridized bonds planar (e.g.,
carbon in ketones).

3. In some force fields the improper torsion with zero dihedral angle is used misleadingly
to keep 5- and 6- aromatic rings planar. The angle is in fact the dihedral angle of four
atoms around the ring; for instance in benzene there are six such aromatic dihedrals. The
problem is that the energy terms occur in the table of impropers and special hooks must
be used to find them. See Sect. 3.8.7.

Note that the output from blend uses slightly different formulas for the torsion potentials (see
Sect. 5.8).

3.8.3 Conversion of dihedrals

WARNING: Often ψ = π − ϕ is used as the dihedral angle (i.e., trans is zero).

The OPLS style formula for dihedrals is[6]

U(ϕ) = V0 +
1

2
[V1(1 + cos(ψ)) + V2(1− cos(2ψ)) + V3(1 + cos(3ψ))]. (3.14)

In case of ϕ0 = 0, K2 has opposite sign. Note also factor 1/2. Several such terms must be
written separately. For example:

!atom atom atom atom K[kcal/mol] n angle

CT CT CT CT 0.87 1 0

CT CT CT CT 0.0785 2 0

CT CT CT CT 0.1395 3 0

is equivalent to V1 = 1.74, V2 = −0.157, V3 = 0.279 (in kcal/mol). The MACSIMUS coefficients
are positive indicating positive energy of the cis conformation.

The Ryckaert–Bellemans formula for dihedrals (good for alkanes) is

U(ϕ) =
∑
n

Cn cos
n ψ, ψ = π − ϕ. (3.15)

The conversion is

C0 = V0 + V2 +
1

2
(V1 + V3)

C1 =
1

2
(3V3 − V1)

C2 = −V2
C3 = −2V3
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Conversion of Ryckaert–Bellemans to MACSIMUS is (with ϕ0 = 0, upto n = 6, but note that
K5 means something else so that always use K5 = 0):

K0 = C0 + C1 + C3 −
1

4
C4 + C5 −

3

8
C6

K1 = −C1 −
3

4
C3 −

5

8
C5

K2 =
1

2
C2 +

1

2
C4 +

15

32
C6

K3 = −1

4
C3 −

5

16
C5

K4 =
1

8
C4 +

3

16
C6

K5 = − 1

16
C5

K6 =
1

32
C6

and from MACSIMUS to Ryckaert–Bellemans:

C0 = K0 +K1 +K3 + 2K4 +K5

C1 = −K1 + 3K3 − 5K5

C2 = 2K2 − 8K4 + 18K6

C3 = −4K3 + 20K5

C4 = 8K4 − 48K6

C5 = −16K5

C6 = 32K6

In addition, constant positions of zero K0 and C0 are ignored (may be nonzero).

Scripts to convert Ryckaert–Bellemans to MACSIMUS and back (upto n = 3 only):

tabproc "-A-C*.75" B/2 -C/4 # C1 C2 C3 -> K1 K2 K3

tabproc "3*C-A" "2*B" "-4*C" # K1 K2 K3 -> C1 C2 C3

3.8.4 Cis and trans-dihedrals

Sometimes it is necessary to guarantee the cis and trans conformation around a bond. For
instance, CHARMM22 distinguishes both amide hydrogens in amides:

H O H HA^p.09 Ovn.55 HCISvp.32

| || / | | /

H--C--C--N HA^p.09-CT2n.27--CCp.55--NH2n.62

| \ | \

H H HA^p.09 HTRA^p.30

This is a problem of the initial configuration only—filling unknown hydrogens (heavy atoms
are known). To do it correctly, both hydrogen types are distinguished and special cis dihedral
terms are added:

Ucis(ϕ) = K cos2 ϕ for K cosϕ < 0 (3.16)
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Ucis(ϕ) = 0K for K cosϕ > 0 (3.17)

K < 0 (or K > 0 and ϕ0 = 180) denotes the trans dihedral.

The cis-dihedral energy term is 0 is the atoms are in the correct cis position and large if cis is
encountered.

These dihedrals are not exported (in a ble-file) to cook because they are not needed once the
bond is in the correct conformation.

3.8.5 Implementation of the torsion potential

There are two different algorithms to implement the torsion potential. For ϕ0 = 0 or ϕ0 = π
the potential is even in ϕ and it is sufficient to calculate cosϕ (which requires evaluation of
certain scalar product); both (ϕ − ϕ0)

2 and cos(nϕ − ϕ0) (the former is implemented for the
most usual case of ϕ0 = 0 only) is then expressed via cosϕ.

The improper torsion used for keeping chirality has n = 0 and arbitrary ϕ0 and in this case
the sign of ϕ is important; another (and more complicated) algorithm based on sinϕ has to be
used in this case.

3.8.6 Chirality

The chirality of an extended atom I (usually of type CH1E) with three bonds to atoms J, K,
L (listed in this order) is defined as follows: if the triple of vectors (IJ,IK,IL) has the same
arrangement as the standard right-hand orthogonal coordinate system x-y-z, the chirality is
+1. In other words, let us watch the molecule from that side of plane JKL so that we see J–K–L
arranged anti-clock-wise (in the positive direction). If then atom I lies below plane JKL, the
chirality is +1.

The sign of the equilibrium improper torsion angle of four atoms I J K L is the same as chirality
of atom I (see Sect. 3.8.1).

The chirality of a tetrahedral atom I (usually of type CT) with four bonds to atoms J, K, L,
M (listed with this order in column bound atoms) is defined in the same way. It is naturally
assumed that I and M are not separated by plane JKL. Not implemented yet.

Normally, blend finds the requested chiralities in .mol file or calculates them from z-coordinates
in .che file. If option -c is given, blend calculates chiralities from the 3D configuration. File
species.mol is then rewritten (the old one is named species.mox).

Chirality calculations and checking are performed in two stages: first, 3D configurations around
all three-bonded atoms are considered; second, tables of impropers are searched to find whether
the atom is really chiral. It may happen in the first stage that an atom is considered chiral just
because the planar configuration was distorted and this is fixed in the second stage.

Since the chirality depends on atom numbering, it is not suitable to human hackers. Thus,
we define alphabetical chirality as the chirality with respect to alphabetical order of the three
neighbors of the chiral atom, and mass chirality as the chirality with respect to ordering by
atomic masses. All three chiralities are printed to output. The alphabetical chirality of chiral
alpha CH1E atom in the main chain of naturally occurring aminoacids (but glycine) is +1 if
the atoms are named as in CHARMM and united atom representation is adopted for aliphatic
hydrogens. Our simple algorithm does not solve cases when some of the three neighbors of the
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chiral atom are the same (the atom may still be chiral); in these cases, ? is printed.

3.8.7 Dihedrals in aromatic rings

This section applies only to force fields using impropers (=terms listed in the table of impropers)
also for aromatic dihedrals. Normally ar dih limit=-1 and then all energy terms listed in table
dihedrals apply to atom chains I-J-K-L (including case n=0 for aromatic dihedrals) while all
energy terms listed in table impropers are for atoms J,K,L bonded to I.

Let us define aromaticity of the dihedral angle I–J–K–L as the number of atoms that lie in
the same aromatic ring, provided that bond J–K lies in the same aromatic ring too. For
instance, benzene (full-atom model) has 6 dihedrals with aromaticity=4, 12 dihedrals with
aromaticity=3, and 6 dihedrals with aromaticity=2.

Specifying ar dih limit>0 has two effects:

1. Aromatic dihedrals are looked for in the table of impropers.

2. Variable ar dih limit controls the way in which dihedrals are assigned to bonds that are
parts of aromatic rings. ar dih limit is the maximum aromaticity allowed for dihedrals
to be included. ar dih limit must be in the range 1–4.
ar dih limit=1 means no dihedrals with central bond in aromatic ring; normally, the
aromatic dihedrals should be enough to keep aromatic rings planar.
ar dih limit=4 means that aromaticity is irrelevant when counting dihedrals—all are
included.
ar dih limit=3 means that if all atoms I, J, K, L lie in the same aromatic ring, they
are not included in dihedrals (they have already been included in aromatic dihedrals). If,
however, at least one of atoms I and L points out of the aromatic ring, the dihedral is
included.

A 5-ring is called aromatic if it contains at least 3 aromatic atoms. A 6-ring is called aromatic if
it contains at least 4 aromatic atoms. This cumbersome definition is necessary in older versions
of CHARMM because non-aromatic (general) atom types are used sometimes in aromatic rings.
In new versions of CHARMM, all atoms in aromatic rings are of aromatic type so that a simpler
criterion could be used.

3.8.8 Tables of dihedrals and impropers

Example (from charmm.par):

dihedrals

!atom atom atom atom K n angle

CH1E C N CH1E 10 2 180

CH2E C N CH1E 10 2 180

... lines deleted ...

X S S X 4 2 0
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impropers

! Improper torsions. See dihedrals above.

!atom atom atom atom K n angle

C CR1E C CH2E 90 0 0

C CR1E CR1E CH2E 90 0 0

... lines deleted ...

NR X X CT 25 0 0

cisdihedrals

O CC NH2 HCIS 1000 5 0.00 ! cis

O CC NH2 HTRA 1000 5 180.00 ! trans

Description of columns follows:

atom Symbolic atom name

K Force constant K in kcal/mol.

n Periodicity number. Note that n = 5 is exceptional—see above.

angle Equilibrium angle ϕ0 in degrees.

3.8.9 Atom matching rules for finding the energy terms

If column X=1 has been specified, wildcard atom X in the tables of dihedrals and impropers
matches any atom but hydrogen (to be more precise, it matches all atoms with 1 in column X

in the atom table); if column X=0 has been specified, X can match any atom.

If there are several matches possible, the match with less wildcards is selected; if this selection
is not unique, an error message is printed.

If the dihedral or improper torsion is not found in the table, it is assumed that it is zero; if -v
has been specified, a message is printed.

Example: In the improper torsion table [7], there are the following two entries:

!atom atom atom atom K n angle

C OC OC CH2E 100.0 0 0.0

C X X CH2E 60.0 0 0.0

Then, parameters for C-OC-OC-CH2E will be taken from the first line, while the parameters for
C-C-OC-CH2E from the second line.

If there are several periodicities in the table of dihedrals, they are summed; note that the entries
may have different numbers of wildcards. It is not allowed to combine the improper potential
(n = 0) with the dihedral potential (n > 0).

Example:

!atom atom atom atom K n angle

CUA1 CUA1 CUA3 CUA3 0.43 1 0.0

X CUA1 CUA3 X 0.76 2 180.0

In this case, both terms are summed for CUA1-CUA1-CUA3-CUA3.



Chapter 4

Description of molecules

The structure of molecules is described by listing all atoms and bonds. In addition, information
to determine conformation of chiral atoms and partial charges are given.

blend supports two formats: The molecular format is intended for interaction with other
programs. The chemical format allows simple molecules to be easily build up using a text
editor only.

4.1 Molecular file (mol-file) format

This file with extension .mol describes the topology of a molecule and contains also partial
charges. Program blend checks consistency of bonds, removes possible multiple bonds, and
calculates the number of clusters. Thus, you can treat e.g. fulerene with an atom inside the
cage or a water dimer as one “molecule” consisting of more clusters.

alanine - aliphatic hydrogens in united atom representation

! total charge = 0.00

parameter_set = charmm21

zero_energy = -1

number_of_atoms = 9

atoms

! i Crad/atom-id a-type charge chir nb bound_atoms

0 W095/H1 HC 0.3500 0 1 2

1 W095/H2 HC 0.3500 0 1 2

2 B130/N NT -0.3000 0 4 1 3 0 4

3 W095/H3 HC 0.3500 0 1 2

4 C139/CA CH1E 0.2500 -1 3 5 2 6

5 C139/CB CH3E 0.0000 0 1 4

6 C125/C C 0.1400 0 3 7 4 8

7 R126/O1 OC -0.5700 0 1 6

8 R126/O2 OC -0.5700 0 1 6

The first non-comment (i.e., not beginning with !) line is the header.

64
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Optional parameter set defines the name of the parameter file without extension. Extension
.bin is added, and if the binary file does not exist, extension .par is tried. The default is
charmm21.

Optional zero energy is the energy (in kcal/mol), or energy offset, which is to be added to the
intramolecular energy. It is typically a result of ‘chemical reactions’ – see group replacement
as defined in .rea. Missing zero energy means zero.

number of atoms refers to the number of atoms in the following table.

atoms introduces the table of atoms. The table column are:

i Order number.

Crad/atom-id Crad: optional color (one of RWCBYMGO for Red, White, Cyan(gray), Blue,
Yellow, Magenta, Green, Orange) and radius in 0.01 Å. Must be 4 characters followed by
a slash. If not present, either a gol-file is used, or a guess is made from atom type.

atom-id: Names that the user can give to the atoms. They have no special meaning for
program blend but that they can label atoms in a picture of molecule.

a-type Atom (extended-atom, interaction site) types.

charge (Partial) charge of atom in e.

chir Atom chirality. See Sect. 3.8.6.

nbonds Number of chemical bonds.

bound atoms Indices of atoms bound by a chemical bond.

If there is an asterisk * in the 1st column of the atoms table, the corresponding atom is marked
and can be kept fixed during minimization. See option -k for details. Example:

! i a-id a-type charge chir nbonds bound_atoms

* 4 CA CH1E 0.2500 -1 3 5 2 6

* 5 CB CH3E 0.0000 0 1 4

* 6 C C 0.1400 0 3 7 4 8

4.2 Chemical file format

The chemical file format is again best seen from an example. The extension of the file must be
.che.
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dipeptide

parameter_set=charmm21

HC^.35

|

HCv.35-NTn.3:nter-HCv.35

|

CH1Ev.25---CH3E ! ALA

|

C.55-Ovn.55 H.3

| |

NPn.35--------+-Hv.25

| |

| N5Rn.4==C5RE.3

| / |

CH1Ev.1-CH2E-C5R.1 | ! HIS

| \ |

C.14:cter C5RE.1==N5Rn.4

/ \

OC^n.57 OCvn.57

The first two lines have the same meaning as for the mol-file. They must not be separated by
any blank line.

The symbolic atom names must be in uppercase and may contain digits. Numbers mean partial
charges in electrons, negative charge is marked by n or m (because - denotes a bond), positive
optionally (to distinguish the charge from a digit as a part of identifier) by p (e.g., MNAp1). The
circumflex ^ means that the atom goes 1 Å up the plane, v that it goes down; you can use
several v or ^. The field after a colon means optional identifier (column a-id in the mol-file);
if not present, the identifier is derived from atom number and type (e.g., 0-HC).

The bonds cannot bend, they may, however, cross; character + should be used for the crossing
(x is no longer allowed since V 2.1h: use + for crossing of bonds of any direction). Additional
bonds can be added by statement #connect. Example:

...

---S.2:cys

#connect 33-S 44-S 125-S cys

There may be any number of #connect statements, but the total number of id’s must be even
– the id’s are interpreted in pairs. No wildcards are allowed.

Unless changed by option -r, the initial configuration is derived from the layout of atoms on
the paper and the z-coordinates given by ^ and v used; this is not a good initial configuration,
it is, however, sufficient to determine chirality for each chiral atom. (There are two chiral
CH1E’s in the above example; try to check that the absolute chiralities of alpha-carbons in the
above dipeptide are the same as in alanine given is above – see Sect. 4.1). Energy minimization
must follow. Normally one line separation is 1 Å and the character pitch is 0.4 Å. This can be
rescaled by option -enumber (in %). The z-coordinates are not rescaled.

Statement #include file can be used in che-files: file should contain (a part of) molecule
without header, just as included physically to the place of #include statement. The BUG:
#include statements cannot be nested.
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An asterisk * in front of atom type is exported to a mol-file and means that the atom will be
kept in place while minimization. Examples:

blendbus -g5 -r2 -e200 AlCl3SCN.che

parameter_set=busing

*ALp3

CLn1:Cl1 CLn1:Cl2

CLn1:Cl3

LIp1

#include "SCN.inc"

To create files in the chemical format, it is recommended to use a text editor that supports
rectangular blocks. As complicated molecules as adamantane C10H16 or fulerene C60 with an
atom in the cavity have been easily prepared using e.g. QEDIT.

If the molecule is given by this chemical format, the corresponding species.mol file is generated
(the old one is backed up as species.mox).



Chapter 5

Output format (ble-file)

The output file contains full description of the mixture of molecules blend-ed together. It
serves as input for MD programs cook*. In addition, it contains a lot of comments (marked by
!) for humans. Alternatively, it may be created by hand to avoid blend stage; this is necessary
for models which are not implemented in blend. The structure of a ble-file is:

<global data>

<table on site-types>

<table ‘nbfixes’ of non-bonded fixes>

<header of molecule 1>

<data of molecule 1>

<table ‘sites’ of molecule 1>

<table ‘bonds’ of molecule 1>

<table ‘angles’ of molecule 1>

<table ‘dihedrals’ of molecule 1>

<table ‘impropers’ of molecule 1>

<table ‘aromatics’ of molecule 1>

<header of molecule 2>

<data of molecule 2>

etc.

A user is encouraged to edit this file, like adding partial charges, deleting unnecessary potential
terms, etc.

5.1 Global parameters

Global data are in the “get data” format (see Sect. 2.4.1). Example:

nspec=2 nsites=8 nnbfixes=3 factor14=0.500000 ;

where

68
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distance14 Setting distance14=0 means that any 1–4 terms are missing in the site–site and
nbfixes tables of the ble-file. Note that the value of distance14 is not used by cook at all
(except for distance14=0) – the topological analysis is performed by blend and coded in
particular species as starred neighbor number; with distance14=0, no such term is allowed
(cook* will report an error).

eunit Energy unit used in the ble-file, expressed in Kelvins (kBK). The output of blend is in
kcal/mol, which means that eunit=kcal/Eunit=503.2195334987658; this is the default.
If you construct a ble-file by yourself, you may use (based on 05/2019 SI definitions, see
sim/units.h)

eunit=1 For energies/kB in K

eunit=1000/8.31446261815324 For energy in kJ/mol

eunit=1.380649e-23 For energy in J

factor14 polar comb rule See Sect. 3.2.

nnbfixes Number of non-bonded fixes.

nparms Number of additional parameters (over two basic denoting atom size and energy)
for the site–site interactions. For Lennard-Jones nparms=0. It must match SS PARMS

in header file macsimus/sim/*/sitesite.h, where * denotes the respoective potential
version.

nsites Total number of types of interaction sites contained in all molecules.

nspec Total number of molecules blended together. (The name ‘nspec’ originates from
‘Number of (molecular) SPECies’. Though here ‘number of molecules’ just means ‘number
of species’, in molecular dynamics there are many molecules of the same species.)

polar Polarizability version, see also file blend/metamake.mmk. Flags can be summed in the
polarizable versions.

polar=0 Standard non-polarizable version

polar&1 Basic dipolar polarizability support (incl. axial and saturated)

polar&2 : No longer used, the functionality can be mimicked by table shellrep

polar&4 : Also intramolecular 1-2 and 1-3 induced dipole–induced dipole terms are
included. Note that then the molecular polarizability is not a sum of atomic
polarizabilities!

The following additional variables are not present in the blend output, but are read and
understood by cook:

a,b,c,x,y,z Auxiliary real (double) variables.

i,j,k,n Auxiliary integer variables.
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5.2 Site types

This table lists all site types in all molecules processed. It’s name depends on the site–site
module linked; Lennard-Jones is most usual (subdirectory macsimus/sim/lj), other options
are Busing (macsimus/sim/bus), are Buckingham (macsimus/sim/buck), etc. (The column
headers are similar as in the parameter file. The number of columns depends on nparms (which
should match SS PARMS in macsimus/sim/*/sitesite.h). Example for a typical protein force
field is (nparms=0, polar=0):

Lennard-Jones

!i atom mass alpha Emin RvdW alpha[1-4] Emin[1-4] RvdW[1-4]

2 HC 1.0080 0.044 -0.0498 0.6000 0.0440 -0.02490 0.6000

4 HT 1.0080 0.044 -0.0498 0.9200 0.0440 -0.02490 0.9200

11 CH1E 13.0190 1.350 -0.0486 2.3650 1.3500 -0.10000 1.8100

13 CH3E 15.0350 2.170 -0.1811 2.1650 2.1700 -0.10000 1.7600

14 C 12.0110 1.650 -0.1410 1.8700 1.6500 -0.07050 1.8700

36 NT 14.0067 1.100 -0.0900 1.8300 1.1000 -0.10000 1.6300

43 OC 15.9994 2.140 -0.1591 1.5600 2.1400 -0.07955 1.5600

46 OW 15.9994 0.840 -0.1521 1.7680 0.8400 -0.07605 1.7680

The units are kcal/mol for Emin (if not changed by variable eunit), Å for RvdW, and Å3 for
alpha.

Site–site force fields with nparms>0 have the columns atom mass alpha Emin RvdW parm...parm

alpha[1-4] Emin[1-4] RvdW[1-4] parm[1-4]...parm[14]. GAUSSIANCHARGES version
has the Gaussian width σ as the last additionalparameter parm[nparms-1].

Since V2.8a, cook* accepts missing 1-4 terms if they are identical to the normal non-bonded
ones. If more parameters follow (for POLAR), one = can replace all nparms+2 1-4 terms.

For POLAR force fields (polar>0), four columns are appended:

alphapol Polarizability in Å3 to be used by polar version of cook. Do not confuse with
alpha which serves for the Kirkwood-Slater combining rule; nevertheless, if this column
is missing, alpha is used.

shell Auxiliary charge (‘number of outer shell electrons’) for replacing a point dipole by a
finite-size dipole (in cook). See variable shell in the parameter file and option -@). If
this column is missing, −1000 is used.

Esat Saturation energy, in the units defined by eunit, kcal/mol by default. For the model
of ‘saturated polarizability’ only (see Sect. 25).

arep Parameter for the shell-core model (repulsive antipolarization), in e−1. Also denoted κ.

5.3 Non-bonded fixes

This table has exactly the same format as table nbfixes in the parameter file. As it contains
only non-bonded fixes applying to atoms in the blended molecules, it is usually shorter or even
empty. See Sect. 3.4.4.
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Since V2.8a, cook* accepts missing 1-4 terms if they are identical to the normal non-bonded
ones.

5.4 Header of molecule

The header consists of keyword species followed by a name that is derived from the name of
the molecular file (species.mol or species.che). At the same time, a summary of energy terms
and a minimization protocol is printed as comments. Example:

!!!!!!!!!!!!!!

species valine

!!!!!!!!!!!!!!

! valine

! mass=117.1485 g/mol

! potential energy summary (in kcal/mol)

! dihedrals: 2.818

! Lennard-Jones: -0.085 bonds: 9197.366 impropers: 21.795

! Coulomb: -33.921 angles: 198.001 aromatics: 0.000

! sum nonbonded: -34.006 sum bonded: 9419.979 total U: 9385.973

! 27 steps of steepest descent:

! 5 : U=9095.6037 h=5.89786e-06

... lines deleted ...

! 95 : U=-100.85253 h=0.000915236

! 100 : U=-100.86482 h=0.000864632

! U0=-100.865

! potential energy summary (in kcal/mol)

! dihedrals: 1.245

! Lennard-Jones: 4.013 bonds: 0.358 impropers: 0.152

! Coulomb: -113.163 angles: 6.530 aromatics: 0.000

! sum nonbonded: -109.150 sum bonded: 8.285 total U: -100.865

Here, U is the potential energy in kcal/mol and h the step size used in minimization.

5.5 One species (molecule) data

The molecular data are in the “get data” format (see Sect. 2.4.1). Example:

i=0 N=5

ns=11 nc=10 nangles=15 ndihedrals=14 nimpropers=3 naromatics=0

ndependants=0;

! 0 dihedrals, 0 impropers, and 0 aromatics zero or not found

! 25 pairs excluded (1-2 and 1-3) 14 interactions 1-4 0 non-bond fixes

! total charge = 0.00
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Where

i Species order number

N Number of molecules of the species. The value of option -n is thus passed to MD programs;
it has no meaning to blend because blend is able to process only one molecule of each
species.

config config=1 denotes that table config will be present containing a configuration of
all species. This is generated for blend -n-1, i.e., when one input molecule is split into
clusters (molecules) and these are treated separately by cook. The configuration initializer
of cook then reads this table and ignores the coordinates of table sites.

ns Number of interaction sites (atoms) in the molecule

nc Number of constraints. Unless -h has been specified, this is the number of bonds.

nangles Number of bond angles (those that are not constrained, see option -h).

ndihedrals Number of dihedral torsions; note that terms with different positive periodicities
for the same dihedral angle are merged.

nimpropers Number of improper torsions (does not include aromatics)

naromatics Number of ‘aromatic dihedrals’ used to keep aromatic rings planar

ndependants Number of ‘dependants’. See Sect. 5.10.

naxials POLAR only: number of atom pairs defining the axial polarizability tensor

Details on some tables follow

5.6 Table of sites

The table of sites consists of keyword sites followed by ns lines. An example follows:

sites

!i atom charge x y z # excluded *1-4 chir:nam

0 HC 0.3500 -0.5158 2.4968 0.7781 0

1 HC 0.3500 -1.7505 2.0381 -0.2218 1 0

2 NT -0.3000 -0.7538 2.3600 -0.2184 2 0 1

3 HC 0.3500 -0.5890 3.1709 -0.8336 3 0 1 2

4 CH3E 0.0000 2.1067 2.2152 -0.1489 1 *2

5 CH1E 0.2500 -0.1139 1.1323 -0.6603 5 0 1 2 3 4 +++

6 CH1E 0.0000 1.2201 0.9911 0.0936 6 *0 *1 2 *3 4 5 +??

7 CH3E 0.0000 1.9662 -0.2889 -0.2953 4 *2 4 5 6

8 C 0.1400 -1.1452 0.1554 -0.1754 8 *0 *1 2 *3 *4 5 6 *7

9 OC -0.5700 -2.1028 0.6459 0.4269 4 *2 5 *6 8

10 OC -0.5700 -1.0187 -1.0326 -0.4039 5 *2 5 *6 8 9

The columns are:
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i Order number. It is used in other tables to refer to the site.

atom Atom type

charge Partial charge in electrons

x y x Coordinates of the site

# Number of exceptional site–site terms

excluded *1-4 List of exceptional site–site terms. Those marked by * are 1–4 interactions,
those without * are exclusions (1–2 and 1–3 pairs that do not interact by bonded forces).
Only sites with indexes lower than i are listed.

chir:nam This field appears for chiral atoms only. The first character is the chirality with
respect to atom numbering (= the chirality that appears in .mol file), the second character
is the alphabetical chirality, the third character is the mass chirality. This field is not
used by MD programs. See Sect. 3.8.6, for details.

5.7 Tables of bonds and bond angles

Tables of bonds and angles have a similar format. Shortened examples follow:

bonds

!i atom i atom K[kcal/mol/A^2] r[A] calc. Upot

10 OC 8 C 455.00 1.2300 1.2187 0.058

9 OC 8 C 455.00 1.2300 1.2349 0.011

... lines deleted ...

angles

!i atom i atom i atom K[kcal/mol] angle[deg] calc. Upot [Kub s]

5 CH1E 8 C 10 OC 85.00 118.5000 120.15 0.071

9 OC 8 C 10 OC 85.00 123.0000 123.72 0.013

... lines deleted ...

i atom Refers to the notation of the table of sites

K The force constant. See Sect. 3.

r Equilibrium bond length

angle Equilibrium bond angle

calc. Calculated values of bond length or angle

Upot The energy of bond or angle potential in kcal/mol

If the angle potential contains the Urey-Bradley term, the force constant Kub and equilibrium
length s appear as extra two columns in table angles.
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5.8 Tables of dihedrals, impropers and aromatics

Tables of dihedrals, impropers and aromatics have the same format. Shortened examples follow
(note that the table of aromatics is empty in this example):

dihedrals

!i atom i atom i atom i atom nX n K|K[0] calc.angle Upot angle|K[1]

10 OC 8 C 5 CH1E 2 NT 2 3 -0.100 171.74 0.191

10 OC 8 C 5 CH1E 6 CH1E 2 3 -0.100 54.88 0.196

... lines deleted ...

impropers

!i atom i atom i atom i atom nX n K|K[0] calc.angle Upot angle|K[1]

8 C 9 OC 10 OC 5 CH1E 0 0 100.000 0.72 0.016 -0.0000

6 CH1E 7 CH3E 4 CH3E 5 CH1E 2 0 55.000 -32.57 0.122 -35.2644

... lines deleted ...

aromatics

!i atom i atom i atom i atom nX n K|K[0] calc.angle Upot angle|K[1]

Where:

i atom Refers to the notation of the table of sites

nX Number of matches of wildcard atoms X while looking for this torsion in the tables
of dihedrals or impropers. For negative n (see below), the maximum number over all
periodicities.

n The periodicity number. For nonzero n the potential form differs from that in the
parameter file (see Sect. 3.8.2).

n=0

U(ϕ) = K(ϕ− ϕ0)
2 (5.1)

n>0

U(ϕ) = |K|+K cos(nϕ) (5.2)

n<0 Several dihedrals with different periodicities have been summed and the potential
is

U(ϕ) =
|n|∑
i=0

Ki cos
i ϕ (5.3)

K|K[0] If n ≥ 0 then the force constant K in kcal/mol, if n < 0 then the value of K0.

calc.angle The calculated torsion angle

Upot The potential energy in kcal/mol

angle|K[1] n=0 Equilibrium improper torsion angle

n>0 The field is empty

n<0 The values of K1, K2, ... K|n|
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5.9 Table of axial polarizability tensors

Applies to POLAR version only.

axials

!i atom-->i atom arep alpha alphazz Esat

3 S 4 C 0.26998 1.7781 5.6704 0.000

5 N 4 C 0.22019 0.8672 0.8005 0.000

alphazz is polarizability in the direction of the pair of atoms, alpha in both perpendicular
directions. For other parameters see Sect. 5.2.

5.10 Dependants

5.10.1 Linear combination dependants

A dependant is a massless site which is a linear combination of two, three or four other sites: a
typical example is site M in the TIP4P water model. blend automatically generates dependants
in the following circumstances (D=massless dependant, X=any atom which may be bonded to
more atoms):

linear patterns: X-D-X X-X-D

X-D-X X-X-X

planar patterns: | | (as e.g. TIP4P water)

X D

X-D-X X-X-X

3D patterns: / \ / \

X X D X

blend itself does not use dependant for anything, these are only exported in the ble-file to be
used by cook.

Caveats:

1. It is necessary to mark angles not containing the massless sites as constrainable by option
-h or -h-1 given to blend.

2. Badly determined multiple dependants are not checked. (?? - probably they are in newer
versions)

3. For blend, it is generally necessary to add an improper or other terms to guarantee
planarity/linearity

Field err= in the table of dependants (in ble-file) contains the deviation from linearity/planarity
and should be small (< 1e-12 for free simple molecules as e.g. TIP4P water, < 1e-2 if the group
is a part of more complex molecule). For 3D patterns, err should be always very small (<
1e-12).

NOTES/BUGS/CAVEATS:
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1. Dependants do not work well in certain ‘nonstandard’ cases like Q-S-Q---C---Q-N-Q,
where Q is supposed to be a dependant.

Bonds S-C and C-N are missing and should be added by hand from a ble-file generated
with the masses of dependants nonzero (may be small; it is necessary to use parallelly
this ‘mass’ version of the force field also if vibrations are calculated).

2. Any site dependent on another dependant is now removed (see #define REMOVEN-
ESTED in blenddep.c).

Example:

dependants

!i atom # i atom weight...

2 O5 4 0 H5 0.2041 4 E5 0.2959 3 E5 0.2959 1 H5 0.2041 err=5e-13

This table means that atom O5 (here of TIP5P water) is a linear combination of two H5 sites
and two E5 sites, with weights given (their sum is 1).

blend uses a MC algorithm to determine the weights, the error is printed as err=.

It is also possible to specify dependants in a special file of extension .dep. This cannot be
combined with automatic selection of massless dependent sites! Example: species.dep:

! this is comment

7 8 9 : 11 12 13 14 ! sites 7,8,9 depend on 11,12,13,14 (using site numbers)

H1 : CA1 CA2 CA3 ! site H1 depends on CA1,CA2,CA3 (using atom ID)

Another example – rigid molecule of benzene. The che-file benzene.che is

benzene

HA.1:b1 HA.1 HA.1:b2

| | |

C6Rn.1--C6Rn.1--C6Rn.1

| |

C6Rn.1--C6Rn.1--C6Rn.1

| | |

HA.1 HA.1:b3 HA.1

and using file benzene.dep

* : b1 b2 b3

all sites but b1,b2,b3 are dependent on b1,b2,b3. cook then uses constrained dynamics of
triangle b1,b2,b3 and all forces acting on other atoms are propagated to b1,b2,b3. See also
utility makedep.c.

5.10.2 Lone (out-of-plane) dependants

cook now supports out-of-plane (“lone”, from lone electron pair) dependants, based on 3 par-
ents, see Sect. 11.3.5. The extended format of table “dependants” is below. Note that this must
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be prepared ‘by hand’ because blend is not able to generate these dependants automatically.
dependants

M 3 M6NE 3 2 O6NE 0.60071493 1 H6NE 0.19964254 5 H6NE 0.19964254 e

L 0 L6NE 3 2 O6NE 1.86320976 1 H6NE -.43160488 5 H6NE -.43160488 -1.73602206 0.86801103

0.86801103 0.00000000 0.63064693 -0.63064693 -0.73718021 0.00000000 0.63988055 0.63988055

0.00000000 0.46490043 -0.63988055 e

L 4 L6NE 3 2 O6NE 1.86320976 1 H6NE -.43160488 5 H6NE -.43160488 -1.73602206 0.86801103

0.86801103 0.00000000 0.63064693 -0.63064693 0.73718021 0.00000000 -0.63988055 -0.63988055

0.00000000 -0.46490043 0.63988055 e

R 0 L5 3 2 O5 1.00000000 1 H5 -0.00000000 4 H5 -0.00000000 0.525 e

The “M” lines are the simple (old), “Middle” or linear, dependants
The “L” lines (“Lone”) have another 13 numbers appended after the list of three parents and
weights (See Sect. 11.3.5, for the notation):
x1, x2, x3
y1, y2, y3
wz

tx,1, tx,2, tx,3
ty,1, ty,2, ty,3
Then, letter ’e’ should follow to mark the end of the line.
The “R” lines (“Rowlinson”) have another 1 number (the LO distance) appended; O should be
the 1st site given.
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Problems

6.1 Bugs and caveats

1. Special hydrogen bonding potentials (as in old versions of CHARMM) are not supported.

2. Output tables are printed in reverse order than is natural. This is because of a simple
implementation of linked lists.

3. No valence tests are performed on molecules. For instance, a missing hydrogen in “ethane”
CH2–CH3 passes unnoticed.

4. Chirality is explicitly supported only for CH1E etc. in extended atom representation. Bad
configurations around four-bonded tetrahedral atoms pass unnoticed.

5. If nbfixes for 1-4 interactions are present and factor14=1 then 1-4 exceptions are always
present even if it may happen in some cases that they are identical to normal interactions
and some efficiency is lost.

6.2 Trouble shooting

Here we examine several possible sources of problems.

Problem: blend (UNIX, SGI) gives strange error messages which do not resemble anything
described in this manual.

Probable cause: You run a system command of the same name. blend always prints a line
like this:

! ------ MACSIMUS / BLEND 2.0k ------ (c) J.Kolafa 1993-2004 ------

Solution: Use system command which blend to determine which blend are you using. If
this is not the correct blend, change your path (remember that if you want to run blend

from the current directory, you must have the current directory . as the first item in your
path) or rename blend.

——————————————————————–
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Problem: I get error message “parameter file not found - try set BLENDPATH”

Solution: Set BLENDPATH (see Sect. 2.1). If it does not help, try to specify the parameter
file name (with full path), see Sect. 2.2.2.

——————————————————————–

Problem: I get error message: “bad coordinate - endian?”

Probable cause: You have binary file created on a computer with different endianness, i.e.,
with different order of bytes (like Sun and PC).

Solution: Try option -r with negative argument (see Sect. 2.2.3).

——————————————————————–

Problem: I get error message: “atom coordinate out of range” while minimizing.

Probable cause: High-energy initial configuration, atoms overlap

Solution: Try to run more steps of the steepest descent method before switching to the
conjugate gradients. This is done by giving option -m a negative argument, or by variable
sd when running blend interactively.

——————————————————————–

Problem: I have changed .che file but blend ignores my changes.

Problem: I have changed .che file but blend suddenly reports strange errors.

Probable cause: blend reads .mol and/or .plb files generated in previous runs.

Solution: Try

blend -r2 species.che

Option -r2 forces blend to use 2D configuration from .che file. species.mol file will be
ignored because extension .che is specified.

——————————————————————–

Problem: I minimize a molecule from random initial configuration (or from rather
complicated 2D screen coordinates) and I get unexpectedly high energy though the
molecule configuration does not seem to be squeezed or locked.

Probable cause: Check arrangement of bonds around tetrahedral atoms. There is a local
energy minimum consistent with the values of bond angles in which the four atoms form
a square (instead of vertices of tetrahedron) and the “central” atom lies above or below
this square, see Sect. 2.2.2.

Solution: (1) Run blend interactively and enter ran=1; to randomize the positions; if it
does not help, try higher values, but be careful. Hot key : works in a similar way. (2)

Edit the problematic groups in the graphic environment (mark atom, press m , move the
atom)
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6.3 Frequently asked questions

Q: I want to add several water molecules (protons, ...) to a specified place on a protein.

A: I suppose you have already .mol and .plb files (obtained either via .che file, or using pdb).
Run blend again interactively with -e option. Example:

blend -e -g -s myprotein

You will be prompted for editing commands. Type ? Enter to get brief help and then
add atoms like in this example which places a water molecule close to atom 0-HC:

af W-O OW -.834 0-HC 2

aa W-H1 HT .417 W-O

aa W-H2 HT .417 W-O

end

If you need to add more waters, try input from .edt file instead of typing the commands
interactively.

Now you may need to re-optimize the whole structure again. Either type keep=0

interactively, or re-run blend without -e option.

In fact, there is command aw available so that the above three command can be simplified
to:

aw 0-HC 2

——————————————————————–

Q: I have a protein with several water molecules (or ions...) adsorbed. How to prevent them
to ‘evaporate’ to infinity while minimizing?

A: Create the .jet file with artificial ‘bonds’ binding water to protein (See Sect. 3.2, option
-j). Use blend with option -j. If you wish to have these forces (with much smaller force
constant!) also in molecular dynamics, use -j option with -o, otherwise remove -j when
the .ble file is generated by option -o.

——————————————————————–

Q: Is it better to split a ‘molecule’ consisting of parts not connected by bonds using option
-n or treat it as one big ‘molecule’

A: Probably yes. But you must have the corresponding .gol file for show obtained WITHOUT
option -n-1 given to blend.
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Examples

For simulation examples, see Sect. 17.

7.1 Cluster Na4Cl4

Let us study local energy minima of a cluster of 4 cations Na+ and 4 anions Cl-. Note that
blend can treat this cluster as one molecule.

Create text file copy examples/old/Na4Cl4.che or prepare file Na4Cl4.che with:

cluster Na4Cl4

parameter_set=sea

NAp1 CLn1

CL^n1 NA^p1

CLn1 NAp1

NA^p1 CL^n1

First try one of

1. blend -g Na4Cl4

2. click Na4Cl4.che in the Midnight Commander and select 1

3. start Na4Cl4.che and select and select 1

This statement reads Na4Cl4.che, derives 3D configuration from it, and minimizes it
energetically. You should get a cube.

Then, try:

blend -r -g Na4Cl4

Now, the starting configuration is random and you will get different local energy minima, like
a strip 2× 4, a ring (octagon), etc.

You can also randomize and optimize by button [ran] or key : , click an atom then after button

[move] or m move the marked atom(s) by the middle mouse button (wheel), and optimize by

[sd] or , .

81



7: Examples [Contents] – [Index] 82

To calculate normal modes of vibration, use one of

1. nmf.sh Na4Cl4

2. click Na4Cl4.che in the Midnight Commander and select 2

3. start Na4Cl4.che and select and select 2

then switch the modes by PgDn , PgUp or buttons [<] and [>] around the slider in the right
bottom corner of the show window.

7.2 Protein in water

This example is obsolete, MACSIMUS is no longer developed with biosimulations in mind.

We want to simulate a protein like crambin in water. The structure and 3D coordinates of
crambin are taken from the PDB database (file examples/old/crambin.pdb). By running the
PDB-converter to the charmm21 force field,

pdb -fcharmm21 crambin

we get the following two files:

crambin.plb 3D coordinates of atoms; coordinates of hydrogens are missing.

crambin.mol Molecular file (see Sect. 4.1) in charmm21. Chiralities of extended tetrahedral
atoms are missing.

In addition, we must have a file describing water copied to our working directory:
blend/data/charmm21/hoh.che (or hoh.mol which is the sane as blend/data/charmm21/hoh.rsd).
It will simplify later work if this file is renamed to TIP3P.che.

cp ~/macsimus/blend/data/charmm21/hoh.che TIP3P.che

We have to run blend twice. In the first step (optional -g selects graphics)

blend -c -t6 -g crambin

the following calculations are performed:

1. Files crambin.mol and crambin.plb are read.

2. Missing chiralities are calculated (this step is empty for full-atom force fields like
charmm22). Note that (unknown) coordinates of hydrogens are not required to do this
unless for tetrahedral NP groups, where a WARNING is issued – it can be safely ignored
(continue by c Enter because H of -NH2 are equivalent.

3. Coordinates of missing hydrogens are filled by (not very good) values.
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4. Energy is minimized by 25 steps of steepest descent and 100 steps of conjugate gradient
method. This is the default (see option -m) which is fully sufficient for obtaining good
hydrogen positions. During minimization, positions of atoms with known coordinates
are kept fixed; this is the default action when an unknown atom is found (see option -k

for details). Short value of cutoff -t6, i.e., C1=5, C2=7, is sufficient for filling missing
hydrogens.

5. If graphics is on (-g), stop showing by pressing . or button [finished] in the graphics
window.

6. Files crambin.mol and crambin.plb are rewritten by new ones with chiralities and
hydrogen positions; the old files are backed-up.

In the second step,

blend -o crambinw -m30 -n crambin -h -n999 TIP3P

the following calculations are performed:

1. Files crambin.mol (with correct chiralities) and crambin.plb (with hydrogens) are read.
Since all atom coordinates are now defined in crambin.plb, all atom coordinates are
subject of minimization. 30 steps of the conjugate gradient method are performed, which
is sufficient to fix inaccurate bond lengths and angles from the PDB file.

2. Unless TIP3P.mol and TIP3P.plb are already present, TIP3P.che is read and the water
molecule is energetically minimized (by max 30 steps of the conjugate gradient method).
Files TIP3P.mol and TIP3P.plb are created.

3. File crambinw.ble containing a description of the force field for both crambin and water
is created. It can be used by program cook. Options -n (= -n1) and -n999 define
the numbers of molecules of crambin and water, respectively (these may be omitted and
defined later in MD by cook). Option -h specifies that the TIP3P water molecule will
have the H–O–H angle constrained, that is, it will be treated as hard body.

NOTE: this example is continued by MD simulation in the manual of cook, see Sect. 17.2.



Part II

MD simulation: cook version V3.7b
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cook stands for a family of sequential and parallel programs for molecular dynamics of mixtures
of molecules described by force fields based on site–site (Lennard-Jones etc.), Coulomb and
bonded interaction. cook understands the description of molecules generated by blend.



Chapter 8

Overview

8.1 Features of cook

• Vibrating bonds or constraint dynamics to keep bond lengths constant (Lagrangian
formalism or SHAKE)

• Free or periodic boundary conditions, rectangular box

• Linked-cell list method or all-pairs method for non-bonded interactions

• Ewald summation (highly optimized classical r- and k-space sums) or cut-off electrostatic

• Attention paid to errors of integration as well as Ewald cutoff errors

• Convergence profiles of important quantities

• Measuring of many quantities, e.g.:

– Electrostatic, internal, kinetic etc. energies

– Virial pressure and pressure calculated by virtual volume change

– Site–site correlation functions

– Dihedral angle distribution

– Bulk conductivity, autodiffusion coefficients

– Shear viscosity

• Autocorrelation and block analysis of measured data

• Nosé–Hoover canonical thermostat, friction (Berendsen) thermostat, Maxwell–Boltzmann
thermostat

• Friction-like isobaric ensemble, Martyna–Tobias–Klein NPT ensemble

• Polarizability – original method with 2nd order predictor (ASPC)

• Parallelization – shared memory with Linux threads

• Batch and interactive modes

• Sophisticated input data unit including a calculator

86
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• Scrolling windows emulation in interactive mode

• Flexible description of force field via program blend

• Normal modes of vibration also for models with constraints

For history, see man/history.txt

8.2 Compile-time versions of cook

The cook package allows customizing the executable according to various user requirements.
This is accomplished by editing file simopt.h: see file cook/generic/simopt.h with comments.

Customizing of the most common versions is simplified by the configurator, script
configure.sh, residing in the cook subdirectory. The projects created by configure.sh must
be placed in subdirectories of cook. Example:

cd ~/macsimus/cook

./configure.sh

The following major versions are available:

Ewald summation Standard 3D periodic boundary conditions with Ewald summation to treat
electrostatic interactions (of point charges). See Sect. 11.2. Requested by #define

COULOMB -1 or -2 in simopt.h or during configuration.
WARNING: if LINKCELL is not used, the cutoffs for “optimized water models” must be
shorter than minimum half box minus the O–H distance. See option -x.

NIBC Nearest-image boundary conditions, no cutoff, all pairs considered. Bug: cutoff
corrections not calculated. Suitable for small systems only. NOT TESTED RECENTLY.

Cutoff electrostatic Coulomb forces smoothly cut off to zero. Requested by #define

COULOMB 0 (or 2), also the Fennell–Gezelter version (#define COULOMB 3). See Sect. 15.3.
Recommended executable name: cookcut, cookfg.

Gaussian charges Standard 3D periodic boundary conditions with Ewald summation to
treat electrostatic interactions of Gaussian charges. See Sect. 11.2. Requested by
#define COULOMB -3 (also GAUSSIANCHARGES and QQTAB needed). Tested only
for polarizable models.

LINKCELL Instead of the “all pair” method to calculate the pair (r-space) sums, the linked-cell
list method is used. Compatible with Ewald and cutoff electrostatics, cannot be combined
with FREEBC or POLAR. Since V2.7e, three versions are available:

LINKCELL=0 : Each particle control structure (list item) contains also forces; after the
r-space calculation they are summed to the contiguous arrays where they normally
reside.

LINKCELL=3 : Each particle control structure contains pointer(s) to forces in the
contiguous arrays. This was the only method available in V2.7d and older.
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LINKCELL=1 : For serial and PARALLEL=2 this is the same as above. For
PARALLEL=1 the array of forces is duplicated to avoid summing to the same forces
in parallel; the first instance of forces is indirected and the second one placed in the
list item (as for LINKCELL=0).

Which linked-cell version is more efficient depends mainly on the processor and cache
architecture, data size, and parallelism.

PERSUM Cutoff longer than half the box (minimum of all sizes) is allowed. Variable
No.molspan must be set. For NPT , No.molspan must include possible change in box
size. Inefficient code, incompatible with LINKCELL, NIBC. Optimized water models not
supported, the default option -x0 set. Using -x1 is only WARNING because the error
is caused by wrong treatment of Ewald intramolecular corrections; in case of the r-space
Ewald potential small enough at r = box size, the results are accurate. (It would not be
too difficult to fix it, but I’m too lazy.)

FREEBC Free (vacuum) boundary conditions, Coulomb forces 1/r, all-pairs method to calculate
pair interactions. Recommended executable name: cookfree.

STARS The sign of electrostatic forces is changed so that gravity is simulated instead of
charges. FREEBC required. See Sect. 15.4. Recommended executable name: cookstars.

GAUSSIAN Calls Gaussian instead of using a force field. FREEBC required. See Sect. 15.5.
Recommended executable name: cookgaussian.

WALL REMOVED (?), see SLIT and SLAB

SLIT System is periodic in x,y only; i.e., there is no pair interaction between images in the
z-direction. Not that the Ewald k-space (if used) is always z-periodic.

SLAB Slab geometry and z-density profiles measurement. Also forces needed to keep atoms
in slabs. SLAB=1 turns on some additional forces (incl. walls).

GOLD Simulation at vicinity of metal (ideal conductor) surface. WALL required. See
Sect. 15.11. Not tested recently.

POLAR Polarizable dipoles supported. Can be combined with FREEBC. See Sect. 15.6.

PARALLEL At this moment, two versions parallelized by ‘pthreads’ are available, (1) linked-
cell list site–site interactions + Ewald and (2) real-space and Ewald running in separate
threads. A MPI version was removed. (Other versions, as parallel code in FREEBC,
have not been rewritten from older platforms.) See Sect. 10.

MARK Special to analyze pair energies. See Sect. 15.13. Not tested recently.

ANCHOR Fixes (anchors) one site and measures forces on it. See Sect. 15.12.

PRESSURETENSOR Direct measurements of the pressure tensor. See Sect. 15.7.

SHAKE, VERLET Several versions of the SHAKE algorithm and kinetic energy formula. See
Sect. 11.3.1.
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site-site The site–site potential (Lennard-Jones, exp-6, Busing, ...) is selected in the
makefile (better said metamake.mmk). The respective code is in (from MACSIMUS home)
sim/XXX/sitesite.h and sim/XXX/sitesite.c, where XXX is the name (e.g., lj, exp6,
busing12...). The same code is used also by blend. The formats of the ble-file changes
accordingly.

LOG In direct pair versions (not LINKCELL), allows for separate recording of Lennard-Jones
and similar terms and elecrostatic terms. Also, keyword No.first is enabled (some
functionality of former option -j). (Called MONITOR in older versions).

LIBRARY Library for energy and forces that can be called from other programs. Removed.

In addition, a lot of compile-time options define “minor” versions, which may improve efficiency
for particular systems and add/remove some extra features—see cook/generic/simopt.h.

8.3 Disclaimer

No warranty is provided on anything. If you do not like this program, just do not use it.



Chapter 9

Running cook

9.1 Where is

After successful instalation, the executables are in bin/.

9.2 Synopsis

The command line to run any version of cook is:

cook [options] [sysname[.ble]] simname[.get] [plbname[.plb]] [options]

If no parameter is given, a brief help on options is printed.

The parameters can be given in any order, the only exception is that sysname must precede
simname.

Option X is switched on (i.e., set to value 1) by one of -X -X+ -X1 and switched off (cleared to
value 0) by -X- or -X0. The options are case insensitive.

9.2.1 File parameters

sysname Name of the system to simulate. If not given (which is deprecated),
sysname=simname is assumed. Refers to file sysname.ble generated by blend and con-
taining full description of the force field and, if simname.def does not exist, also to the
definition file sysname.def

simname Simulation name. Names of files used in the run are obtained by appending
extensions, see Sect. 9.2.3.

plbname.plb Optional name for the input playback file (used with init="plb" or init<0).
If not given, plbname=simname. This parameter comes with extension .plb and may
refer also to file plbname.vlb and configurations plbname.1, plbname.2, . . .

90
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9.2.2 Options

-number Overrides no for the 1st cycle (e.g., if input data are no=3;;no=5; and -10 is
specified, the result is the same as no=10;;no=5;).

-@WHO@WHERE Send e-mail to WHO@WHERE if the job finishes or crashes. Utility mail must
be configured. (The old meaning of -@ is now in the data as No.occup)

-anumber POLAR version: all polarizabilities are scaled by number (in % or on the value of
option - ). The default is 1 (100%). Useful for initializing the simulation.

-b Beep, progress, and stop option.

In the batch mode (no option -s):

-bnumber Checks for existence of simname.stp every number-th cycle. If found,
finishes cycle and stops (as if Ctrl-C ).

-b-number Checks for existence of simname.stp every [100000*number/(No.s*noint)+1]-
th cycle. The default is -b-2 (stop in roughly a minute).

-b0 Does not check for existence of simname.stp.

In the interactive mode (option -s):

-b0 Does not beep

-b1 Beeps (sends \a to stderr) when finished

-b2 As above and after every “get data” block processed (the default)

-b3 As above and when SIGINT ( Ctrl-C ) or SIGTERM caught

-b4 As above and prints progress indicator to stderr.

-b-number The same as -bnumber

-c number Method for correcting constraints and measuring constraint errors. See Sect. 11.3.
Sum of flags; the default is -c9 = 1+8:

-c1 This flag applies to the Lagrangian constraint dynamics only (irrelevant for
SHAKE). The conjugate gradient method conjgrad is used to correct constraints
after every integration step (default; denoted as -c4 in versions prior V2.4a).
If not set, a SHAKE-like direct iteration method Scorrect is used to correct
constraints of real configuration after every integration step (denoted as -c3 in
versions prior V2.4a).

-c2 If set, constraint errors are measured before every integration step. Denoted as
“constr err before” in statistics.

-c4 If set, constraint errors are measured after integration step and before Scorrect.
Meaningful with Lagrangian constraint dynamics and Scorrect. Denoted as “constr
err mid” in statistics.

-c8 If set, constraint errors are measured after every integration step. Denoted as
“constr err after” in statistics (default).

-dnumber Check site–site distances or initializer bias.



9: Running cook [Contents] – [Index] 92

-d1 Check once/“get data” set (ended by ;)

-d2 Check once/cycle (and at load)

-d3 Check once/step (and at load)

-d≤ 0 FREEBC: stop simulation if a distance of any atom from (0, 0, 0) exceeds
|number|. The affected molecule is not removed (unlike using remove.n or slab.out
in SLAB version). SLAB: no action
not SLAB and periodic b.c.: the same as slab.geom in the initializer (the default is
droplet).

The default is -d0 = no action.

-enumber Number of items in the convergence profile. The default depends on compiling
switches and file simname.cpi but can be reduced, or completely turned off by -e0.

-f In the playback mode (options -m0, -m1): Calculate energy and forces from each
configuration read. If POLAR, the precision is controlled by scf.epsx,scf.omegax.

WARNING: Pressure for models with constraints (bonds) is incorrect because the virial of
constraint forces, (15.12), is missing. Use molecule-based virtual volume change instead.

The kinetic part of pressure is replaced by the averaged value given by temperature T,
including the kinetic pressure correction, see (15.15). (The kinetic pressure correction
applies for corr&4; in turn, the kinetic pressure is simply given by the ideal gas EOS of
1 molecule.)

Thus, in the NV T ensemble for models without constrained bonds, pressure is correct
(although not the same as in the original simulation because of kinetic energy fluctuation).

The virtual volume change method (see dV) is applicable with the same kinetic term and
correction.

Pressure tensor is not calculated (the value printed is incorrect).

-gnumber REMOVED IN V3.0

-hnumber Centers all atoms of given valence to its neighbors. To be typically used as -h4 to
remove wrong pyramidal configurations of methane and other sp3 carbons, or similarly
as -h6 for PF6.

-inumber Ctrl-C interrupt handler option. ( EMX : ESC hit handler)

-i-1 Disable Ctrl-C handler.

-i0 Interrupt and ask for the appropriate action, this is the default for the interactive
run (see option -s) in serial versions. Not recommended for the PARALLEL version.

-i1 Finish the running cycle and read the next set of data. This is the default in
interactive run in PARALLEL versions.

-i2 Finish cycle, then save all and stop. This is the default in the batch run.

-i5 Finish step, then save all and stop. Recommended only if the next run will be with
init=2 because some measurements are affected by interrupting the measurement
cycle.

WARNING: OK for unix/linux. System-dependent and sometimes unexpected behavior
otherwise. Can be disabled by deleting #define SIG in main.c. See Sect. 9.2.7.
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-jnumber (100) Changed in V3.3r.

number ≥ 0 The potential energy minima (Emin, EvdW) of non-bonded potentials
(e.g., Lennard-Jones), are multiplied by factor number (in % or on the value of
option - )

number < 0 The atom sizes (e.g., van der Waals radii or Lennard-Jones σs), are
multiplied by factor |number (in % or on the value of option - ).

Meaning in versions prior V3.3r: see variable No.first and version LOG.

-knumber Force constant for keeping (“fixing”) selected sites in place. The units are K/Å2

(not kcal/mol/Å2). See Sect. 15.1.

-k0 Not ANCHOR: selected sites are fixed in place exactly (constraint dynamics). Cf.
ANCHOR with more options. (In old versions, this functionality needed ANCHOR
version and -k-1.)

-k-number ANCHOR version. See Sect. 15.12. Negative sum of flags:

0 Anchoring is performed without measurement/recording.

1 Constraint forces marked as A00x, A00y, A00z, A01x, etc. (see the prt-file), are
measured using the standard statistics module.

2 Enables recording of the above constrained forces in the cp-file. Write the needed
keywords (not necessarily all) to SIMNAME.cpi. Both A00x etc. in the cpi-file and
-k-2 are required for recording.

4 ASCII file SIMNAME.anc is printed. This was the only option (and default for
-k0) in V3.6a and older.

8 Several anchored sites in one molecule is warning only (nor error).

-lPEGFAVC ASCII dump. EGFAVC stand for decimal digits denoting:

C writes the configuration to file SIMNAME.asc, in Å

V writes the velocities to file SIMNAME.vel, in Å/ps

A writes the accelerations to file SIMNAME.acc, in Å/ps2

F writes the forces to file SIMNAME.for, in kK/Å= 1.3806485e-13 N

G writes the gradient of energy (numerical derivative) to file SIMNAME.gra (to
compare with SIMNAME.for) unit as above (SLOW!)

E The sum of F and G (should be numerical zero)

P POLAR: the Drude amplitude (separation of the Drude charge)

All dumps are in the internal program units, as indicated. The digits denote: digit=0 do
not write, digit=1 denotes the maximum precision in the g-format, digit=2..9: number
of decimal digits in the f-format.

EXAMPLE: -l1003 will dump the configuration (to 3 dec. digits) and forces (in max-
precision g-format)

The six columns of the output file are:

i Consecutive number
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mol Species number

x,y,z Vector

|vector| Its absolute value

-mmode Mode of calculation and integration method.

-m0 Configuration files plbname.#, (where # is a decimal number, see dt.cfg)
previously recorded are read and (partly) analyzed. Cf. -m1 below.

-m1 Frames from plbname.plb are read instead of simulating, cf. dt.plb. See
variables reread.from, reread.to, and reread.by for control which frames to
read and analyze. For both -m0,-m1, it is recommended to change the simulation
name to avoid overwritting files of the original simulation; also, -w0,-y0, -r1 are
recommended. See also -f (forces).

-m2 Verlet integrator (with SHAKE if constraints are present). Requires #define
SHAKE in simopt.h. This is the default.

-m3,..,-m9 The order-value Gear predictor-corrector method is used with Lagrangian
constraint dynamics (if constraints are present). See also see gear.init. The value
of -m is called GearOrder in the source code.

-n Playback options, sum of flags:

1 Write also velocity playback (plbname.vlb). All parameters for the playback
(plbname.plb) apply: dt.plb, option -y. Note that the velocities with -m2

(Verlet/SHAKE) are at times t−h/2, which is not in sync with the positions unless
flag 2 is selected.

2 Positions in plbname.vlb are shifted by −h/2 (i.e., h/2*velocity is subtracted). To
be used with -m2 (Verlet/SHAKE) to provide plbname.vlb and plbname.plb in
sync. (A WARNING is printed if they are not in sync.)

4 Positions in plbname.plb are centered. This trick increases the accuracy of 1 bit,
but is not fully supported by utilities. The second float in the header is -6.

8 POLAR only: Write also the positions of Drude charges (absolute, not relative to
the atom) in file (plbname.dlb). All parameters for the playback (plbname.plb)
apply: dt.plb, option -y.

-onumber 0 Simulation is started without asking even if the lock file sysname.loc exists.
Use with caution!

1 If the lock file sysname.loc exists, the simulation does not start and an error
message is printed. This is the default.

-pKPC (for POLAR version: K,P,C are decimal digits )

-pC (for nonpolar version) Selects various predictors.

C With Verlet+SHAKE (option -m2): C is the length of the predictor for
calculating the velocities. Applies for the Nosé–Hoover thermostat, otherwise
not used. The higher order, the better time-reversibility and total Hamiltonian
conservation. C=0 is no extra history (v(t) ≈ [r(t) − r(t − h)]/h). The default is
C=2.
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With Gear + Lagrangian constraint dynamics (option -m > 2): Order of
predictor for Lagrange multipliers (0=no prediction, default=9=value of -m). Affects
efficiency only, not accuracy. The best results are probably obtained with the same
order as Gear provided that parameter eps is optimized.

P POLAR only: the predictor order (or method):

0 Car-Parrinello-like (extended Lagrangian) method, unfinished implementation,
do not use. See Sect. 15.6.2.

1 No prediction (previous value).

2 Always stable predictor-corrector (ASPC). The predictor length is given by K,
the default is K=2. This is the default.

3,4 Higher-order predictors, may be useful with Gear integration. Only P=3 is
alowed with Verlet (but not recommended).

K Predictor length. For P=2 (ASCP), the higher K, the better energy conservation.

-qnumber Charges are rescaled by |number| (in % or on the value of option - ). The default
is 1. Negative number removed in V3.1i, see el.bg instead.

-rorder Record configurations for further analysis (see option -m) up to (order − 1)-th
derivative: -r1means positions only, -r2 (the default since V3.5i) denotes positions and
velocities, etc.; the value of option -m must not be exceeded. The configurations are
recorded in files simname.1, simname.2, simname.3, etc., with the frequency dt.cfg ps.
dt.cfg should be an integer multiple of h*noint.

-snumber This option sets the interactive mode: input is keyboard (instead of a get-file),
output the screen (instead of a prt-file). If SCR has been #defined at compile time, you
can use scrolling to watch the previous output. Type $? from “get data” to get help or
see the blend guide for details. number is the buffer capacity in kbytes, missing number
or number=1 means 31 kbytes (DOS) or 80 kbytes (other).

-t Enables detailed runtime measurements (real time, i.e., it depends on the system load).
In the PARALLEL versions sampling via clock() is also available; it reports critical
portions of parallel times.

(In case of compatibility problems, use compile-time option -DCHEAPTIME, and the
time will be in 1 s resolution only. Even if the total time is long, there may be
grid/interference errors if the resulting times are obtained using several cycles.)

-unumber Select which bonds will be constrained (rigid) and which will be vibrating. See the
blend manual for details.

Artificial bonds written with K=0 are always constrained. These are typically created by
blend from bond angles with hydrogens and it does not make sense to combine constrained
angles with vibrating bonds.

-u0 All bonds are rigid (constrained). This is the default.

-uKlim Bonds with the force constant K [in kcal/mol/Å2, formula u = K(r − r0)
2]

less than Klim + 0.5 will be vibrating, bonds with a higher force constant will be
constrained.
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-u-ν̃max (New in V3.4d.) Bonds with wavenumber ν̃ [in cm−1] less than ν̃max + 0.5
will be vibrating, bonds with a higher frequency will be constrained. The frequency
is calculated simply from both atoms bonded by K given in the table “bonds”
(no normal vibrations are calculated). In addition, any equalization is ignored.
Typically, -u-2500 is good to constrain bonds containing hydrogens. Use option
-v4 to print a full protocol about vibrating/rigid bonds.

-vnumber Verbosity level. Sum of powers of 2. The default is 3

-v0Minimum verbosity. Only basic system+run info printed

-v1 Runtime info, initialization protocols

-v2 Brief statistics (was detailed prior V2.4a; use staprt for detailed statistics), message
‘playback written’, more initialization details; dihedral distribution and similar (if
compiled so)

-v4 Verbose details on site–site potentials and energy terms, copy of input ble-file,
constraint optimization (SHAKE), detailed statistics: for debugging purposes

-v8 POLAR: convergence

-v16 = -v0x10 POLAR: file .pol with some summary

-v32 = -v0x20 POLAR with dV: extensive files with induced dipoles:

.run.pol Running induced dipole moments in program units (0.0117501 D)

.ex.pol Exact (iterated) induced dipole moments in program units. NOTE: this
is an average of the induced dipoles for V+dV and V-dV. dV thus must be small
enough.

.err.pol Errors in induced dipole moments in program units

-v64 = -v0x40 Protocol on momentum and angular momentum and their setting to
zero. See also variable drift, codes for .cpi and see Sect. 32

-v128 = -v0x80 Raw dump of configuration, charges, and forces (incl. POLAR, after
every evaluation, i.e., during iterations). Huge files of form SIMNAME.#.dump are
created. To avoid problems if used unintentionally, # is limited to 0..9, then the
program stops.

-wnumber Write configuration (simname.cfg).

-w0 Don’t write.
Note that if several sweeps (;;; in the data) are performed, they are started from
the same configuration because a single ; means restart from simname.cfg.
BUG: With (any) predictor (ASPC or Nosé-like), the predicted values are not reset.
This means that the trajectory actually is not exactly the same.

-w1 Always write (default). Before the first write, a backup (simname.cfg~) is made.

-wnumber As -w1 and the available disk space is checked before selected files are written.
If not enough space is available, it waits several minutes (more for the second time)
and then checks again. The available space is compared to a rather pessimistic
estimate of space needed plus number kB added (to be even more pessimistic). -w2
should be enough unless your co-workers often fill the disk in a very greedy way.
The algorithm is not 100% reliable, though. It relies on a system call to df; if this
fails for any reason, it is considered as no space and the program keeps waiting. A
warning is printed after space has appeared again; for apparent reasons, nothing is
printed when the no-space condition is encountered.
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Note: -w2 used to mean write only if the configuration has changed, but it become difficult
to determine this condition so that this option was removed.

-xnumber (5; 0 for PERSUM version) Changed in V2.7b. Sum of flags:

1 Use optimized code for registered rigid water models. Not available with POLAR
and LINKCELL and for models TIP5P, NE6. May give inaccurate results with
PERSUM,see Sect. 8.2. Currently supported models are:

TIP3P geometry : TIP3P, HOH (=alternate name for TIP3P), SPC, SPCE

TIP4P geometry : TIP4P, TIP4P05 (=TIP4P/2005),
TIP4PEW (=TIP4P/Ewald), TIP4PICE

ST2 : ST2 (with the switch function, not available with LINKCELL, no pressure
nor pressure tensor available – use the virtual volume change, cf. dV)

Note that a model with name TIP4P will be treated as TIP4P geometry irrespective
of the parameter values (cf. option -x4)
If not set, the general code is used.

2 Keep H-O and H-H water-water Lennard-Jones terms. Missing flag 2 will cause
clearing these interactions. This option is intended for TIP3P and HOH (= other
name for TIP3P) leading to the original version of TIP3P. A warning is printed if
TIP3P is used with H-O and H-H LJ terms, however, no automatic clearing of these
parameters is performed.

4 Failed doublecheck of registered water models is ERROR (WARNING if -x4 is
unset)

Examples: use -x5 for rigid optimized TIP3P model without H-H and H-O LJ terms; use
-x0 -u9999 to make a normally rigid model of water flexible.
WARNING: if LINKCELL is not used, the cutoffs for “optimized water models” must be
shorter than minimum half box minus the O–H distance. If you cannot guarantee this,
use -x0.

-ynumber Write playback files option.

number=0 Don’t write (even if dt.plb is specified).

number>0 Write playback file(s), number is the number of molecules to write. The
default is “big” which means that all molecules are written (in version prior 2.4g,
this was -y-1). File names are always simname.plb (in version prior 2.4g, there
were single-molecule files simname.p00, etc.). At the same time, molcfg is called to
produce mol and gol files for show unless init=0,1.

number<0 As above but molcfg is not called. (Support for layers of water was removed;
see sim/old+misc/simils-plb.c and man/option-y.tex).

-znumber Seed for random number generator. If -z is not specified, the seed is derived from
time so that it is different for each run. Random numbers are needed for the configuration
initializer and cross section measurements (certain modes only).

-^number (0) POLAR only: The value of scf.omega (in % or on the value of option - ). The
default is 0, which means that the value guaranteeing ASPC stability for any converging
SCF is chosen. (Different meaning in older versions.)
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-\number (0) Removed in V2.7f. Use environment variable NSLOTS instead.

- number (100) The denominator for scaling factors defined by -q, -j, -a.

+number (0) Special for debugging with -DCHECKHEAP=-2: AllocRange parameter, see
gen/alloc.h for details.

9.2.3 File extensions

Two names are specified at the command line. The system name (sysname) refers to
sysname.ble generated by blend and containing full description of the force field. The
simulation name (simname) refers to the specific MD run.

A list of extensions appended to simname follows. For instance, if simname=crambin1 then
file crambin1.cp contains the convergence profile.

.1 .2 .3 ... Recorded configurations, see option -r and variable tcfg

.anc ANCHOR: measured forces. See Sect. 15.12.

.asc Ascii dump of the configuration, see option -l

.box File for controlling the box size during simulation, see variable tau.rho.

.cfg Configuration. Contains the whole configuration and some additional information.

.cp Convergence profile. Record of total, potential, and bonded energies, pressure,
temperature, and optionally more. Note that the term “convergence profile” here means
just time dependence of quantities, not running averages of any kind. See Sect. 14.2 for
user-info, see Sect. 16.2 for file format.

.cpa Ascii dump of (block-averaged) .cp file. Generated by showcp, in some special cases
directly by cook.

.cpi Input file of optional additional items to be recorded in the convergence profile (.cp)
and statistics (.sta).
Example:

! ATOM-ATOM DISTANCES will be recorded:

! atom1 atom2 [name]

1 123 CC1 (this is comment, too)

1 124 CC1_nbr

! ADDITIONAL VARIABLES will be recorded:

elst

LJ

+Lz

A00x

In the convergence profile, only the first 4 letters of the name are used (e.g., CC1 nbr is
truncated to to CC1 ). If the third column is missing, names ss1, ss2, ... are used.

If + is placed in front of the name or site–site pair, the variable will be also recorded in the
statistics (this is redundant because this statistics can be always calculated by showcp).
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Names starting with A apply for anchoring (#define ANCHOR) for the respective names.

More keywords are listed below. To program a new variable of type double, see
sim/simmeas.c CPItab[].

Epnc potential energy without cutoff corrections [J/mol]

Eusr user potential energy (see userforces.c) [J/mol]

elst electrostatic energy (POLAR: excl. self-energy) [J/mol]

bond bonded energy [J/mol]

Eext extended degrees of freedom energy (Nose-Hoover, MTK barostat) [J/mol]

Ekin kinetic energy [J/mol]

U Internal energy = Epot + Ekin with cutoff corrections [J/mol]
(It differs from the total energy, provided in the 1st column Etot of the convergence
profile, so that it does not contain the extended degrees of freedom, Eext)

Unc Internal energy = Epot + Ekin without cutoff corrections [J/mol]
(It differs from the total energy, provided as the 1st column of the convergence
profiles, so that it does not contain the extended degrees of freedom)

H enthalpy = Epot + Ekin + pV with cutoff corrections [J/mol] see Sect. 14.10.8

Hnc REMOVED Enthalpy without cutoff corrections [J/mol]

fix The potential keeping selected sites in place [J/mol]

Pref pressure as defined by variables virial, corrected [Pa]

Pvir,PECC,Psc,Pcor ECC only (to be updated) [Pa]

Pdv pressure by virtual volume change (also PdVm/PdVa) w. cutoff corr. [Pa]
PdVm= molecule-frame, PdVa=atom frame

Pevc pressure (based on el. virial) w. LJ cutoff corr. [Pa]

Pevn pressure (based on el. virial) w/o LJ cutoff corr. [Pa]

V volume [p.u.=Å3]

CMdr corrected center-of-mass drift [Å=p.u.], abs. value of vector calculated from
corrected components as given by drift&7. Use use CMx,CMy,CMz for CM in not
corrected coordinates.

vdr Corrected velocity drift [p.u.=Å/ps], abs. value of vector calculated from corrected
components as given by drift&56. Use LMx,LMy,LMz for not corrected coordinates.

AMdr corrected angular momentum drift [p.u.], abs. value of vector calculated from
corrected components as given by drift&448. Use use AMx,AMy,AMz for not corrected
coordinates.

omdr corrected angular velocity drift [p.u.=1/ps], abs. value of vector calculated from
corrected components as given by drift&448.

CMx,CMy,CMz center-of-mass [Å], use lag.CM to request, cf. slab.sp.

LMx,LMy,LMz linear momentum [p.u.], use lag.LM to request.

TLM cluster translational temperature (from CoM)

AMx,AMy,AMz angular momentum [p.u.], use lag.AM to request.

TAM cluster rotational temperature [K]
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POLAR only variables to be included in CP:

pstd 1st iteration stderr [p.u.] = running error of induced dipoles (predicted minus
corrected/iterated), standard deviation; the statistics is called “polar 1st iter
maxerr”

pmax 1st iteration max err. [p.u.] = running error of induced dipoles (predicted minus
corrected/iterated), maximum; the statistics is called “polar 1st iter stderr”

plst last iteration stderr [p.u.] = running error of induced dipoles (predicted minus
corrected/iterated), standard deviation; the statistics is called “polar last iter
maxerr” (zero if there is only 1 iteration)

plmx 1st iteration max err. [p.u.] = running error of induced dipoles (predicted minus
corrected/iterated), maximum; the statistics is called “polar last iter stderr” (zero
if there is only 1 iteration)

Pstd Polar stderr (vs. iterated solution, scf.test=1) [p.u.] (in older versions in virtual
volume change method)

Pmax Polar max err. (vs. iterated solution, scf.test=1) [p.u.]

rate averaged convergence rate, with scf.test=1 or virtual volume change method

iter number of iterations (per MD step, not testing notor virtual volume change
method)

X hfhigh-frequency susceptibility by the direct response to an external field

Tpol for Lagrangian (Car-Parrinello-like) polarizability, kinetic energy of the additional
degrees of freedom [K], DEPRECATED

Pvxx,Pvyy,Pvzz,Pvyz,Pvzx,Pvxy PRESSURETENSOR: Components of the virial
part of the pressure tensor, in Pa

Hz Enthalpy = Epot + Ekin + p zz V, without cutoff corrections [J/mol]

Pkxx,Pkyy,Pkzz,Pkyz,Pkzx,Pkxy Components of the kinetic part of the pressure
tensor (site-based)

PKxx,PKyy,PKzz,PKyz,PKzx,PKxy Components of the kinetic part of the pressure
tensor (molecule-based)

Ptxx,Ptyy,Ptzz,Ptyz,Ptzx,Ptxy Total pressure tensor

Lx,Ly,Lz Sizes of the simulation box [p.u.= Å]

Jx,Jy,Jz Current density (x, y, z components separately) in Am−2, lag.J or lag.M

must be set.

Jx0,Jy0,Jz0 Current density (x, y, z components separately) in Am−2 for group 0 (use
group[*]=0 in the data)

Jx1,Jy1,Jz1 As above for group 1

Jx2,Jy2,Jz2 As above for for group 2

Mx,My,Mz Simulation cell dipole moment (x, y, z components separately), lag.M or
lag.J must be set. The dipole moment of ions is recalculated to their centroid (point
ions have zero dipole moment). Thus, there are no jumps in Mα(t) if an ion moves
to another periodic image. Their statistics is available with lag.M. These dipole
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moments are calculated independently on (optional) Ewald summation after a cycle.
Note that the dipole moments recorder every step start during Ewald summation
are not available here.
Unit: p.u.= 0.0117501021272D=3.9194121835×1032Cm

Mx0,My0,Mz0 Simulation cell dipole moment in p.u., group 0 (use group[*]=0 in the
data). This is the raw dipole moment

∑
i qi

→
r i. Thus, function Mα(t) has jumps

whenever an ion moves to another periodic image

Mx1,My1,Mz1 As above for group 1

Mx2,My2,Mz2 As above for group 2
Caveat: For a mixture of dipolar molecules, it holds Mx = Mx0+Mx1+ · · ·. However,
for brine with group 0 = point ions and group 1 = water, it holds Mx = Mx1 instead.

NHxi Nosé–Hoover degree of freedom ξ = log(s), dimensionless

NHdx time derivative of the Nosé–Hoover degree of freedom ξ̇, in 1/ps. This is the
velocity-Verlet value from the final trajectory ξ̇(t) = [ξ(t + h) − ξ(t − h)]/2h =
[ξ̇(t+ h/2) + ξ̇(t− h/2)]/2

MTlx,MTly,MTlz MTK thermostat/barostat [8] degree of freedom λ (diagonal x, y, z
components of the λ tensor)

MTdx,MTdy,MTdz time derivatives of the MTK thermostat/barostat [8] degree of
freedom λ̇ (diagonal components of the tensor). This is the TRVP-predicted value
(not the velocity-Verlet value from the final trajectory)

SLAB version variables to be included in CP:

cx,cy,cz SLAB: drop,trickle,slab,cavity,tunnel,bals(inverted slab) center as deter-
mined by “autocenter” [Å]

symx,symy,symz center of species ≤ slab.sym w.r.t. “autocenter” [Å]

Pt tangential pressure (Ptxx+Ptyy-2*Ptzz)/3 [Pa]

Ptv virial part of tangential pressure (Pvxx+Pvyy-2*Pvzz)/3 [Pa]

Pw0,Pw1 pressure to the bottom and top wall, respectively [Pa]

Wcl dG/dσ, reversible work per unit interface area [Pa]

clz0,clz1 centers of cleaving walls, in the units of Lz

clf0,clf1 forces to the cleaving walls [p.u.=K/Å]

Rgxx,Rgyy,Rgzz RGYR: averaged diagonalized moment of inertia of species 0

These are for the ECC version only (to be fixed after renaming):

Pvir ? Modification of Pvir above: virial pressure except epsf(V) dependence [Pa]

PECC The ECC pressure, the same as ECC P [Pa] in statistics

Psc Conventional pressure without any epsf-based ECC terms, the same as ECC Pscaled

[Pa] in statistics

Pcor The ECC correction (to be added to Pvir) [Pa]

These are applicable in direct evaluation of forces (not LINKCELL); with water -x0

needed. WARNING: not tested recently, #define LOG needed. Deprecated variable
No.first = number of molecules in the first group should be in input data. No.first

needs also cache=1, no LINKCELL. With Ewald only r-space is supported.
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Ep0 potential energy first No.first molecules [J/mol]

EpX potential energy No.first vs. rest molecules [J/mol]

Ein intramolecular potential energy [J/mol] (NEW in V2.8c)

el0 electrostatic energy first No.first molecules (w/o self) [J/mol]

elX electrostatic energy No.first vs. rest molecules (w/o self) [J/mol]

LJ non-bonded (LJ) energy excl. elst. [J/mol]

LJ0 non-bonded energy excl. elst. first No.first molecules [J/mol]

LJX non-bonded energy No.first vs. rest molecules [J/mol]

bon0 bonded energy first No.first molecules [J/mol]

.cpz Convergence profile in packed format (see variable CPnbit). Use utility cppak to convert
it to .cp (and vice versa). Utility showcp understands the cpz-files as well so that the
analysis of convergence profiles is transparent.

.def System definition (or defaults). If simname.def is not found, sysname.def is tried.
The file should contain 1 set of input data (see Sect. 9.2.5). Note that numbers of
molecules (species) N[*] can be given here, but not in .get file or by keyboard input. In
addition, this file is read twice so that you cannot modify the program default here (e.g.,
the cook default is h=0.001, but h*=2 in this file would lead to h=0.004).

.dih DIHedral angle distributions, binary.

.dia DIhedral angle distributions, Ascii dump.

.dcp Dihedrals Convergence Profile. The dihedral values, in degrees, are printed every cycle
to simname.dcp as ASCII. Which dihedrals are dumped is selected by simname.ddh
and variable dih.dcp in input data. Must be compiled with DIHHIST=-1, applies to
species=0 only.

.ddh

.mar Define DiHedrals (species=0 only). Must be compiled with DIHHIST=-1. Selects
dihedrals to dump to simname.dcp and record (in simname.dih and .dia). If does not
exist, all dihedrals are dumped (lot of data!). File of lines as, e.g.:

1 156 phi = -154.04 C5 - N6 - Ca10 - C15

2 145 psi = -124.77 N6 - Ca10 - C15 - N16

0 141 omega = -177.79 Ca10 - C15 - N16 - Ca20

The first column is irrelevant provided that it is nonzero (lines with 0 are ignored), so
are lines beginning by ‘!’. The second column contains the dihedral number, as from the
sysname.ble file, numbered from 1 to ndihedrals. The rest of the line is irrelevant.
For the peptide backbone, angles phi,psi, the output of ramachan (the sysname.mar file)
has exactly the correct format and can be renamed to simname.ddh. (ramachan uses the
ble-file to derive this information).

.dpr Density profile, binary. Requires SLAB defined.

.fix To fix certain atoms. See Sect. 15.1. Note that the file format depends on ANCHOR
and option -k.
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.for Ascii dump of the forces, see option -l

.g For .g extension, see rdfg in the utilities manual.

.g1, .g2, ... Alternate names of input files (instead of simname.get). See options -g and
-f (see Sect. 9.2.2).

.get Input data. simname.get contains one or more sets of input data (see Sect. 9.2.5)
ended by ‘quit=1;’ or EOF. Irrelevant if -s is specified (input from keyboard).

.loc A lock-file to prevent running two instances of cook with the same simname. Normally
removed when cook finishes by any controlled way (incl. ERRORs and Ctrl-C ). Remains
if cook (or computer) crashes or is killed by kill -9. It should be then removed before
restarting cook.

.pol POLAR: Summary info, requires option -v16

.run.pol

.ex.pol

.err.pol POLAR: Extensive tables of induced dipoles, see option -v32

.prt Output protocol. Irrelevant if -d or -s are specified (output to display), changed to
.prtx if option -f is given

.prtx Output protocol for measurements while reading playback (typically autodiffusion,
conductivity, clusters, cross sections, structure factor). Prior V3.0 called .sfd

.rdf Radial distribution function(s), binary, see rdfg in the utilities manual.

.s-s List of atom types and groups for measuring radial distributions functions. See
Sect. 14.7.

.sfr Structure factor (radial or sphericalized), see option -f. Note that the k-vectors are
‘circular’, i.e., they mean a number of waves in 1 Å multiplied by 2π.

.sfsd Structure factor (full 3D), see option -f. Note that the k-vectors are ‘circular’, i.e.,
they mean a number of waves in 1 Å multiplied by 2π.

.sfd Prior V3.0: Output protocol with option -f (Structure Factor and autoDiffusion)

.sta Statistics. Contains measurements recorded for autocorrelation and error analysis
(module statics)

.stp See option -b

.*~ Backups. Most output files (.cfg,.sta,.rdf,.dih...) are backed up before writing; this is
done every data set (; in get-file). The .prt file is backed up once when cook is started.
Files .cp, .plb, .pol ... are not backed up if they are appended. Backup names are created
by appending ˜.

.wid Results for the Widom method (WALL only). Not tested recently.

.z Density profiles in ASCII, as generated from .dpr.
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9.2.4 Program flow

1. Options are analyzed.

2. Files sysname.ble and sysname.def (or simname.def) are read and force field tables
are constructed.

3. A set of input data (each set is ended by ;) is read from simname.get or from console.
If key="quit" is specified, or EOF is reached, the program stops (see variable key for
other options).

4. The initial configuration is either generated from scratch (for init>=3) or read from
simname.cfg (if init<=2); see variables init and load for more options.

simulation mode If option -m is 2 or more (default = -m2 = leap-frog + SHAKE), the
simulation starts.

reread mode If option -m0 or -m1, previously saved configurations are re-read instead
of simulating. See options -m, -f, and variable reread for more info.

5. Ewald only: Unless el.test=0 or el.test=-10, the control switches to another module
that tests the Ewald summation and sets the parameters. This module accepts another
data (see Sect. 11.2) but one of them is el.test: once el.test=0 is specified, this module
is abandoned and the control continues by the next step.

6. The specified number of steps (given by variables no and noint) is performed unless

interrupted by pressing Ctrl-C or presence of file simname.stp. This is called “a job”.

7. The configuration is stored to file simname.cfg. Files with statistics, convergence profile,
etc., are closed. The protocol file .prt is flushed.

8. In the simulation mode, control continues by step 3. Most variables retain their values,
the notable exception being init which is changed to init="cont" after a job. In some
cases (e.g., calculation of normal vibrations or in the reread mode), continuing (beyond ;)
is undefined.

9.2.5 Input data

The input data are in the “get data” format, see Sect. 2.4.1. Briefly, it consists of a set of
assignments ended by a semicolon; expressions can be written at the right hand sides of the
assignments. A string with a mnemonic value can be used instead of an integer switche; e.g.,
thermostat="Nose" is the same as thermostat=2.

The following list contains all variables that can be used either in sysname.def (one set of data
containing the defaults), or in simname.get or interactive input from keyboard. The values in
parentheses are the default values.

WARNING: sysname.def is parsed twice so that you cannot modify the program default here
(e.g., the cook default is h=0.001, but h*=2 in sysname.def file would lead to h=0.004).

Example (of simname.get):
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thermostat="friction"

no=10 tau.T=0.01; ! 10 cycles of fast cooling

no=20 tau.T*=5; ! 20 cycles of 5*slower cooling

Note: in case of errors as e.g.:

ERROR data:bad identifier or syntax

ERROR data:bad number or expression

it may be difficult to say where the error occurred. Command ?= in the input data may help.
Note also that there may be wrong data in the ble-file. E.g., WARNING in the ble-file prevents
its correct reading.

Any declared variable except array can be used on the right-hand side in an expression. To
enable calculations, there are the following auxiliary variables declared:

double a,b,c,aux,x,y,z;

int i,j,k,n;

In addition, pi = π is available.

Example:

x=0.01 ! auxiliary, to mean cycle in ps

noint=6 ! steps/cycle

h=x/0.001 ! timestep in ps

no=20/(h*noint)+0.5 ! simulation length 20 ps

Note that no is integer while expressions are calculated in double. In conversion double to
integer, the result is rounded down (truncated), and that is why +0.5 is added.

AllocSizeLim (0x40000000) Maximum size allocated at once (one array), default 0x40000000
= 1073741824 B = 1 GiB, maximum is 2147483647 (2 GiB − 1 B).

bj.eps (1e-6) BJERRUM version only: precision of Newton-Raphson minimization for
finding the Bjerrum defects, in Å. There is pre-scan in a 2σ-sphere from the position
of the defect read from the oo-file and with grid σ/4.

bj.mode (0) BJERRUM version only, sum of flags:

1 Read the oo-file, generated by iceplus. If not given, the search of defects starts
from

→
rD = (0, 0, 0) and

→
rL = (Lx/2, Ly/2, Lz/2). One line printed, example:

bIcQ8-8-8.oo read: D-defect: D1=2593 D2=2594, L-defect: L1=770 L2=773

!nD=0 nD1=0 nD2=0 nL=1 nL1=770 nL2=773 BJERRUM1

where D1,D2 and L1,L2 are molecule numbers, nD = number of D-defects found,
nD1,nD2=numbers of both molecules

2 Scan several Gaussian σs (see below): For each σ, start from the oo-based positions
of one D- and one L-defect and find the respective maximum and minimum of the
charges smoothed by the σ-Gaussian. Lines printed are:



9: Running cook [Contents] – [Index] 106

! sigma q x y z #it

3.363586 -0.187483 [ 19.291970 31.205150 3.244432] 166 BJERRUM2

3.668016 -0.189113 [ 19.312199 31.215377 3.276372] 142 BJERRUM2

4.000000 -0.190715 [ 19.333204 31.224358 3.309127] 170 BJERRUM2

columns: σ = in a loop from bj.from to V 1/3*bj.to with quotient bj.q, q =
calculated charge, (x, y, z) = rBj = calculated position, #it = number of iterations
needed

4 bj.mode&4=0 The Bjerrum charges are calculated for every configuration at the
end of the noint-cycle, as usual.

bj.mode&4=4 All configurations are everaged and the Bjerrum charges are
calculated for the averaged configuration at the end of job (given by ; in the
data). The averaging takes into account the periodic boundary conditions; i.e.,
it is performed with the configuration scaled to box 13 and the averaged box is
rescaled back to the averaged box sizes.

128 Search based on a configuration; DO NOT USE (broken/unreliable). (Was
bj.mode=1 in V3.3b and older.)

bj.from BJERRUM version only: The first Gaussian σ; see above for the loop.

bj.to (0.25) See above.

bj.q (1.09050773266525766) Gaussian σ’s multiplied by q after step.

BJERRUM version requires #define BJERRUM in simopt.h and module minimize

included in metamake.mmk.

The following function is minimized or maximized, to determine
→
rBj:

qbj =
∑
i

1√
2πσ

exp

[
−(

→
r i −

→
rBj)

2

2σ2

]
qi (9.1)

Experimantally, including more images of the basic cell have been tested, but it was
commented out in thecode because too slow.

box.max14 (0) LINKCELL version only:
The linked-cell list algorithm searches for 1–2, 1–3, and 1–4 exceptions only in radius
box.max14 around sites. No check is made whether this distance is sufficient: if not, the
affected 1–2, 1–3, 1–4 interactions will be calculated incorrectly! The default box.max14=0
means that an automatic setup will be used instead, see variable box.over14 below.
However, box.max14 should be set manually if numerical derivates are needed; e.g., for
normal mode analysis.

box.over14 (8) LINKCELL version only:
The linked-cell list algorithm searches for 1–2, 1–3, and 1–4 exceptions only in a certain
radius around sites. If box.over14 is set, this radius is dynamically adjusted during the
run: box.over14 is the factor by which the estimate of the change (between MD steps)
of the max 1–2, 1–3, 1–4 distance is multiplied. (It has more effects, see lc.c for details).
The speed gain is small, though.
Negative box.over14 selects the debug mode: also prints distances and speeds of their
changes. box.over14=3 is safe enough in most cases. If the algorithm runs close to its
safety limits, a warning is printed, and box.over14 is automatically increased. If this
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happens too often (let us say more than twice during a moderately long run), use larger
box.over14.

box.over14=0 with unset box.max14 will set box.max14=cutoff (backward compatibil-
ity).

WARNING: Not suitable for normal mode analysis.

(Called only over14 in V2.7g and older.

box.rmin (0) For LINKCELL only: all coordinates are normalized to be > box.rmin.
(Without LINKCELL always > 0). This is to prevent unnormalized configurations
with Gear or box change, or with “lone dependants”, or when numerical derivatives are
calculated (incl. the normal mode analysis). The default is box.rmin = 0 = automatic
setup (recommended, but working only during standard simulation). box.rmin < 0 forces
box.rmin = 0 even with Gear or box change (not recommended).

bulkmodulus (0) An estimate of bulk modulus (inverse compressibility) in Pa. It is used in
the Berendsen-like NPT simulation (see tau.P), van der Waals radius fitting and similar.
If not set, an ideal gas approximation is adopted. Hint: for water bulkmodulus=2.2e9.

No bulk modulus applies for the MTK-style barostat, thermostat="NPT".

If used for particle size adjustment (see tau.sig), and if the σ-like parameter has a
meaning of inverse size (as in the Buckingham or Busing force fields), bulkmodulus must
be negative. For Lennard-Jones bulkmodulus should be positive.

cache (64) This option rearranges the pair (r-space) sums. Void with the LINKCELL
version.

cache=0 Recursive triangulation (fractal) algorithm, efficient for large systems of
polyatomic molecules (with long cutoff, otherwise LINKCELL may work better).

cache=1 The simplest pair forces in 2 nested loops, good for small systems.

cache>1 The pair (r-space) sum is rearranged into pair sum of blocks over cache×cache

molecules. In case of a simulation with a lot of small molecules, the program runs
faster because the number of cache-memory transfers is decreased. The typical speed
gain is 20% on x86 for 1000 water molecules.

center.K (0) FREEBC only: removed in version 2.9f (see below)

center.r0 (0) FREEBC only: removed in version 2.9f (see below)

center.K[*] (0) Harmonic (and optionally shifted) central force constants, separately in
x, y, z coordinates. The force is to the center of the box (in periodic b.c.) or to (0, 0, 0)
(if FREEBC).
BUG: In FREEBC, the number of degrees of freedom as well as drift corrections are not
set automatically. Use variables conserved and drift!

center.r0[*] (0) Periodic b.c.: offsets from the center of the box, separately in x, y, z
coordinates. The potential is:

u =
∑

w=x,y,z

hw(w), where hw(w) = Kw


(w + r0w)

2, for w < −r0w
0, for |w| < r0w
(w − r0w)

2, for w > r0w

(9.2)
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(x, y, z) is the distance from the respective center,
→

K = center.K[] is in the internal
program units; i.e., in K.

If center.r0=0, this is the harmonic oscillator: A free molecule will exhibit harmonic
vibrations with period

τ = C ×
√

m

nKw

, (9.3)

where m is the mass in g/mol, n is the number of sites, and C = 2π× 0.776 ps = 4.88 ps.

Example: for a water molecule and Kw = center.K = 1 we get from m = 18 g/mol and
n = 3 that the period is approximately 12 ps.

These forces are intended with nonzero center.r0 to keep molecules in the selected area;
outside this area, accelerations acting to molecules of different masses differ and motion
is affected by a torque. Consider also center.cmK below.

WARNING: the potential is not spherically symmetric unless all center.r0 are zero and
all center.K are the same. Set variables conserved and drift manually!

center.cmK[*] (0) The same harmonic force (pointing to rc = (0, 0, 0) in case of FREEBC,
or to rc = (Lx/2, Ly/2, Lz/2) = center of the box in the periodic b.c.) is added to all
particles. The potential of the force is∑

i=x,y,z

Ki(rCM,i − rc,i)
2 (9.4)

where CM is the center-of-mass. This force causes the whole configuration (typically the
slab for Kz = center.cmK[2] > 0) to move to the center of the box, but there is no
force to keep the slab together. The force applies to the first center.cmn molecules
only (excl. those fixed by option -j). Centering and removing velocity drift should be
turned off for the selected coordinates (see drift); e.g., drift&4 and drift&32 should
be zero if center.cmK[2]>0). The typical usage is to keep a configuration (slab) in place
if other forces (fixed atoms) are present. A suitable force constant cmK may be from 100

to 10000. The correlation time in ps is τi =
√
m/2/Ki = 0.7755

√
M/Ki), the period is

2πτ . (The mass is in the program units; m = 0.831446M , where M is the total mass of
all molecules in g/mol.)

center.cmn (0) Number of molecules to which the central harmonic force (see center.cmK)
is added. A number greater than the number of molecules N is equivalent to N .

cl.format (1) The same as keyword format in file simname.cli (see Sect. 14.8.3).

cl.maxn (20) The same as keyword maxn file simname.cli (see Sect. 14.8.3).

cl.maxcluster (12) The same as keyword maxcluster in file simname.cli (see Sect. 14.8.3).

cl.mode (0) cl.mode is a sum of bits:

cl.mode=1 Turn cluster calculations on.

cl.mode=2 The same as keyword clusters in file simname.cli (see Sect. 14.8.3).

cl.mode=4 The same as keyword configurations in file simname.cli (see Sect. 14.8.3)

cl.mode=8 The same as keyword bonddynamics in file simname.cli (see Sect. 14.8.3)
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NOTE: All cl.* variables require #define CLUSTERS at compile time.

conserved (-1) The number of conserved degrees of freedom (e.g., momenta and angular
momenta or additional constraints with ANCHOR, but not energy). If conserved=-1
(default), it is determined from drift. WARNING: the automaic setup does not work
with ANCHOR. See also drift.

corr (3+16; with PERSUM 3+16+32) Selects which corrections will be included by summing
up the following flags. For slab corrections, see slab.K and slab.range instead. Do not
confuse with drift.

1 Homogeneous cutoff corrections (of Lennard-Jones and similar interactions) are
included in the final results for pressure, energy, enthalpy, etc.; for the exception,
see corr=2 below. Some quantities (components of the pressure tensor, quantities
requested in a cpi-file) are still recorded without these corrections.

If this bit is 0, the cutoff corrections are not included; nevertheless, they are
calculated and reported (so that they can be added manually).

2 Homogeneous cutoff corrections are included in the pressure used by barostat.
Turning off this feature is useful for maintaining a selected pressure component
as Ptzz = Pzz.

4 Finite-size correction Nf0/Nf× for the kinetic part of the pressure, see (15.15).1

This applies to the atom-based pressure (tensor) and atom-based virtual volume
change calculation. The value can be combined with 1 or 2. Cannot be combined
with tau.CM.

This correction should be used for NVE and momentum-conserving thermostats
(Nosé–Hoover, Bussi, Berendsen). It should not be used with particle-based
stochastic thermostats (Andersen, Langevin). It is not suitable for pressure
components in the slab geometry (e.g., vapor pressure from Pzz).

In the NPT ensemble by Martyna-Tobias-Klein (thermostat="NPT"), Nf0 is already
modified so that this term is correct and corr&4 should not be used (this is correctly
set with corr&16 – see below). This may be broken while switching thermostats –
be careful and check Nf0 (No.f4P in the prt-file) vs. Nf (No.f).

8 As above, except that the degrees of freedom are molecule-based (w.r.t. centers of
mass). Suitable for pressure calculated via molecule-based rescaling.

16 The kinetic pressure corrections are set automatically according to the thermostat
and barostat in use.
WARNING: This automatic setting fails if the thermostat/barostat is changed within
one run (after ; in the data); then, corr should be set manually. See also corr&4

above.

32 In calculating the cutoff correction and RDF, the number of pairs of equal atoms
is set to N2/2 instead of N(N − 1)/2. This guarantees identical results when the
configuration is periodically repeated (useful with PERSUM), but violates the strict
NV T definition of RDF.

64 In the calculation of the number of the degrees of freedom with NVE (no-thermostat)
and Berendsen thermostat, 1 is subtracted to account for energy conservation. This

1Since V2.6m this had been the default without a possibility to turn this correction off. Since V2.7a the
correction is set by corr&4 with a smart default.
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was the default for V3.1m and older. See Table 12.1 for further explanation and
discussion.

128 Suppress warning “The kinetic pressure correction seems to be inconsistent. . . ”.

For the cutoff, See Sect. 11.4.

NOTES: corr=4,8 are new in V2.6m. These corrections are small for bulk liquids and
solids but important for gases. Some finite-size effects ≈ C/N are still present, but these
corrections decrease substantially the constant C.

CPnbit (0) If 5<CPnbit<25 is given, packed file .cpz will be created for the convergence
profile instead of the normal .cp one. CPnbit is the number of bits for coding the min-
max range of each recorded variable (i.e., there are 2^CPnbit levels). Use utility cppak

to convert it to .cp (and vice versa). Recommended values are from 12 to 20, with the
file sizes shrunk to 30%–50%. Utility showcp understands the cpz-files as well so that the
analysis of convergence profiles is transparent.

cutoff (0) Real-space cutoff in Å. Unless PERSUM is #defined in simopt.h, cutoff must
not be shorter than LJcutoff and longer than half the box size (for the LINKCELL
version this limit is weaker). The default of 0 means the automatic setup:

• With the Ewald summation, cutoff will be selected to half the final (reference) box
for small systems (< 1000 charges), otherwise to const×N1/6.

• With cutoff electrostatics, it is set to min(half the box,12 Å).

• With FREEBC and NIBC, it is set to 9e9 (“infinity”)

Note that cutoff also defines the range for calculating the radial distribution functions
(this does apply also for the FREEBC version) unless modified by rdf.cutoff.

MSD.mode (0)] Normally in the reread mode (options -m0 or -m1). See also plb2diff.
Sum of flags:

MSD.mode=1 Calculate mean square displacements (over species) and diffusivities.

MSD.mode=2 Calculate square charge displacements and the conductivity.

(Called diff.mode in V3.7a and older.)

dih.grid (0) Grid for measuring the dihedral angle distributions. See also #define

DIHHIST in simopt.h. The full angle of 360 deg is divided into dih.grid subintervals.
dih.grid=0 turns off measuring. The results are stored in binary file with extension
.dih; at the same time, ascii dump .dia is printed.

dih.res (0) REMOVED in V3.4e.

dih.cp (-1) -1 Average of all gauche or cis counts recorded in the convergence profile

>0 Dihedral # dih.cp is recorded. (For the numbers, see the output .prt file) NOTE:
from V2.0j, dihedrals (and dih.cp) are numbered from 1

dih.dcp (0) Must be set (dih.dcp=1) to enable dihedral dump. See file extensions .dcp

and .ddh for details. DIHHIST=-1 required, species=0 only.
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drift (4096) This variable affects the way how the center of mass, linear momentum,
and angular momentum are corrected for numerical errors. In addition, the number of
conserved degrees of freedom is derived from drift as the default (with conserved=-1).
It is a sum of (NB: leading 0 denotes octal number):

drift=1=01 Place the x-coordinate of the center of mass to center (FREEBC) or box
center (periodic b.c.).

drift=2=02 Place the y-coordinate of the center of mass to center (FREEBC) or box
center (periodic b.c.).

drift=4=04 Place the z-coordinate of the center of mass to center (FREEBC) or box
center (periodic b.c.).

drift=8=010 Set the x-component of the linear momentum (velocity drift) to zero.

drift=16=020 Set the y-component of the linear momentum (velocity drift) to zero.

drift=32=040 Set the z-component of the linear momentum (velocity drift) to zero.

drift=64=0100 Set the x-component of the angular momentum (rotation) to zero.

drift=128=0200 Set the y-component of the angular momentum (rotation) to zero.

drift=256=0400 Set the z-component of the angular momentum (rotation) to zero.

(drift&1536)=0 (octal: (drift&03000)=0) Corrections will be performed at start
(init/load) and every cycle (default).

(drift&1536)=512 (octal: (drift&03000)=01000) Corrections will be performed at
start (init/load) only.

(drift&1536)=1024 (octal: (drift&03000)=02000) Corrections will be performed
at start (init/load) and every step.

(drift&1536)=1536 (octal: (drift&03000)=03000) Corrections will be performed
at start (init/load) and before saving.

drift=2048=04000 For molecules with ‘dependants’ (like site M in TIP4P water), the
dependant positions are recalculated after every cycle (of noint steps). The default
is that the dependants are calculated when necessary only (=before force calculation
and saving cfg- or plb-files).

drift=4096=010000 Requests automatic determination of all components 1..256. This
is the default. However, it may fail at certain combinations (like configuration
anchored to a few atoms, combination of anchoring with walls, etc.)

drmax (0.2) Maximum displacement allowed in one integration step, in Å.
Positive: applies with init>=3 (initialization) and thermostat only, irrelevant for init<3
and constant energy/enthalpy (no thermostat).
Negative: |drmax| applies unconditionally (may be useful with init<0 which ignores
drmax>0; drmax should be then set to 0 after a sweep).
Useful while initializing when forces are large and would cause the integrator to crash.
Equilibration with this option turned off (drmax=0 or |drmax| large enough) should follow.
Should not be used in productive runs! For compounds containing hydrogen at
ambient temperatures, drmax=0.125 works fine, drmax=0.2 OK with longer timesteps.
If drmax is used, Emax can be larger (about 10000, but usually not more than 100000),
which makes the initializer faster.
(V3.0e: thermostat checks added)
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dt.cfg (0) Frequency of writing configurations to files simname.1, simname.2, ..., in ps.
The default dt.cfg=0 switches off the function, so does -r0.

Option -r determines the number of derivatives written. The default is -r1, i.e., only
positions (not velocities) are dumped; use -r2 to dump positions and velocities (NOTE:
with Verlet, r(t) − r(t − h) are written, with Gear, hṙ(t)). The dump for polarizable
models includes positions of the Drude charges.

During a simulation (option -m2 or higher), dt.cfg should be an integer multiple of
h*noint. If started with init=2, simname.1 is saved at time t=dt.cfg; there is no
simname.0 (unlike the first frame in simname.plb which is for t = 0).

New in V3.6k: During the re-read mode with -m1 (i.e., a plb-file is read instead
of simulating), dt.cfg should be an integer multiple of dt.plb*reread.by. Files
simname.# with # = t/dt.cfg (rounded if needed) are dumped. Note that frame 1
(reread.from=1) in a plb-file corresponds to t=0 which is how it is typically written
during simulation; hence, simname.0 is dumped (unlike during simulation where dumping
starts with t=dt.cfg). The numbering of the remaining simname.# is the same is
if obtained during a simulation with the same dt.cfg. Option -r1 should be used
because velocities are not available. With polarizable models, use also option -f and
set scf.omegax and scf.epsx to the required accuracy of SCF; the positions of Drude
particles are then written to the cfg-files dumped. Example:

dt.plb=1 dt.cfg=1

reread.from=2 reread.to=11 reread.by=1

scf.omegax=0.88

scf.epsx=0.01

! run by: cookgcp0slc -m1 -f -r1 -w0 forcefield simname source.plb

will create files numbered simname.1 .. simname.10, corresponding to times 1 .. 10 ps.

See utility cfg2asc to get the ASCII image of the saved files.

dt.plb (0) How often to write playback, in ps. See also option -y (the default is to record
the whole configuration).

dt.plb>0 : Writes once every dt.plb ps. dt.plb should be an integer multiple of the
timestep h, otherwise the configurations will not be written in regular time intervals.

dt.plb=0 : Writes once after every sweep (data set ended by ;) finishes or is interrupted.

In both cases the initial configuration (at t=0) is included (even if t=0 is a consequence
of init=2).

CAVEAT: dt.plb for post-processing (as diffusivity and conductivity calculations),
should be written in the def (not get) file.

dt.prt (0.001) Frequency of printing protocol (in ps). dt.prt=0 switches off printing,
dt.prt=tiny value causes every cycle to be printed.

dV (0) Fool-proof independent pressure calculation by virtual volume change, also for area-
change for surface tension 15.8. For debugging and checking purposes—normally the virial
of force as calculated in cook from all pair forces is more accurate. Uses the formula:

PdV = kBTN − ⟨dU/dV ⟩ (9.5)
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where the derivative in the ensemble average is calculated numerically by scaling the
volume exp(dV) and exp(-dV) times and taking the difference.

Turned off by dV=0 (default).

With rescale&8 set ("CM" in the mnemonics, e.g. rescale="xyzCM"), a molecule-based
calculation is selected: Positions of centers of mass of the molecules are scaled by a factor
given by the cube root of the volume ratio. The shape and size of the molecules are
unchanged. In the above formula, N = N/V is the number density and kBTN becomes
2Ekin−inter/3V , where Ekin−inter is the translational kinetic energy of whole molecules
(of their centers of mass). Can be used also with constraint dynamics, but fails if the
molecules are of sizes larger or comparable with the box size/2.

If rescale&8 = 0, atom-based calculations are selected. Positions of all sites are scaled
by a factor given by the cube root of the volume ratio. In the above formula, ρ is the
atom number density and kTρ becomes 2Ekin/3V . Should not be used with constraint
dynamics, i.e., cook -u99999 should be used.

Reasonable dV is around 0.001, according to the accuracy of calculations, which means
that Ewald needs to decrease el.epsr, el.epsk. The pressure, called PdVa (atom-based)
or PdVm (molecule-based), is recorded in column 4 in the convergence profile. Typical
numerical errors for dV=0.001 are tens of kPa for charged systems or units of kPa for
argon. Note also the systematic difference between virial-based and pressure-tensor-based
values for Ewald, which are around MPa for the default setup.

For Ewald summation, the atom-based pressure PdVa is the same as the true virial pressure
with small numeric deviation caused by finiteness of dV and sampling at different time.
The ensemble average of the molecule-based pressure PdVm is also the same (irrespective
of the system size).

For cutoff electrostatic, see Sect. 15.3, this is no longer true because of the truncate-and-
shift errors. However, both pressures are the same in the thermodynamic limit and large
cutoff.

For POLAR, see scf.epsx determining the accuracy of the self-field. dV should be
relatively large, perhaps up to dV=0.01, even though this may lead to systematic pressure
error. Note that the pressure error is proportional to dV2 because a second order difference
method is used to calculate the energy over volume derivative.

For POLAR, the accurate (=iterated to precision scf.epsx) induced dipoles are compared
to those generated by the integrator (predictor-corrector). However, to spare, the
reference induced dipoles are calculated as average of the values for volumes V+dV and
V-dV so that dV must be small enough.

Other boundary conditions (NIBC) have not been tested.

If rescaling by only some coordinates is set (e.g., rescale="x"), the box is scaled in
selected coordinates only and the corresponding diagonal component of the pressure tensor
is printed. However, the kinetic part is based on temperature (not on the respective kinetic
part of the pressure tensor) so that the virtual volume pressure tensor component agrees
with the virial-based only on average. Similarly, the virial pressure (or component) agrees
with the molecular-scaling result only on average.

NOTE: the calculated pressure is written to column 4 of the cp-file – tau.rho should be
unset.
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E (0) Total (potential+kinetic) energy, i.e., the value of the Hamiltonian, to be kept constant,
in Kelvin. If the Nosé–Hoover ensemble is used, then the extended Hamiltonian. If the
isobaric ensemble is used, then the enthalpy. See also tau.E

Eelst[*] (0,0,0) Removed in V 3.4f, see el.E[]

el.alpha Ewald (and Fennell–Gezelter): The separation parameter, in 1/Å. See also
el.test. It is set automatically if el.test=-10, otherwise el.alpha=0.2.

FREEBC: irrelevant.

Cutoff electrostatics: the cutoff is smooth in the interval [alpha*cutoff,cutoff],
alpha=0.7 (the default) is recommended. (NOTE: larger values (> 0.8) cause artifact
angular correlations for small molecules as water).

el.B[*] (0,0,0) Static external magnetic field in T. Not for POLAR. Magnetic force affects
moving point charges vial the Lorentz force. Moving charges are not assumed to be a
source of magnetic field. Implemented for Verlet/SHAKE only using velocities predicted
by TRVP. Cf. el.m.*. For FREEBC, drift must be set manually.

el.bg (0 or 1) Must appear in the def-file. What to do in case of charged system (cf.
el.epsq):

el.bg=0 Charged system is error. This is the default for COULOMB.

el.bg=1 Calculation proceeds with the charged system. If Ewald summation applies,
the simplest energy term for “charged background” is added. This is the default
for FREEBC and NIBC. SLAB: the background charge is not icluded in charge
z-profiles.

el.bg=2 Make the system neutral by adding the same charge to all charged sites.
OLD: Available by option -q-# prior V3.5i.
??? POLAR: “Drude charges are not changed since V3.1c” – double checked, the
Drude charges are changed, too.

el.centroid (0) This option make sense only for ionic systems (charged molecules).
If set to 1, the dipole moments of ions are calculated with respect to charge centroid
(center of squared partial charges). The total dipole moment of the simulation cell then
is not a sum of the partial dipole moments. (The total dipole moment calculate during
the Ewald summation is anyway.)
If set to 0 (default), no transformation is made; the dipole moments of individual molecules
do not make sense.
(To be changed in future.)

el.corr (0) Extended slab dipolar correction by Yeh–Berkowitz [9] or by Ballenegger–
Arnold–Cerdà [10]. Sum of flags:

1="x" Correct the x-component of forces and energy. Probably not useful.

2="y" Correct the y-component of forces and energy. Probably not useful.

4="z" Correct the z-component of forces and energy. Good for the z-slab geometry
used by (the SLAB version of) cook. This is the slab correction by [9]: In the
z-slab geometry, the interaction of the z-components of the slab dipole moments
is compensated. For systems with no free charges, this is (almost) equivalent to a
system periodic in x, y. el.corr="z" is recommended for slabs of dipolar fluids. It
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cannot be used for ionic systems because of a jump in forces.
IMPORTANT: See also variable corr, see Sect. 15.9.

8 Corrected Measurement only. The above corection is not included in forces (the
trajectory is the same as with el.corr=0) but affects the electrostatic energy,
pressure, and the selected diagonal components of the pressure tensor (cf. Sec. 15.9).
Energy conservation is thus violated. Useful, e.g., for determining vapor pressure
of ionic liquids. Typically, el.corr=12="zCM" adds the correction to Pzz and the
electrostatic energy.

NOTE: el.corr=7="xyz" is equivalent to el.epsinf=0, which can be interpreted as the

zero electric displacement (because
→

D = ϵ′
→

E = 0).

Former el.slab or negative el.epsinf was equivalent to el.corr=4

el.diag (0) (to be reconsidered, cf. el.rshift&4)

el.diag=1 Calculate and include to the electrostatic energy the diagonal k-space
correction [11]. Useful for molten salts.

el.diag=0 Calculate, but do not include the diagonal correction for Ewald electrostatic
energy [11].

el.diag=-1 Do not calculate the diagonal correction at all.

el.diff (0.05) Relative error of box size change (any coordinate) before a warning “***
box has changed by >el.diff (log-scale) and k-vectors remain unchanged” is printed. Note
that the number of k-vectors is not adjusted with the box because it would lead to a jump
in energy.

el.E[*] (0,0,0) Called Eelst[*] before V3.4g.

External electrostatic field
→

E = (Ex, Ey, Ez) ≡ (E0, E1, E2), in V/m. It is recommended
to use only the z-part, e.g., Ez = el.E[2] = 3e7. See el.f and el.phase[] for time-
dependent field. For FREEBC, drift must be set manually.

For dipolar systems:
If el.E[i] is set, i = 0, 1, 2, the component M[i] instead of total dipole moment |M| is
reported in the convergence profile. Note that either lag.M or lag.J must be set to turn
this calculation on. (There is an independent calculation of the dipole moment with the
Ewald summation. This inefficency may be removed in future.)

MACSIMUS reports Mz (or M[2]) in “program dipole units” (1 p.u. = 0.0117501 D =
3.9194115e-32 Cm). The dielectric constant (relative permittivity) is then computed from
averaged Mz = Mz, see Appendix 29, eq. (29.7).

For ionic systems:
Can be used for NEMD determination of conductivity. To measure the electric
current density, you must specify lag.J (e.g., lag.J=lag.err). Thermostat (e.g.,
thermostat="Berendsen" must apply. MACSIMUS reports the current density in A/m2

so that the conductivity in S/m is simply κ = Jz/Ez.

el.ecc (0) with #define ECC, EXPERIMENTAL, See Sect. 33. Turns on the Electronic
Continuum Correction (ECC) code aka Molecular Dynamic with Electronic Continuum
(MDEC).
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0 Standard no-ECC version (default).

1 Ion solvation model. The ble-file contains real (unscaled) charges, these charges are

then multiplied by scaling factor ϵ
−1/2
f (see el.epsf below).

2 Dipole solvation model. The ble-file contains real (unscaled) charges, these charges

are then multiplied by scaling factor ϵ
−1/2
f (2 + ϵf)/3.

-1 Ion solvation model. The ble-file contains already scaled charges. Useful for
pretending that a model has ECC-like scaled charges, for using el.epsf calculated
by another way than from the Clausius–Mossotti (CM) formula, etc.
Note that in some calculations, the original charges are reconstructed (using the CM
formula) and scaled again by a different factor (in V3.4d, only virtual volume change
determination of pressure is implemented in this way).

-2 Dipole solvation model. The ble-file contains already scaled charges.

Must be present in the def-file. NOTE: replaces el.fast of V3.3h and older

el.epsf (0) #define ECC needed, EXPERIMENTAL, with el.ecc. The dielectric constant
of the electronic continuum (not simulated optical or fast modes of the material dielectric
constant), ϵf . If not given (i.e., el.epsf=0), it is calculated from the polarizabilities
present in the ble-file in the column (originally) intended for a combining rule using the
Clausius–Mossotti formula:

ϵf =
1 + 2a

1− a
, a =

4π

3V

∑
i

αi (9.6)

where αi are the polarizability volumes. Must be present in the def-file.

WARNINGs:

• el.epsf is calculated once and does not change if volume changes (e.g., if density is
requested to change by tau.rho). If you wish to change it after volume change, use
el.epsf=0 and equilibrate.

• No support for NPT (el.epsf remains constant)!.

• Final pressure must be calculated from individual contributions printed, see script
Pk.sh and file notes.pdf.

el.epsinf (3e33 for Ewald, 1 for cutoff electrostatics) The relative dielectric con-
stant ϵ′r of surrounding continuum for the Ewald summation.
WARNING: since V2.7f, el.epsinf=-1 does not mean the dipole slab correction (cf.
el.corr).

el.epsk (0.5) Ewald only: Accuracy of k-space Ewald sums, in K/Å. el.epsk is the
maximum allowed k-space cutoff error in force on one charge. See Sect. 11.2. (Prior
2.4e called only epsk)

el.epsq (0) Must appear in the def-file. Detection limit for the total charge expressed as a
relative error. If √√√√(

∑
i qi)

2∑
i q

2
i

> el.epsq

then further actions are taken according to the value of el.bg (0=error, 1=background,
2=redistribute to make neutral). The default translates into a reasonable heuristic
threshold (different for POLAR and nonpolar).
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el.epsr (0.05) Ewald summation: Accuracy of r-space Ewald sums (see Sect. 11.2) [? or
approximation of 1/r in cutoff electrostatics (see Sect. 15.3)], in K/Å. el.epsr is the
maximum allowed cutoff error in force on one charge. (Prior 2.4e called only epsr)

el.f Frequency of the external electric field (el.E) in Hz. See also el.phase and el.E.

el.grid Periodic b.c. only.
Grid to calculate functions (splines) needed for real-space Ewald sums (also for deprecated
COULOMB=2). The grid means that independent variable x = (αr)2 is split into spline
intervals so that there are el.grid subintervals per ∆x = 1. Typically, the maximum x
corresponding to the cutoff is around 3.5–4, but the tables are a little bit extended.

The default el.grid depends on the splines used:

SPLINE=3 el.grid=32. In cook V3.6w and older, finer grids (larger el.grid) were
numerically imprecise due to numerically unstable procedure used in the calculation
of the spline coefficients. This was fixed in V3.7a.; however, finer grids are usually
not needed anyway.

SPLINE=±2
For COULOMB=-2 (recommended, intramolecular charge-charge terms calculated
by the library function): el.grid=256.
For COULOMB=-1 (intramolecular charge-charge interactions calculated by splines
– not recommended): el.grid=512. For water, the error in pressure caused
by intramolecular Ewald r-space terms calculated via splines is 2e13/el.grid3 Pa.
Similarly, the surface tension error is about 200000/el.grid3 N/m.

el.kappa (0.2 [Ewald], 0 [Cutoff electrostatics]) The reciprocal space cutoff pa-
rameter in [1/Å]: maximum integer k-vectors are Kx=el.kappa*L[0], Ky=el.kappa*L[1],

Kz=el.kappa*L[2] in the respective directions. More precisely, the absolute value of vec-

tor (Kx/Lx, Ky/Ly, Kz/Lz),
→

K ∈ Z3, is bound by el.kappa. Note that these k-vectors
mean the number of waves in a unit of length (1 Å). The k-vectors used in the structure
factor calculations are multiplied by 2π. See also el.test. For the Cutoff electrostatics
version, el.kappa=0 should be used.
HISTORY: in old cubic-box versions, dimensionless parameter K=el.kappa*L was used.
In non-rectangular-box versions prior 2.4e, this K meant Kz and Kx,Ky were scaled ac-
cordingly.

el.m.* Simulation of molecules with a classical magnetic moment. The magnetic moment is
represented by two opposite magnetic monopoles. It interacts with the external magnetic
field el.B only. Magnetic dipole moments of different molecules do not interact mutually
nor with moving charges Not implemented for POLAR. Cf. el.B. BUG: Virial of forces
not calculated.

Note that the energy of two Bohr magnetons 1 Å apart divided by kB is in interval
[−0.62, 1.25] K, and negligible if angle averaged in a fluid (as Keesom). For comparison,
one Bohr magneton in a field of 1 T has energy 0.67 K (but this is not averaged to zero).
The code includes also the interaction of magnetic field with point charges. A water
molecule at ambient temperature can be roughly approximated by a loop of radius r = 1
Å and an elementary charge with speed v = 1 km/s. This generates a magnetic moment
of µ = IS = ve

2πr
πr2 = ver/2 = 0.00086µB. This small and likely negligible, too.

el.m.sp (0)
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el.m.sp≥ 0 Species containing the magnetic moment.

el.m.sp< 0 All species |el.m.sp|, |el.m.sp|+1 etc. contain the magnetic moment.

el.m.plus (0) Site number of the above species where the positive magnetic monopole
is placed.

el.m.minus (0) Site number where the negative magnetic monopole is placed. It is
recommended that bond el.m.plus–el.m.minus is constrained.
BUG: Validity of el.m.plus and el.m.minus is not tested.

el.m.m (0) Magnetic moment in Am2 = JT−1. Note that this is a large unit, use
multiples of the Bohr magneton µB = 9.2740100783(28)×10−24Am2.

el.minqq (1) Minimum charge-charge distance, in Å. This value serves for two purposes:

1. For point charges: The error of splines for the r-space part of the Ewald sums is
reported for this distance, see Sect. 11.6. (GAUSSIANCHARGES: always from zero)

2. With POLAR: ERROR is reported if the distance of the Drude particle from the
central atom exceeds el.minqq.

(Called minqq prior version 2.4e)

el.Perr (1e6 for Ewald, 1e7 otherwise) Maximum difference between pressure calcu-
latd from the virial theorem (elst. energy = −virial) and trace of the pressure tensor
before a warning is printed. For Ewald of point charges, this indicates the Ewald preci-
sion. Does not apply for Gaussian charges (the virial theorem does not work here).

el.phase[*] (0,0,0) Phase for time-dependent external electric field, vector:

Ei(t) = el.E[i] cos(2π(el.f ∗ t− el.phase[i])) (9.7)

where i = x, y, z. Example:

el.f=2.45e9 ! [Hz]

el.E[0]=1e8 ! [V/m]

el.phase[0]=0 ! Ex=cos(2*pi*el.f*t)

el.E[1]=1e8 ! [V/m]

el.phase[1]=0.25 ! Ey=sin(2*pi*el.f*t)

In turn, this field rotates around the ẑ-axis.

el.rplus (2.5) Additional range to erfc splines (former ERFCPLUS): the real range usable
without index out of range is cutoff+el.rplus. Needed for optimized water models,
does not hurt if unnecessarily large. Not needed for Drude charges (POLAR version)
because the cutoff test is based on the distance of central atoms.

el.rshift (3) Sum of flags:

1 The r-space spline [of eru(r) = erfc(r)/r for point charges] for the r-space
electrostatic energy is shifted to avoid the jump at the cutoff.

2 As above for the forces
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4 Hammonds–Heyes correction added [12], see Sect. 11.7. It means that α′ =
α erf(πκ/α) will be used for the r-space calculations in the Ewald summation and
the self-term, to account in some averaged way for the missing k-space terms.

The performance of this approach is not clear. Cf. el.diag. In V3.6s and older,
this meant detailed test (as -v4).

el.rshift=3 is recommended at very low temperatures and especially for normal mode
calculations.

el.sat (0) The desired saturation of dipole moment of the cell. Void if tau.sat=0. See
Sect. 29.3.

el.sf (0) Applies for cook* -m0,-m1 (re-read mode).

el.sf=1 : Calculate a sphericalized structure factor (for a cubic box box only)

el.sf=3 : Calculate the full 3D structure factor.

el.test (Ewald: -10, cutoff electrostatics: 0) Unless el.test=0 or el.test=-10,
the control switches to a module that sets and tests the electrostatic forces accuracy and
Ewald parameters. See Sect. 11.2.

Ewald only: The default value el.test=-10 means automatic selection of el.alpha and
el.kappa based on default accuracies el.epsk and el.epsr.

BUG: Out of order for polarizable molecules with no or small charges (yet it makes sense
to calculate, e.g., in elst. field).

el.test=0 means no automatic selection (the values of el.alpha and el.kappa remain
unchanged).

Emax (10000) The energy limit for inserting one molecule when the configuration is initialized
(init>=3), in Kelvin. See also drmax.

eps (1e-6) Accuracy for calculating the Lagrange multipliers, See Sect. 11.3. With option
-l, the step for numerical gradient. (the default was 1e-5 prior V 2.0d)

epsc (1e-7) Accuracy of correcting constraints, See Sect. 11.3. At least 1e-9 (better 1e-
10) needed for adiabatic simulation! The default is changed to epsc=0.05 for conjugate
gradient method of correcting constraints (unset bit 1 of -c).
Special: For |SHAKE|=1, epsc>=1 determines a constant number of iterations; omegac
must be set by hand.

epsp,epspx,epspq Changed into scf.eps, scf.epsx, scf.epsq – see there.

equalize.cfg (0) Redistribute masses of atoms globally for species given by equalize.sp.
The molecular masses of species may change because the masses may be redistributed
across species; use-v7 for a verbose list of all masses. Should be used in the def-file
only and is applied only once. Does not apply to dependants. Normally should be in
interval [0, 1]. If both equalize.cfg and equalize.mol are given, then molecule-based
equalization (equalize.mol) is applied first. It is not allowed if the number of molecules
changes from that given in the def-file (as may happen for init="crystal" or loading a
cfg-file with load.N allowing changing numbers of molecules: use equalize.mol or put
the correct numbers of molecules.
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equalize.cfg=0 Means preserving the original masses (the default).

equalize.cfg=1 Means that all atoms in the selected species will have the same
(averaged) mass.

See below for the formula.

equalize.mol (0) Redistribute masses of atoms by molecules for all molecules. The
molecular masses of species do not change. This is equivalent to equalize in cook prior
V3.3k. Should be used in the def-file only and is applied only once. Does not apply to
dependants. Normally should be in interval (0, 1).

equalize.mol=0 Means preserving the original masses (the default).

equalize.mol=1 Means that all atoms in individual molecules will have equal masses;
however, these masses may differ for different species.

The formula:

mi :=
1

ns

ns∑
j=1

mj ∗ equalize.mol+mi ∗ (1− equalize.mol) (9.8)

Equalizing masses (especially of hydrogens) enables longer timesteps, however, kinetic
quantities are affected. E.g., h<0.0015 ps is recommended for water (with normal
hydrogens) to guarantee equipartition error less than 0.5 K, h=0.002 ps is acceptable
if the masses are equalized. Dependants are not equalized (if there is a dependant with
mass, it is distributed to nearby sites.)

CAVEAT: Since equalize.mol is read from data (def-file) before the ble-file is read, not
all variables are available to be used in formulas. The following variables are available:
no, noint, h, E, rho, L[], tau.T, T. Examples of data:

noint=5 h=.01/noint equalize.mol=0.8*(h>0.0015) ! allowed, equalize.mol=0.8

center.K=5 equalize.mol=center.K>1 ! equalize.mol=0: WRONG - no error reported

BUG/FEATURE: cannot use constructs as rho+=1 in the .def file (if rho is the default
value)—would be executed twice!

equalize.sp (−big=all species) Species control for equalization.

equalize.sp>=0 The species number for which equalization applies.

equalize.sp<0 Equalization applies for species in range 0..|equalize.sp|. Molar
masses of species change, the mass of the whole configuration is unchanged.

− big number changes into -(nspec-1); i.e., whole configuration is equalized.

gear.C[] (-9e9,-9e9,..) Gear’s coefficients to be changed, applies only with gear.init>0.
The array is initialized to large negative values indicating that the coefficient should be
left as set by option -m and gear.init.

gear.init (3) Gear integrator version:

gear.init=1 The original Gear’s corrector coefficients for the right-hand side not
containing velocities.
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gear.init=2 The original Gear’s corrector coefficients for the right-hand side contain-
ing velocities.

gear.init=3 Corrector coefficients by [50] (lower order but better energy conservation).

gear.init=0 Not to be set by a user: init=0 is set after initialization with positive
init.

gear.P[] (1,1,..) Removed in V3.6h

group[3] (0,1,2...) Groups of species for convergence profiles and analysis of cell dipole
moment and current density, see Sec. 9.2.3, file simname.cpi. Do not confuse with
groups of sites in simname.fix!
Example: We have brine with species 0 = Na+, species 1 = Cl−, species 2 = water.
Then

group[0]=0 ! Na+

group[1]=0 ! Cl-

group[2]=1 ! SPC/E water

will define both ions as group 0 and water as group 1. To monitor the current density for
ions only, use keyword Jx0 in simname.cpi. To monitor the current density for water,
use keyword Jx1.

h (0.001) The integration step in ps. Example (1 cycle = 0.01 ps):

noint=6 h=.01/noint

init (0="continue") The initial key:

0 "continue" or "cont" Continue the run from the point stored on disk, all
measurements the convergence profile and playback will be appended. Some
measurements like CPU times are not stored and are initialized for each run. This
is the default for every cycle (after every cycle init is set to 0 with the exception of
tau.sat<0).

1 "append" As above but the measurements are initialized; only the convergence profile
and the playback files will be appended.

2 "start" As above but also the convergence profile will be initialized.

3 "random" Everything will be initialized included the configuration. Random shooting
algorithm used. See also MC. FREEBC: the first molecule (molecule 0) is always
centered, other molecules are shot according to Gaussian distribution. See Sect. 13.

4 "bias" or "slab" . SLAB version: Cheap way to make a liquid slab, trickle,
droplet, cavity, tunnel. The same as init=3="random" with a bias to/out of the
center of the box in the respective coordinates. With #define SLAB, the geometry
is given by slab.geom. Without #define SLAB and in the periodic boundary
conditions, use option -d instead. (In the FREEBC boundary conditions, a Gaussian
droplet applies for both init=3 and 4 and -d has a different meaning.)

The initial slab (trickle, droplet) is quite diluted, but it condenses. The box should
be longer in the respective directions and the initial cooling should be intensive
(otherwise the slab expands instead of condensing to the center). Tested for water
with thermostat="Berendsen" tau.T=0.1.
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Without #define SLAB, only a simple slab is prepared.

(In versions V2.4n–V3.5h, init=4="slab" created a slab only both with #define
SLAB and without. In versions prior 2.4n init=4="rawrandom" meant not
correcting constraints of input configurations.)

5 "crystal" or "lattice" Everything will be initialized included the configuration.
Initial configuration is a regular lattice. See pins for available crystal structures.
Cf. No.rotatefrom.

10 "asc" Reads configuration from file simname.asc (see option -l for its format.)
incl. box size.
This option is not not equivalent to standard read of binary .cfg file (init=0,1,2).
Some information is lost, most load options not available).

11 As above + also velocities are read from simname.vel.

12 As above + also accelerations are read from simname.acc. Useless for normal runs
(because accelerations are calculated), usable for debugging Ewald summation.

init<0 Reads playback, frame |init|, then as if init=2. Symbolically init=-1="plb".
Velocities are assigned randomly (as if initvel=big number). If the plb-file contains
zero box size (any of Lx,Ly,Lz), the box size is copied from cook initialization (given
by values of rho and L[]). If the box size in the plb-file is nonzero, it overrides the
cook initial values; however, some initializations (Ewald, cutoff corrections) are kept
from cook initializations. Thus, it is recommended to save the configuration (after
no=0) and then continue or restart cook.

(Since version 2.6b it is possible to rewrite the plb-file after reading. Utilities plb2cfg
and cfg2plb can be also used for mutual conversion.)

999 "convert" Obsolete. Reads simname.1, simname.2 ... simname.no and writes
frames to the playback file(s); nothing is calculated. The last configuration treated
has number no

Any init except 0,1 sets the running simulation time t to zero.

initrho (0) The initial density in kg/m3. Applies for initializing the configuration
(init>=3). The value of 0 (default) means that initrho=rho. Example of input data to
obtain a random initial configuration for, e.g., water solution:

initrho=700 rho=1000 tau.rho=1

init="random" pins=0 Emax=1e5

noint=5 h=0.01/noint no=100 ! 1 ps

thermostat="Berendsen" tau.T=0.1;

initvel (0) Re-assign the velocities of the first initvel molecules according to the
Maxwell–Boltzmann distribution with current T. It is done just once (initvel=0 is set
after assignment). (Formerly option -j with negative arg).

key (0) A “command” to execute immediately (i.e., do not use ; after the command). Useful
if cook* is called interactively (cook -s)/

0="run" No command. This is the default which is re-set after any other command is
finished. The simulation is (re)started after data input is ended by ; as usual.
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1="sort+x"

2="sort+y"

3="sort+z"

-1="sort-x"

-2="sort-y"

-3="sort-z" OUT OF ORDER, use sort="z" and similar. The molecules (of each
species separately) are sorted according to increasing values of given coordinate of
the center-of-mass; the versions with + in the increasing order, version with - with
the decreasing order. May be useful, e.g., for selecting some molecules.

4="cp" Show the convergence profiles: calls showcp -p99

5="show" Show the trajectory: calls show

6="rdf" Show the rdfs: calls rdfg -g -p

7="cn" Show the coordination numbers: calls rdfg -c -p

8="shell" Call the shell

9="quit"="exit" Exit cook

97="rv" key=99, then key=98.

98="v" Paste velocities vx, vy, vz in lines from cfg start, = instead of a number means
leave the value unchanged. Single period . quits this module, also ; (in this case,
the rest of line is ignored).

99="r" As above for the positions.

L[*] (0) Box sizes (3D array). If rho=0 is set, these values are taken literally and are used
in configuration initializer as well as target size (if tau.rho is specified).

With nonzero rho, the box is rescaled to reach given rho (i.e., L[*] specifies only ratio
L[0]:L[1]:L[2]). If one, two or three of L[] are missing (i.e., = 0), and rho is given
(> 0), the missing L[]s are calculated to reach given rho; if more than one L[] are, they
are the same. E.g., if all L[*] are missing and rho is given, a cubic simulation cell is
created.

L[] and rho are ignored if the configuration is read (init<=2) from file and tau.rho=0

is specified. This default behavior can be changed by variable load.L[].

LJcutoff (-3) Cutoff for the Lennard-Jones interactions. If negative, then (except sign) in
the “reference molecule size”, which is the potential minimumdistance, sometimes called
“van der Waals diameter” or “van der Waals sigma”, denoted vdWsig. For Lennard-
Jones, it holds vdWsig =σLJ×21/6, where σLJ is the σ of Eq. (3.1). The minimum possible
absolute value of negative LJcutoff for the Lennard-Jones potential is LJcutoff=-1.5875
(theoretically 22/3). The minimum LJcutoff/σLJ=1.7819 (theoretically 25/6).

lag.AM (0) Lag for angular momentum w.r.t. center of mass. Variable drift should not
contain removing the angular momentum drift. In the periodic b.c., box center is used.
In SLAB version, use slab.sp for autocenter; then, the configuration is shifted so that
the cluster is centered (now for droplet only).

lag.CM (0) Lag for center of mass measurement. Variable drift should not contain
removing the angular momentum drift. In the periodic b.c., box center is used. In
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SLAB version, use slab.sp for autocenter.
BUG: In the periodic b.c., the jumps are ignored. Statistics is wrong. However,
storing CMs in the cp-file (keywords CMx,CMy,CMz) in the cp-file may allow to restore
the trajectory.

lag.dim (3) RGYR only: Number of coordinates (vx, vy, vz) recorded.

lag.err (32) Lag for the statistical analysis of time-correlated data, in the number of cycles.
In every cycle, one item of data is recorded. See Sect. 14, for details. (One cycle is noint
integrations steps h). Applies only to certain more important variables. Some variables
(cell dipole moment and Eel for Ewald) are recorded every step. For them, the lag of
lag.err*noint is used so that the maximum time of the time correlation function is the
same. In the same spirit, lag.n is increased.

lag.J (0) Lag for the time autocorrelation functions of the current density (in cycles). If
lag.J=1 or -1, no blocking calculations are performed, otherwise lag.n applies. From
these functions the conductivity can be calculated. (There is an equivalent method based
on the Einstein relation, see plb2diff.c 21.20.) The names of variables are Jx,Jy,Jz

(can be specified in SIMNAME.cpi) Negative lag.Jmeans that partial currents (by groups)
are not recorded in statistics.
NB: The module caculating also the cell dipole moment is called, cf. lag.M.
Called lag.cond before V3.5a.

lag.LM (0) Lag for linear momentum of the system. Variable drift should not contain
removing the linear momentum drift.

lag.M (0) Lag for the time autocorrelation functions of the cell dipole moments (in cycles).
If lag.M=1 or -1, no blocking calculations are performed, otherwise lag.n applies. If
selected (or lag.J is selected), the module calculating also the currents and molecular
dipole moments is called (the latter using shorted lag). The dipole moments Mx,... are
in the program units (1 p.u. = 0.0117501021272 D). Negative lag.M means that partial
currents (by groups) are not recorded in statistics. The dipole moments are denoted
Mx[#] (for given group) or Mx[sum]. Notes:

• For one group (see group[], use negative lag.M, otherwise the same dipole moments
would be reported twice (no problem, just inefficient).

• These measurements are performed at cycle end (by noint steps) irrespective of
boundary conditions and Ewald summation. Possible background (see el.bg) terms
are not added.

• With Ewald summation (negative #define COULOMB), the cell dipole moments
denoted Mx,My,Mz and calculated every step (before the step is performed) are
recorded independently with lag noint*lag.err. These may contain finer short-
lag time correlation functions.

• If the dielectric constant is of interest and calculated in the Ewald b.c. (as
recommended), it is still recommended to use at least lag.M=1 to calculate the
dipole moments of individual moelcules to be able to report the saturation.

lag.n (14) Blocking (sub-averaging) by the factor of 2 to the block length of 2lag.n. For the
blocked data, maximum lag=2 is used.
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lag.nv (big number) Velocity-velocity time autocorrelation functions recorded for lag.nv
molecules.

lag.v (0) Lag for the velocity-velocity time autocorrelation functions. Active for #define
RGYR only. From these functions the diffusivities can be calculated. (There is an
equivalent method based on the Einstein relation, see plb2diff.c 21.20.)
WARNING: slow for too long lag.v and/or too many molecules lag.nv.
NB: With RGYR, module calculation also the cell dipole moment and current density is
called, cf. lag.M, lag.J.

lag.Pt (0) Lag for the time autocorrelation functions of the off-diagonal components of the
pressure tensor. From these functions the viscosity can be calculated. Small noint is
recommended, and the total lag noint*h*lag.Pt at least several ps for common non-
complicated liquids. See Sect. 14.4.3 for EMD viscosity calculations. Called lag.visc

before V3.5a.

load.L[3] (0,0,0) Box size strategy: the box may be specified in the input data (.def or
.get files, either directly, or calculated from rho and N[]) or loaded (from .cfg, not .plb):

load.L[i]=0 The loaded box size is used (i=0,1,2). This is the default.

load.L[i]=1 L[i] is taken from data only if the data value is larger (so that no overlap
may occur)

load.L[i]=2 L[i] is taken from data only if the data value is smaller (i.e., only if the
box shrinks, which may result in overlaps).

load.L[i]=3 L[i] is taken from data unconditionally (the box may shrink or swell)

Example: You have a periodic cubic box of size 31× 31× 31 Å and want to use it as an
initial configuration for a slab of size 30× 30× 75 Å: while in the input data you should
have

drift=4+8+16+32 ! center slab in z, remove drift in x,y,z (8+16+32)

el.epsinf=-1 ! slab dipole correction - Ewald only

L[0]=30 L[1]=30 L[2]=75 rho=0 ! box size fixed

load.L[2]=1 ! L[2]=75 will be used

tau.rho=1 ! how fast to reach the box

L[0]=30 L[1]=30 will be slowly reached because of tau.rho=1

HINT: if you wish to recenter the configuration, use array shift[] in the input data.

load.N (0) Change the number of molecules. Safe for pure species, limited for mixtures.

load.N=0 Default: If the specified (in the def- or ble-files) number of molecules does
not match the loaded one (from the cfg-file), this is an error and the program stops.

load.N=1 If the specified number of molecules > the loaded one, the missing molecules
are inserted randomly; the opposite inequality is an error. Cannot be used for
mixture. It is recommended to use pins=0 to avoid box scaling.

load.N=2 If the specified number of molecules < the loaded one, the overflow molecules
are omitted; the opposite inequality is an error. In mixtures only the last species
can be removed.
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load.N=3 Either of load.N=1,2 applies.

load.n[3] (1,1,1) Periodically repeat the cell while loading. Useful for simulating fluids
of small molecules. To use this feature, prepare first a small configuration of the same
name (unless you use a plb-file: see variable init<0). Then prepare a def-file of the new
configuration (its N[] should contain the NEW [large] numbers of molecules) and run
with load.n[] and and init=2 in the input data. It is then recommended to randomize
velocities by specifying initvel=999999, otherwise all the copies will develop in the same
way (they are identical incl. velocities) until tiny rounding errors cause the trajectories
to diverge. See also utility plbreplicate.
WARNING: Automatic cutoff determination is incorrect!

load.reverse (0="no") Removed in V2.7a.

load.tr (0) Specifies a transformation (swapping, rotation) of the initial box while loading.

1="xy" x <-> y

2="yz" y <-> z

3="zx"="xz" x <-> z

4="zyx" z -> y -> x -> z

5="xyz" z -> x -> y -> z

WARNING: may interfere with L specified in the data. Example: to immerse a crystal
of NaCl into water, prepare the crystal (use order of species Na Cl water; e.g., N[0]=108,
N[1]=108), add water (e.g., N[2]=800), then specify a larger box size in the data
(may be done indirectly via rho=1050) and run cook with load.L[0]=1 load.L[1]=1

load.L[2]=1 load.N=1. The original (smaller) crystal of NaCl will be placed into a
large box and surrounded by water molecules.

maxscale (1.03) Maximum allowed scaling of box or R. If larger scaling is requested,
warning is printed and scaling is reduced to range [1/maxscale,maxscale].

MC (0="no") WARNING: deprecated unless special requirements. It is recommended to use
MD minimization with drmax turned on, and large Emax.

For init=3 only. Adds MC Metropolis Monte Carlo sweeps (attempted moves for
every molecule) at temperature T after initializing the configuration. Pressing ^C (and
selecting 1, see option -i) interrupts MC and (after finishing a sweep) continues by MD.
MC=-1="forever" selects running MC until all pair energies fall below Emax (or until ^C).
In addition, molecules are not checked for mutual overlaps (given by the energy limit
Emax) when they are inserted; however, if option -jnumber is specified, then overlaps
with first number molecules are checked. One MC step is with probability 1/3 a shot
to a random place, with probability 1/3 a random displacement (the length is adjusted
during the run) and with probability 1/3 a random rotation (the angle is adjusted during
the run). Note that the k-space Ewald contribution (if any) is not included in the MC
energy.

FREEBC: central force (see center.K) is included into the MC energy.

WARNING: uses a table of pair energies and therefore requires a lot of memory for many
small molecules.
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mirror (0) For mirror=1, mirror inversion is added to a random orientation of a molecule.
Applies for the Widom insertion and random initial configuration.

N[*] Number of molecules. Available in simname.def only. The format is:

N[species number]=number of molecules

The number of molecules passed from blend (option -n) and written to sysname.ble can
be thus changed. Note that species are numbered from zero: the ‘first’ species is referred
to by N[0], e.g., N[0]=500 to simulate 500 molecules.

nm.ampl (0.3) Maximum amplitude of harmonic motion in visualization. Applies if also
nm.modes given.

nm.dr (0) Normal mode analysis, see Sect. 14.9. Step to calculate the numerical derivative
of forces.

nm.dr=0 No analysis (default).

nm.dr>0 Second-order central formula for the 1st numerical derivative of forces. Two
evaluations of forces are needed for one gradient.

nm.dr<0 Fourth-order central formula for the 1st numerical derivative of forces. Four
evaluations of forces are needed for one gradient.

The calculation is performed after a simulation cycle is finished. The configuration
must be well minimized (simulated annealing with T=0). With polar, scf.epsx=0 is
recommended (maximum precision). The Ewald calculations should be accurate (esp.
small el.epsr and longer el.grid), in addition, el.rshift=3 is strongly recommended
to avoid small jumps in the potential and forces at cutoff.

Recommended values of nm.dr are around 1e-4 to 1e-5 or -1e-3 to -1e-4 without
polarizability and Ewald. The accuracy of frequencies is better than 1e-8.

With both dipolar polarizability via large Drude charges (shell = −1000) and Ewald,
careful choice of parameters (el.epsr<0.001, el.grid>1000, scf.epsx=0) and nm.dr

in the range 1×10−3 to 3×10−3 guarantees the final relative accuracy about 3×10−5 THz
(0.001 cm−1) and the precision of Tν better than 1×10−5. Since the error ∝ nm.dr2, the
δ2 extrapolation may improve the precision by one order of magnitude. Negative nm.dr

may be larger (in abs. value), but the calculation is slower.

WARNING: with LINKCELL, set box.rmin to a bit more than needed (for models
without “lone dependants” at least nm.dr and set box.max14.

BUG: Not correct for general constraint models with bond constraints connected by a
non-fixed angle. Good for rigid models (as water).

nm.eps (1e-9) Normal mode analysis: accuracy (of the Jacobi method). Negative nm.eps

selects the verbose mode (iterations and some other technical info is printed).

If the accuracy is finer than the numerical noise, the additional code is usually able to
interrupt iterations without too much loss of efficiency (especially for the non-constraint
variant where the convergence is quadratic); however, if the numerical noise (with
constraints) is larger than sqrt(eps), the algorithm would run forever.

Pressing Ctrl-C or signalling SIGINT (kill -2 PID) breaks the iterations. WARNING:
The CPU time scales as N4; the estimated CPU time for about 1000 atoms may be hours.
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Typical relative errors in the averaged vibrational temperature are 1×10−6 for
nonpolarizable models and 1×10−5 for polarizable models.

nm.frames (7) Normal mode analysis: number of frames in the generated trajectories to
visualize the harmonic motions. Positive = cos-like motion, negative = linear motion
(not recommended). The higher value, the smoother motion.

nm.key (0) Additional control of convergence, use in case of problems. For verbose mode,
use nm.eps<0.

0 Standard end of iteration criterion used (checks speed of convergence and one-step
error).

>0 In addition, stops if the error during key consecutive iterations increase. Useful to
avoid infinite loop in case of problems (note also that the iterations are interruptable

by SIGINT ( Ctrl-C ).

-1 Stops if the first eigenvalue becomes negative. The accuracy of the results is
somehow compromised, but in case of problems, the iterations are interrupted as
soon as possible.

nm.mem (13) Maximum memory which can be requestes for matrices (only the largest terms
terms ∝ N2 are counted), in GiB (1 GiB = 10243 B). The default 13 GiB is suitable for
a computer with 16 GiB RAM provided that no other memory-consuming programs are
running. Note that this is the peak; during diagonalization unused arrays can be swaped
out.
BUG: The arrays are freed at the end of the routine, not when no longer needed.

nm.method (0) Version of the method to calculate normal modes of vibration.

0 For models without constraints. The matrix to diagonalize is symmetric, the Jacobi
method is used.

1 For rigid molecules (or molecules with rigid parts connected by flexible bonds).
The constraint matrix is constant. The matrix to diagonalize is not symmetric, the
generalized Jacobi–Schur method is used.

2 For general bond constraints. The constraint matrix is not constant. The matrix
to diagonalize is not symmetric, the generalized Jacobi–Schur method is used.

3 As above, slow fool-proof algorithm (for debuging purposes). Use nm.method=2

instead.

8 Flag to be added to methods 1,2,3: call Octave to calculate the eigenvalues instead
of the Jacobi–Schur method. Faster but memory consuming.

nm.modes (0) Normal mode analysis: number of fundamental modes visualized. Positive
= modes are counted from the lowest ones (corresponding to translations/rotations),
negative from the highest frequencies, 0 means that the eigenvectors are not calculated.
BUG: The algorithm is very slow for larger systems (a few hundred of atoms).

nm.zero (3 or 6) Normal mode analysis: number of modes which are treated as zero for
the calculation of the Helmholtz energy of a crystal. The default is 3 for the periodic b.c.
(three zero translations) and 6 for free b.c. (3 translations + 3 rotations; this is incorrect
for a linear molecule!).
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no (10000) Number of cycles to be performed. Note that you can interrupt the calculations
before no cycles gracefully by Ctrl-C or signaling kill -2. See also option -number.

No.cell[*] (0) Only for LINKCELL version: number of subdivisions of the simulation
box in each dimension. Default No.cell=0 means automatic selection according to the
number of sites in one simulation cell, No.percell.

No.first (0) DEPRECATED, #define LOG needed.
Energy of No.first molecules (without Ewald k-space part, if any) used as the 4th
column of the convergence profile in NV T . (REMOVED in 2.8c: When No.first=0

(default) then the ‘intramolecular’ energy of all molecules is recorded.) Not supported
for LINKCELL. cache=1 required (from V3.0h, cache>1 no longer supported!).

No.molspan (0) Version PERSUM only: maximum span (min–max if any rotation) of the
molecule (and something more for NPT ). This value serves for determining the number
of images around an atom that guarantees that no interaction within cutoff is lost. The
default is for monoatomic molecules! The formula is (for each coordinate separately):

nimg
x = 1 + int

[
cutoff+ 2 ∗ No.molspan

Lx

]
(9.9)

To enhance speed with a small decrease of precision (some interactions close to the cutoff
lost), No.molspan maybe a bit less than the maximum span; for monoatomic molecules
it may be negative.

No.occup (0) Applies to the LINKCELL version only: Histogram of cell occupancies is
calculated and printed in every step. If No.occup>1, then max number atoms in a cell
are recorded, for No.occup=1 certain default is chosen. For debugging purposes.

No.percell (5) Only for LINKCELL version: Calculates No.cell[*] so that there are
about No.percell sites per each cell and the cells are (approximately, if not possible
exactly) cubic.

No.rotatefrom (0) For initialization (init="random" etc.): rotate molecules randomly
from molecule of given number. Default = 0 = rotate randomly all molecules.

noint (10) Number of steps per one cycle. There are (noint-1) steps performed without
measurements, and 1 step with the measurements included. Note that measurements are
quite expensive so that do not use too low noint.

nomax (0) The simulation stops if the total number of measured cycles reaches or exceeds
nomax. The default (nomax=0 turns off the check (the simulation runs until all data sets
are processed or key="quit" is specified or EOF reaached). See also stop.

norm (0) REMOVED: see drift and conserved.

nshift (No.N) With shift and vshift: number of affected molecules. The default is a
large number = all molecules.

>0 The shift (push) applies to the first nshift molecules only.

<0 The shift (push) applies to the first No.N+nshift molecules, the remaining -nshift
molecules are shifted (pushed) in the opposite direction.
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omega (0) Not implemented in the current version! The relaxation parameter for the
directiter method for calculating the Lagrange multipliers.

omegac (-1.2) The relaxation parameter (mixing iteration parameter) for the Scorrect

method for correcting constraints or for SHAKE. If negative, automatic optimization is
performed (use option -v&4 to get detailed protocol). See Sect. 11.3, for details.

P (1e5) Pressure to be kept constant (if tau.P is nonzero), in Pascal.

pins (0.01) Insertion probability and more.

init=3,4 0<pins<1 Lowest acceptable probability for inserting molecules while the
configuration is initialized. If the insertion probability falls below pins, the density
is decreased (box size increased) and a new attempt to fill the simulation box with
molecules is made.

init=3,4 -1<pins<0 As above with |pins|; in addition, if the insertion probability is
higher than sqrt(|pins|), a new attempt is made with a higher density. Thus, after
several iterations, a density with an insertion probability in (|pins|,sqrt(|pins|))

is found.

init=3,4 pins=0 Does not change density while initializing, i.e., continues in shooting
molecules even if very unsuccessful; it’s user’s responsibility to choose a suitable
initrho.

init="crystal" pins="auto"

init=5 pins=0 Automatic selection of the lattice (minimum number of vacancies)

init="crystal" pins="sc"

init=5 pins=1 Simple cubic lattice (with possible vacancies at random positions)

init="crystal" pins="bcc"

init=5 pins=2 Body-centered lattice (with possible vacancies)

init="crystal" pins="fcc"

init=5 pins=3 Face-centered lattice (with possible vacancies)

init="crystal" pins>3

init=5 pins>3 (NOT TESTED RECENTLY, See Sect. 17.1) Structure contained in
file with name cfgns.pins, where ns is the number of sites per molecule and pins
the number of molecules, will be used and, if necessary, periodically copied; if the
total number of molecules is not an integer3 multiple of pins, then vacancies will
be present. The box size will be derived from the box size stored in the file. The
configuration file can be created using option -l by cook, it only must be renamed.
May be combined with option -j

poteps (-1e-5) Accuracy for fool-proof internal check of site–site (non-bonded) potentials
and forces. Note that internally cook macroizes these functions in two versions – with
and without measurement (of virial and energy). This test compares all these versions
and also the derivative of minus the potential energy and forces. The active accuracy
is a sort of relative accuracy times poteps for numerical derivative, otherwise poteps2

applies.

If -v4, tables of potentials and detailed debug info are printed. (Was switch SS DEBUG
in V2.7t and older.)
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poteps=0 The test is turned off.

poteps<0 The test is done only once at job start.

poteps>0 The test is done every batch (data set), and if potential adjusting is on
(tau.sig, see Sect. 12.3.4), then also whenever σ changes. (WARNING: heavy
output with option -v4!)

quit (0="no") REMOVED in V3.6j, see key for some functionality.

reread.by (1) In the read mode (options -m0 or -m1), the stride of the loop. (New in V3.0a.)
You should change the simulation name to prevent rewriting your simulation results!
Example of usage:

cook SYSNAME SIMNAME # simulation - SIMNAME.plb generated

cp SIMNAME.def SIMNAME2.def # not if SYSNAME.def used

cp SIMNAME.cfg SIMNAME2.cfg

cp SIMNAME.cpi SIMNAME2.cpi # if needed

NPLB=‘plbinfo +f SIMNAME.plb‘ # number of frames

cat > SIMNAME2.get <<EOF

reread.from=1

reread.by=1

reread.to=$NPLB

init="start";

EOF

cook -m1 -f SYSNAME SIMNAME2 SIMNAME.plb # recalculate energies, pressure, RDF, etc.

reread.from (1) In the read mode (options -m0 or -m1), the first frame or configuration
read; the first frame is 1. (New in V3.0a.)

reread.to (0) In the read mode (options -m0 or -m1), the last frame read (incl.). New in
V3.0a.

removemol.n (-1) At job end (delimited by ; in the data – further semicolons are ignored),
remove molecule number removemol.n (if it exist).

To restart such a simulation from the saved cfg-file (using init=2), either change the
number of molecules in the def file (N[0], N[1],...), or use load.N=4.

The saved cfg-file has the molecule removed, in the plb-file (if requested), it is present
because the last frame in the plb-file is save before removing the molecule (new in V3.6q).

Cf. slab.out.

rescale (15="xyzCM") Mode for box rescaling used by a barostat (see tau.P), density/box
rescaling (see tau.rho), and virtual volume (area) method (see dV), and the MTK
barostat (see thermostat="NPT"). Sum of powers of 2:

1 x coordinates are rescaled; "x" in the mnemonics below.

2 y coordinates are rescaled; "y" in the mnemonics below.

4 z coordinates are rescaled; "z" in the mnemonics below.

8 Rescaling is based on the molecular center-of-mass (default), "CM" in the mnemonics
below. This is the preferred choice for models with fixed (constrained) bonds unless
the MTK barostat (thermostat="NPT") is used.
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16 Pressure tensor components are calculated and used separately; (#define PRES-
SURETENSOR=3 is required). All specified dimensions of the box fluctuate in-
dependently; thus, this choice is suitable for crystals and inapplicable to fluids.
Denoted by uppercase "X","Y","Z" in the mnemonics below.

If this bit is not set, and a barostat is used, the isotropic virial pressure is used to
calculate the rescale factor or rescale dynamics; #define PRESSURETENSOR is not
required. Consequently, all specified dimensions of the box fluctuate synchronously
(their aspect ratio is kept, a cube with rescale=7 is always a cube). This is the
default suitable for isotropic systems (fluids).

This flag is irrelevant with box control (see tau.rho).

New in V3.1i: with barostat (tau.P), the affected box sizes are included in statistics.
In order to include the respective convergence profiles, Lx,Ly,Lz should be given in
the .cpi file (do not use +Lx,+Ly,+Lz, the box statistics would be diplicated).

32 x and y scalings are made the same; with a barostat this is equivalent to using
(Pxx + Pyy)/2 to calculate scaling in both the x- and y-directions. Denoted by "XX"

in the mnemonics below. Useful only with rescale=16 because otherwise the scaling
is already isotropic.

64 All x, y, z scalings are made the same; "XXX" in the mnemonics below. Useful only
with rescale=16 because otherwise the scaling is already isotropic2

In principle, 1+2+4 and 1+2+4+16+64 denote the same uniform box rescaling. In

the latter case, Tr(
↔

P )/3 (as calculated from the pressure tensor) is used instead of
the virial pressure. Although both values should be the same, they are not exactly
the same because of inherent algorithm inaccuracy. With Ewald summation the
error is small (usually a few MPa), however, it is large with cutoff electrostatics, the
pressure-tensor value being usually more accurate.

Examples:

• rescale="ZCM" tau.P=10 P=1e6 corr=3 will maintain Pzz+Pcutoff corr./3 = 1 MPa
by changing Lz only. Time constant of the Berensen barostat would be 10 ps in the
ideal gas approximation, shorter in condensed phases (see bulkmodulus).

• rescale="zCM" or rescale=12 selects molecule-based rescaling (good for small
molecules) of z-coordinates only

• rescale="xyzCM"=15 selects molecule-based rescaling (all coordinates).

The full list of available mnemonic codes is:
"x", "xCM", "y", "yCM", "xy","xyCM", "z", "zCM",

"xz","xzCM", "yz","yzCM", "xyz", "xyzCM",

"X","XCM", "Y","YCM",

"XY","XYCM", "Z","ZCM", "XZ","XZCM", "YZ","YZCM",

"XYZ", "XYZCM", "XX","XXCM", "XXZ","XXZCM", "XXX","XXXCM"

rdf (structure) Variables controlling measurements of the radial distribution functions
(rdf.grid, rdf.cutoff, rdf.onefour), See Sect. 14.7.

rg.cp (0) #define RGYR required. Warning: radii of gyration are calculated for molecules,
this should be extended.

2That is why there is no rescale="xxx" mnemonic.



9: Running cook [Contents] – [Index] 133

rg.cp >= 0 Radius of gyration and end-to-end distance of molecule number rg.cp

recorded in convergence profile. rg.cp=0 is recommended for e.g. a protein in water:
only Rgyr of the protein will be recorded.

rg.cp = -1 Averaged radius of gyration and end-to-end distance over all molecules
recorded in convergence profile. rg.cp=-1 is recommended for bulk pure molecular
fluid.

The value of rg.cp does not affect statistics which is recorded for each species separately
(if possible by the values of rg.end)

rg.end[0 (0)] Head atom for measuring the “end-to-end” distance. Negative value means
ns+rg.end[0], where ns is the number of sites. For instance, rg.end[0]=-1 is the last
atom in the molecule.

rg.end[1 (-1)] Tail atom for measuring the “end-to-end” distance. See above.

rho (0) The reference and target density in kg/m3. If tau.rho is specified, this density will
be reached and kept constant. The box is rescaled so that its shape (L[0]:L[1]:L[2]) is
the same. See also L[*]. If one or two of L[] are missing, and rho is given, the remaining
L[] are calculated. If rho=0, all three L[0],L[1],L[2]must be given and are used without
rescaling.
See also initrho.

scf.E (0) POLAR only: Virtual electrostatic field that is applied to a configuration in
order to calculate the optical permittivity of a polarizable model. The SCF accuracy and
convergence are controlled by scf.epsx,scf.omegax. See scf.Estride below. Note that
the electrostatic field changes sign and coordinate every sample. The result is printed as
chi; in the tin-foil b.c., ϵ∞ = eps(high) = 1+chi.

scf.domega (0) POLAR only: Automatic setup of the optimum scf.omega. Set scf.omega
to a low enough value and scf.domega to a small increment and no to a big enough
number. scf.omega will be incremented by scf.domega every cycle (of noint steps).
If divergence is detected (number of iterations needed to reach given precision scf.eps

increases), the value of scf.omega is set to scf.omega+scf.margin and the sweep is
interrupted (data after “;” are read and executed). Also, scf.domega is set to zero. (NB:
scf.margin is negative.)

Caveat: Negative scf.eps (number of steps) can be used, too; in this case, the calculation
will likely crash but the limiting scf.omega is available in the protocol.

scf.Estride (0) POLAR only: How often to perform the sampling of the optical
permittivity, in the unit of cycles by noint timesteps (1=every cycle, 2=every second,
etc.). Zero turns off the feature. See scf.E.

scf.eps (1) POLAR only: Controls SCF iterations/accuracy during the simulation.

scf.eps> 0 The accuracy of induced dipoles (in one iteration), in program units (1 p.u.
= 0.0117501 Debye = 0.0024463 eÅ). This value is used during MD simulation. If
ASPC is used, scf.eps should be large enough to guarantee one iteration per MD
step. (Called epsp for V<2.6f). See Sect. 15.6.

scf.eps ≤ −1 Fixed number of iterations given by |scf.eps|.
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For more (less useful here) options see scf.epsx below.

scf.epsx (3e33) POLAR only: Accuracy of induced dipoles outside MD (as P measured
by virtual volume change, normal mode frequencies, recalculation with options -m1 -f,
etc.).

scf.epsx=3e33 This default implies certain value which can be reasonable for the
virtual volume/area change algorithms. Generally it is recommended to try several
values to resolve the speed/accuracy tradeoff.

scf.epsx ≤ −1 Fixed number of iterations given by |scf.epsx|.

scf.epsx > 0 Accuracy (of one iteration) in the internal program units (1 p.u. =
0.0117501 Debye = 0.0024463 eÅ).

−1 < scf.epsx < 0 “Maximum precision” algorithm, useful with normal modes
calculations and similar. The iterations are stopped when the following three
conditions are met:

1. at least 1+scf.maxit/20 iterations have been calculated

2. the one-step error is below |scf.epsx|

3. for the first time the one-step error increases

The last condition happens when the SCF error is about the same as the numerical
error. However, convergence problems may pass unnoticed.

scf.epsx=0 Similar as above with the following two conditions:

1. at least 2+scf.maxit/5 iterations have been calculated

2. for the first time the one-step error increases

The optimum scf.epsx depends on dV or nm.dr and Ewald setting. For predicted force
field and one iteration/step, one should have scf.epsx ≪ scf.eps. For integration
methods with full iteration of the self-field, both scf.eps and scf.epsx should be small
enough.

The course of iterations can be monitored by flag 4 in option -v (-v7 incl. the default
-v3).

(Called epspx for V<2.6f).

scf.epsq (0.8) POLAR only:

0<scf.epsq<1 scf.eps*(1-scf.epsq) will be used as the actual error limit EPSP in
the 1st step, instead of scf.eps. In subsequent steps,

EPSP := EPSP*scf.epsq + scf.eps*(1-scf.epsq)

is performed after every step so that after some time scf.eps is reached. After every
data set (ended by ;) read, scf.epsq is made negative and this function is turned
off. This is because the history for the predictor IS saved across batches.

scf.epsq<=0 turns off this function and EPSP=scf.eps is always used.

scf.epsq>=1 is invalid

scf.margin (-0.03) Polar only: See scf.domega.
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scf.maxit (30) (POLAR only) Maximum number of iterations to calculate the induced
dipoles. Applies both to the simulation and virtual volume change. If not enough to
reach the predefined accuracy, it is doubled with verbose output on. (To use a constant
number of iterations, use negative scf.eps)

scf.omega (POLAR only) The mixing iteration parameter for iterations of the self-consistent
field during simulation. Can be also given in % as option -^. (Called omegap for V<2.6f).

scf.omegax (0.9) The mixing iteration parameter for iterations of the self-consistent field
for virtual volume change. The optimum values are slightly below unity.

scf.test (0) If nonzero, the accuracy test of SCF is performed every cucle with respect
to the fully iterated SCF (see scf.epsx, scf.omegax). Variables Pstd, Pmax in the
CP contain the respective standard deviation and and maximum errors, the averages
are Polar stderr and Polar maxerr. With option -v32, files with the errors are also
recorded.

shear (0) For measuring the shear viscosity, shear = Ṫ η (estimated using ideal gas heat
capacite). Only if compiled with #define SHEAR. See Sect. 15.14.

shift[*] The whole configuration (or a part of it – see nshift) is shifted by this 3D vector
before the first MD step. The vector is given in Å. This vector is then set to zero so that
no shift is performed in the next data set (unless specified again). The maximum allowed
shift in periodic b.c. is ±L (no check!).

SI (1="yes") REMOVED in V3.6g, all energies are in J/mol.

The following forces are active in the SLAB version only: (in version 2.6h called center.*)

slab.ext.center (0) The slab center (denser part) extended by slab.ext.center bins.

slab.ext.span (0) Turns on the feature, the number of bins around the extended parts
which are replicated to fill both phases.

slab.ext.zero (0) The slab outer part (gas) extended by slab.ext.zero bins.

WARNING: slab.ext.* features are likely out of order because the default slab
position has changed (centered at z = 0).

For removing the stacking error of the surface tension, see Sect. 31.3. In the postprocessing
stage, the cutoff corrections are calculated from the calculated z-profiles. In addition,
the z-profiles are extended by replicating some bins in both phases and the corrections
recalculated. Autocenter (see slab.sp) is required. This feature is turned on by a positive
slab.ext.span.

Example of bin replication scheme for 26 bins with slab.ext.span=2,

slab.ext.zero=4, slab.ext.center=6. Spaces are added for readability.

ABCDEFGHIJKLM NOPQRSTUVWXYZ ->

ZABY ABCDEFGHIJKLM MNOLMN NOPQRSTUVWXYZ

slab.geom (2) Slab geometry extended in V3.5h to:

slab.geom=0="drop"="droplet" Droplet (ball)
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slab.geom=1="trickle" Trickle (cylinder) along the x-direction

slab.geom=2="slab" Slab (film) perpendicular to the z-direction

slab.geom=3="cavity" Spherical cavity

slab.geom=4="tunnel" Tunnel (cylindrical cavity) along the x-direction

slab.geom=5="bals" Slab of gas perpendicular to the z-direction (shifted/inverted
slab)

The choice of geometry affects the measured distribution functions. Autocentering (see
slab.sp) is recommended.

slab.grid (0) SLAB version only (see Sect. 15.8). The meaning of slab.grid depends on
variable slab.max:

slab.max is not specified: number of histogram bins in the range [0, zmax) (where
zmax may fluctuate).

slab.max is specified: number of histogram bins per 1 Å (not suitable for changing
box size)

May be a real number (slab.grid=0.5 without slab.max gives the histogram bin width
of 2 Å).
(Called densprof.grid in versions 2.6h and older.).

slab.K (0) Fourier transform slab cutoff correction (FTSCC), new in V2.8h. Incompatible
with the homogeneous cutoff corrections, i.e., corr=0 is needed in input data3. See
also slab.range, see Sect. 31.1. Wave number slab.K is not included (C-style); thus,
slab.K=1 is error. Recommended values are from 3 to about 10.
Uses the initial box size to set up the correction coefficients. Thus, NV T (or NPT with
small fluctuation of box sizes) is supported.
BUG: Cannot be combined with any method which changes the initial box; e.g.,
load.L[], load.n[].

slab.Kz[*] (0) Harmonic potential constant in the z-direction, see slab.n[].

slab.Lx[4] (0)

slab.Ly[4] (0) Box sizes for the “zone melting” ensemble, given as polynomials in
temperature:

Lx =
3∑

i=0

slab.Lx[i]T i (9.10)

SLAB & 1 must be #defined (8 prior V2.8c). See tau.L for details, see Sect. 14.10.5,

slab.max (0) Max. z or r recorded in the density profiles.

slab.max=0 The maximum range of the density profiles is determined dynamically from
the current box size (fluctuating in the NPT ensemble). slab.grid is the number
of division point per this variable range. This is the default.

3Since specifying corr&3 does not affect the trajectory, it is still possible to extract the uncorrected results
for many variables.



9: Running cook [Contents] – [Index] 137

slab.max>0 Fixed range, slab.grid is the number of division point per 1 Å. Points
beyond this range are lost.
CAVEATS: slab.max<Lz for a slab is strongly discouraged because function
modulo is used in calculating the indices. For a droplet or trickle geometries and
cavities, the last histogram bin contains the sum of all further molecules/atoms.

(Called densprof.zmax in V2.6h and older, slab.zmax in V2.6h–V3.5g.)

slab.mode (0) (Called densprof.slab in V2.6h and older.). Sum of flags:

1 Deprecated. The system is assumed to be in the slab geometry and surface tension
is calculated from previously recorded components of pressure tensor and virial
pressure. Slab-based cutoff corrections are calculated from the z-density profile
(post-processing), see Sect. 31.2. It is recommended to use corr=0, although the
correct results can be extracted even if corr&3 is set. This method is deprecated,
use the Fourier transform slab cutoff correction, see slab.K.

2 If slab.mode&2, and dV and rescale are set appropriately, the test area method is
used instead of virial pressure (see Sect. 15.8). Also slab.mode&1 must be set.

4 (Used internally for calculating the stacking correction to surface tension – see
slab.ext.*, do not set manually!).

8 POLAR only: Drude-dipole is rescaled to a dipole of z-length given by the z-profile
grid. To be used for too short Drude dipoles.

slab.n[*] (0) Number of molecules selected for adding forces in the z-direction.

Example:

slab.n[0]=800 slab.n[1]=200

slab.Kz[0]=100 slab.Kz[1]=100

slab.z[0]=20 slab.z[1]=-20

slab.z0[0]=10 slab.z0[1]=2

slab.ns[1]=2

Molecules 0..799 (the first 800 molecules: we number from 0 as in C) are kept in a slab
centered at z=Lz/2+20 and 20=10+10 wide. First 2 sites of molecules 800..999 are kept
in a slab centered at z=Lz/2–20 and 2 wide.

slab.ns[*] (0) Affected sites are: slab.ns[*]=0 all, slab.ns[*]>0 only first slab.ns[*]
sites, slab.ns[*]<0 only last |slab.ns[*]| sites. See slab.ns[].

slab.sp (0x7fffffff) Automatic slab centering for the measurements of the density
profiles. It affects the measurement only, not trajectory. In the slab, centering is based
on formula

ccenter =
Lz

2π
arg

[∑
i

exp
(
2πizi
Lz

)]
(9.11)

and similarly for x and y if needed for other shapes. In Eq. (9.11), arg is the phase
(argument, angle) of the complex number in [] and the sum is over centers of mass of
molecules of species defined below. Note that the “center” of the density profiles is
always at z = 0 or r = 0; particularly, to see the slab “nicely centered”, you should
periodically shift the slab; e.g.:
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tabproc "(A+78/2)A\‘78" B C D < sss.cm.AA-3.z | jksort -f > aux.z

plot aux.z:A:B :C :D

Variable drift should not contain a request for centering the same coordinates.4

slab.sp≥ 0 specifies the species number used for centering (from 0 to nspec-1).
Example: slab.sp=0 selects species 0 for centering.

slab.sp< 0 means that all species from number 0 to |slab.sp| (incl.) are used.

0x7fffffff density profiles w.r.t. box center [default] (?)

0x7ffffffe (any big number except 0x7fffffff) density profiles w.r.t. origin (0, 0, 0).

slab.sym (big number = off) Monitoring slab asymmetry for given species coded in the
same way as slab.sp. Distance from the center calculated using slab.sp is calculated and
printed to the cp-file of entry zsym is given on the cpi file.

slab.out (0) SLAB required. The default slab.out=0 turns the function off.
If the distance of the center of mass of a molecule from the slab center plane / trickle
center axis / droplet center (see slab.geom) exceeds slab.out, the molecule is removed
from the configuration and the simulation stops immediately. Only one “evaporated”
molecule can be removed. If also slab.outc is set (see below), this distance is actually
slab.out-slab.outc at job start to catch a possible second molecule if the farthest
molecule was removed previously.
The test is reversed for cavities (slab.geom > 2; WARNING: not tested).
The test is performed once every cycle (noint steps). You should guarantee that the CoM
of a molecule cannot travel across the respective periodic boundary. It is recommended
to use the slab/trickle/droplet centering, see slab.sp. Example:

a=35

L[0]=a ! x-box (the trickele is periodic in x)

L[1]=2*a ! y-box

L[2]=2*a ! z-box

tau.rho=1

noint=30 h=0.05/noint ! with speed 1 km/s = 10 AA/ps, max distance = 0.5 AA

corr=0 ! no corrections at all

slab.geom="trickle"

slab.grid=1 ! density profile grid = 1 bin/AA

slab.max=a ! DPR range (for NVT: slab.grid is in bin/AA)

slab.prt=2 ! only molecular density profile in kg/m3 is determined

slab.sp=-1 ! automatic centering for all species

epsc=1e-10 ! for adiabatic simulation

slab.out=a-1 ! 1 AA before half box

In the prt-file, the positions of all sites of the molecule are printed; the number of higher
derivatives is determined by option -r; the default -r2 will dump also velocities (precisely,
→
r i(t)−

→
r i(t− h) for Verlet and h

→̇
r i for Gear) are printed in Å).

To restart such a simulation from the saved cfg-file (using init=2), either change the
number of molecules in the def file (N[0], N[1],...), or use load.N=4.

4Called densprof.sp in versions 2.6h and older.
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The saved cfg-file has the molecule removed, in the plb-file (if requested), it is present
because the last frame in the plb-file is save before removing the molecule (new in V3.6q).

See also removemol.n and option -d with negative argument.

slab.outc To be used with slab.out: The size of a cluster that may evaporate at
once. This is a cheap imperfect trick how to remove a cluster that has evaporated
because only one molecule can be removed at once. Note that if a molecule of
a fast rotating dimer approaches distance slab.out, it is removed. The remaining
molecule may travel backwards. However, if the distance slab.out is decreased to
slab.outx=slab.out-slab.outc at (re)start, such a molecule is caught, too. After a
cycle (of noint steps), slab.outx:=slab.outx*0.75+slab.out*0.25 is performed so
that after a while the limit is slab.out.

slab.prt (31=all) Controls which density profiles will be printed. The printouts are
generated from the data stored in SIMNAME.dpr. Sum of flags:

1 Molecule density profiles (for centers of mass) and the sum in the number density
units Å−3, ext=.cm.AA-3.z.

2 Molecule density profiles (for centers of mass) and the sum in the mass density units
kgm−3, ext=.cm.kgm-3.z.

4 Site density profiles and the sum in the number density units Å−3, ext=.site.AA-3.z.

8 Site density profiles and the sum in the mass density units kgm−3, ext=.site.kgm-3.z.

16 Charge density profile (molecule-based and the sum) in the units of eÅ−3,
ext=.q.eAA-3.z.
Since V3.4n, it is calculated correctly for Gaussian charges using the true
distribution.
BUG: Before V3.4n, the charge profile was calculated incorrectly as for point
charges.

Hint: use slab.prt=21 for all in Å−3 (not mass units)

slab.range (8) Range of integration over z-periodic slab, in Lz. Another useful value is
0.5. See also slab.K, see Sect. 31.1.

slab.T (-1) Separate thermostat for particles with z-coordinates in the range [slab.Tz0*Lz,
slab.Tz1*Lz). Requires Verlet/SHAKE and Andersen/Maxwell thermostat (incl. center-
of-mass versions). For instance, to partly melt a crystal in a slab, you may try slab.T ≈
2T and tau.T in the range 0.1 to 1. Turned off by slab.T<0

CAVEAT: Not fully implemented with the Berendsen thermostat. The algorithm just
changes the velocity scaling factors in both slabs using the global temperature (it does
not determine the temperatures separately in both slabs). In turn, if the heat conduction
is too slow (compared to tau.T), the difference of both temperatures grows to more than
T vs. slab.T. Nevertheless, even this partial algorithm may be useful. For instance, to
melt a crystal in a slab, you may try tau.T ≈ 2T and tau.T=1 or more (depending on
the system size) and watch the melting process.

slab.Tz0 (0.25)

slab.Tz1 (0.75) Defines range of z-coordinates (in the units of Lz) to apply a separate
thermostat (see slab.T).
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slab.wall.sig (3)

slab.wall.epsrho (0) SLAB==4 required. DEPRECATED, WILL BE REMOVED, use
SLAB + wall.* instead.
WARNING: drift not set automatically!!!
Rather inconsistent LJ wall force at z=0. slab.wall.epsrho = energy density in K/Å3 of
the Lennard-Jones ϵ:

ULJ−wall(
→
r) = −2πϵNσ3

[
1

3

(
σ

z

)3

− 2

45

(
σ

z

)9
]

(9.12)

where N is the particle number density (in Å−3). All particles interact in the same way.
The minimum is at z = σ/ 6

√
2.5.

slab.z[10] (0) The center of the force, with respect to the box center in the z-direction
(L[2]/2)

slab.z0[10] (0) The added energy term is zero for z ∈ [z-z0,z+z0]. (NOTE: in older
versions, this was called slab.r0)

slab.z1[10] (0) A ‘bias function’ is added:

_________ __________

|\ /| ^

| \ / | |

| \ / | Kz

| \_____/ | _|_

A B C D E

This function (actually quadratically smoothed) is selected by slab.z1!=0, where
|BC|=|CD|=slab.z0 and |AC|=|CE|=slab.z1, and slab.Kz = height of the outside part
from bottom (bottom=potential 0).
Notes:
With slab.Kz<0, and a slab placed at B..D, there are molecules with a higher probability
∝ exp(−slab.Kz/RT ) outside the slab. Note that the meaning of slab.Kz differs from
the standard (U-shape) case for slab.z1=0.
Since V2.8c always active for SLAB (used to be #define SLAB 1).

sort (0="none") If one of 1="x", 2="y", 3="z" is specified, the molecules (of each species
separately) are sorted according to increasing values of given coordinate of the center-of-
mass. If one of 1="-x", 2="-y", 3="-z" is specified, the sort order is decreasing. Sorting
is performed once before writing a cfg-file (or asc), then sort=0 is set. May be useful,
e.g., for selecting some molecules.

stop (0) Stop simulation if the time since (re)start, i.e., last init>=2, exceeds stop ps.
Note that nomax applies to the number of measurement, i.e., also last init=1. If init=1
is not used and the cycle length does not change (see h and noint), then nomax and
stop=nomax*noint*h are equivalent.

T (300) Temperature for the thermostat in K. tau.T is the correlation time to keep the
temperature constant

T is also the approximate initial kinetic temperature (init>=3).
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t (0) The simulation time (in ps) can be changed directly. Normally do not use; may be
useful with rho<0 (instead of shifting time in simname.box).

tau.CM (0) Experimental patch to sample the center of mass of a periodic simulation cell.
Good with Nose and MTK (NPT ), maybe also with Bussi NV T . These algorithms
provide what is called [14] (N − 1)V T or (N − 1)PT ensembles because one degree of
freedom, the motion of the center of mass, is not sampled. With this patch, NV T or
NPT ensembles are simulated. The implementation is simple and the correlation time
tau.CP must be long enough because the equations of motion are affected up to term ∝
h/tau.CM.

tau.CP < 0 Langevin thermostat for the center of mass with the correlation time
-tau.CM ps.

tau.CP > 0 Maxwell–Boltzmann thermostat for the center of mass with a new CoM
velocity drawn every tau.CM ps.

Added in cook V3.6s. NOTES/CAVETATS/BUGS:

• Static quantities in the NV T ensemble are not affected (in the h → 0 and
tau.CM→ 0). All velocities contain the following correction term added to all
particles at time t:

∆vCM =
√
kBT/M ξ(t) (9.13)

Here, ξ(t) is a time-correlated normalized Gaussian random number evolving
according to tau.CM.

• Quantities in the NPT (MTK) ensemble have now the additional measure

• Cannot be used when the periodic b.c. are violated by walls (of any type), fixed
atoms etc.

• The interaction with other parameters as drift, conserved, corr&16 is not
automatically resolved and is left to user’s responsibility. Some errors and warnings
are printed, though.

• Implemented for Verlet/leap-frog only.

tau.E (0) The correlation time to keep the energy (Hamiltonian, extended Hamiltonian, or
the enthalpy) constant, in ps. 1/tau.E is the friction coefficient. tau.E=0 turns off the
function (infinitive correlation time or zero friction coefficient). Cannot be combined with
any thermostat. Implemented via velocity rescaling once a cycle.

tau.i (0)

tau.j (0) Atom type indices (numbered from 0) for for Berendsen-like Lennard-Jones σij
(or similar) adjustment, see Sect. 12.3.4.

tau.L (0) For SLAB & 1 #defined: Berendsen-style correlation time to maintain the values
of x and y box sizes (see box.Lx[], box.Ly[], and see Sect. 14.10.5).

tau.P (0) Time constant for a barostat, cannot be combined with tau.rho. The
configurational pressure used in the barostat is given by variable virial, see there
(usually, the default works fine). See also variables dV and corr.

tau.P=0 Isochoric ensemble.
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tau.P>0 Constant pressure.

thermostat="NPT","MTK","Hoover","HooverNPT" The approximated oscillation
time of the extended-Lagrangian-type barostat.

Other thermostats The exponential correlation time of the Berendsen friction-
style barostat (see Sect. 12.3). The Berendsen-like barostat uses the ideal-gas
bulk modulus unless bulkmodulus is set (see there). The box is rescaled before
every step, the scaling factor is calculated at the end of the preceding cycle and
is kept the same for all steps in the cycle (some bias is introduced, cf. tau.P<0
below). Variable noint should not be too large (let us say, max. 10).

tau.P<0 Legacy barostat.

thermostat="NPT","MTK","Hoover","HooverNPT" Not supported.

Other thermostats The box is rescaled at the end of every cycle using the current
value of virial pressure (this is the old version). Interaction with dV is unknown
(= not recommended unless checked).

With PRESSURETENSOR=3 (or more) and appropriate value of rescale), applies to diagonal
components of the pressure tensor independently in each coordinate (suitable for crystals).
Virtual volume/area is not supported.

tau.rho (0) tau.rho=0 The box size (density) does not change.

tau.rho>0 The correlation time to reach the desired density (given by rho)
or box sizes (rho=0 and L[]; see rho and L[] for details). In case of
initialization the initial density is initrho. Time needed to reach rho

is abs(ln(rho/initrho))*tau.rho. The number of cycles needed is then
no=1+abs(ln(rho/initrho))*tau.rho/(noint*h); this formula can be directly
written to input data.

tau.rho=-1 The box size is controlled by file simname.box, which contains two
columns: time in ps and the density in kgm−3, see Sect. 12.3.3.

tau.rho=-3 The box size is controlled by file simname.box, which contains four
columns: time in ps and the box sizes in Å, see Sect. 12.3.3.

NOTE: column 4 of the cp-file shows the density.

tau.sat (0) Turns on the module for automatic calculation of the electrostatic field el.E

(if one component set to a positive value) or the dielectric constant of the surrounding
continuum (if el.E=0) ϵ′r =el.epsinf, see Sect. 29.3.

tau.sat=0 Autoset is off.

tau.sat > 0 The correlation time to reach the desired saturation el.sat of the cell
dipole moment.

tau.sat < 0 As above with |tau.sat|; in addition, after the sweep is finished, the
averaged value of el.epsinf (if no field) or el.E (if field) is assigned, tau.sat is
cleared, and init=1 is set (instead of usual init=0). Note that you must first perform
at least one (shorter) sweep with tau.sat>0 and then one (longer) with tau.sat<0;
just starting (init=2) a simulation with tau.sat<0 will cause convergence profile
error (missing header).

(Warning if there are free ions)
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tau.sig (0) Correlation time for Berendsen-like Lennard-Jones σ (or similar) adjustment,
see Sect. 12.3.4.

tau.T (0) The correlation time for the thermostat. See thermostat and see Sect. 12.2.
Recommended values are 0.2–5 ps, in most cases 0.5–1. For simulated annealing
(minimizing energy as T → 0), much longer times are needed to cool slowly to escape
from local minima. However, close to the minimum, shorter times (comparable to the
periods of typical motions) are more efficient; e.g., for water ice, the fastest relaxation to
zero is obtained with tau.T=0.12.

For extreme rates of cooling or heating using friction thermostat, the friction term is
bounded by +-1/tau.T. Therefore T=0 can be safely used.

thermostat The selection of thermostat. See Sect. 12.2.

0 "none" No thermostat—the MD NVE ensemble.

1 "friction"

1 "Berendsen" Simple friction thermostat, see variables tau.T and T.

2 "Nose" "Nose-Hoover" The Nosé–Hoover canonical ensemble.

3 "Andersen" Velocities of randomly chosen atoms are replaced by those drawn from
the Maxwell–Boltzmann distribution[15]. The mean time of updating the same atom
is tau.T. Not good with constrained dynamics. The averaged kinetic temperature
difers from T by an error of the order of O(h2) unless VERLET=3 version is used.
Issues have been reported (see history.txt).

4 "Maxwell" Velocities of all atoms are replaced by those drawn from the Maxwell–
Boltzmann distribution in the regular period of tau.T. The same conditions as above.

5 "AndersenCM" Velocities of randomly chosen molecules (their centers of mass) are
replaced by those drawn from the Maxwell–Boltzmann distribution. The mean time
of updating the same atom is tau.T. May be used with constrained dynamics. Note
that the actual relaxation time is longer because energy must be equipartioned
with internal degrees of freedom. Not suitable for fast initial cooling/heating.
The averaged kinetic temperature difers from T by an error of the order of O(h2)
(irrespective of the VERLET version); this is the consequence of equipartition error
proportional to O(h2). Issues have been reported (see history.txt).

6 "MaxwellCM" As above, in regular period of tau.T.

7 "Langevin" Poor Langevin thermostat for atoms, Gear only. Not good with
constrained dynamics. Perturbs the Gear predictor and leads to equipartition errors
(and averaged kinetic temperature error) on the order of O(h). Should be used with
long enough tau.T only. This problem is solved[16], but not implemented here.

8 "LangevinCM" Poor Langevin thermostat for molecules (centers of mass), Gear only.
Can be used with constrained dynamics. Perturbs the Gear predictor, therefore only
long enough tau.T are acceptable.

9 "Bussi" CSVR (Canonical Sampling through Velocity Rescaling)[17], for Verlet only.
(Inefficient implementation, tested for Ar only.) Variance (T) gives error on the order
of O(h). I do not know whether a fix (like for Langevin) exists here.

11 "BerendsenCM" The friction thermostat applies for the translational motions of the
centers of mass only.
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12 "BerendsenIN" The friction thermostat applies for the intramolecular (vibra-
tional+rotational) motions only.

13 "frictions" The translational and intramolecular+rotational degrees of freedom
are thermostated separately. See also T tr in.

22 "MTK" NPT ensemble: thermostat + barostat [8], via velocity predictor (see Nosé–
Hoover) and box predictor (for constraints). Also "NPT". See Sect. 12.3

23 "Hoover" NPT ensemble: thermostat + barostat [8], via velocity predictor (see
Nosé–Hoover) and box predictor (for constraints). Also "HooverNPT". See Sect. 12.3

See also variable corr: NPT requires corr&16 unset. The default is correct, however, it
does not change automatically if you also change the thermostat!

Tstop (0) If nonzero, the simulation stops when the kinetic temperature reaches Tstop

(whether while cooling or heating)

T tr in (1) Applies to thermostat=13="frictions" only. The translational and in-
tramolecular+rotational temperatures to be kept constant are different with ratio
Ttr/Tin=T tr in. The total kinetic temperature is kept to T.

unsplit (0) If the input molecules (e.g., from init="plb") are split over the periodic
boundary conditions, they are normalized to the MACSIMUS style (periodic b.c. do
not apply within a molecule). This un-splitting is done by the coordinates indicated by
bits (1=x,2=y,4=z); use unsplit=7 for all coordinates.

virial (0) Formula for the (configurational) pressure to be used for other purposes, as in
NPT . Other flavors of pressure are reported.

virial=0 Automatic selection of a suitable version.

virial=1 Symbol P(vir): The virial of electrostatic force is taken from minus the
electrostatic energy. This is theoretically exact for point charges (with the Ewald
summation and zero cutoff errors), in practice it is usually less accurate but a bit
faster (if full pressure tensor is not calculated). Not suitable for Gaussian charges,
quite inaccurate for cutoff electrostatics.

virial=2 Symbol P(dV): Pressure is calculated by the virtual volume change method.
Variables dV, and rescale must be set appropriately.

virial=3 Symbol P(tens): Pressure is calculated from the trace of the full pressure
tensor. This is most accurate.

vshift[*] Velocities of the whole configuration (or a part of it – see nshift) are changed
by this 3D vector (before the first MD step). The vector is given in Å/ps = 100 m/s.
This vector is then set to zero so that no push is performed in the next data set (unless
specified again).

xs.freq (0) How often to measure the cross section (CHANGED in V2.7o).

0 Do not measure.

1 Measure every cycle (of noint steps) during simulating. Measure for every frame
in the reread playback mode,
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> 1 Measure every xs.freq-th cycle during simulating (data in the convergence profile
will repeat the last calculate value). Not recommended in the reread playback mode
(use reread.by instead and xs.freq=1).

< 0 Measure every cycle |xs.freq|-times. Makes sense with modes using random
orientations, xs.mode=0,1,4. More samples = higher precision.

xs.grid (10) Grid for calculating the cross-section, in number of points per 1 Å. The method
places the molecule on a rectangular mesh, projects all atoms and counts the number of
mesh points. Note that there is a limit for the size of this mesh (see xs.sizelimit), the
default is enough with xs.grid=10 for most cases but choosing a finer mesh could cause
exceeding this limit.

xs.maxs (-1) Molecule mode: number of SPECIES included.
Whole configuration mode (xs.mode&8): number of SITES included.
0=all SPECIES or SPECIES
Does not apply for clusters (xs.mode&16): see xs.mincluster.

xs.mincluster (0) CLUSTERS only: Minimum cluster (number of molecules) for which
cross-section will be calculated.

xs.mode (0) Only if compiled with #define XSECTION: method of calculating the cross
sections.

0 "gauss" Uses 16 sample projection directions for each measurement, corresponding
to 32 of the vertices of a regular dodecahedron and inscribed icosahedron with
weights giving the Gaussian integration formula5 The orientation of the polyhedron
is random.

1 "one" One random projection direction per measurement.

2 "shear" Three directions measured separately: (x+ y), (x− y), and z. Suitable for
testing possible orientational order caused by shear stress.

3 "xyz" Three directions measured separately: x, y, z. Suitable for monitoring melting
a crystal and similar.

4 "three" Three sample orthogonal projection directions for each measurement,
rotated by a random orientational matrix as in xs.mode=0.

5 "x" Direction x measured separately.

6 "y" Direction y measured separately.

7 "z" Direction z measured separately.

8 If combined with the above: The cross-section will be calculated for the whole
configuration (otherwise for all molecules separately, which is not what you want for
a water cluster).

Use uppercase mnemonic codes: "GAUSS", "ONE", "SHEAR", "XYZ", "THREE",
"X", "Y", "Z". ("SHEAR", "XYZ" do not have too much sense.)

16 CLUSTERS only: calculate cross-section for clusters. Exclusive with bit 8. In
this mode, clusters ≥ xs.mincluster are analyzed and their cross-sections (in Å2)
printed. The maximum cluster cross-section (by the number of molecules) is recorded
in variable Xsection[max.cluster] and in column Xsec of convergence profile.

5probably from book A.H. Stroud, The Approximate Calculation of Multiple Integrals, (Prentice Hall,
Englewood Cliffs, New Jersey, 1971), see gen/sphint.c
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Note that modes 0,1,4 give the angle-averaged cross-section while modes 2,3 give cross-
sections in specified directions.

xs.Rscale (2^(-1/6)) For cross section measurements, the atoms are represented by
spheres of radii given by xs.Rscale*(RvdW+xs.Rvdw), where RvdW is the van der Waals
radius of the atom being measured and xs.RvdW of the testing particle in a scattering
experiment. The default is the same as using half Lennard-Jones sigma. (NOTE: old
name = xs.scaleR).

xs.RvdW (1.4) Van der Waals radius of the testing particle in a scattering experiment. 1.4
corresponds to Helium.

xs.sizelimit (228) Max number of bytes that can be used for the cross-section grid. (This
is the upper limit, only the necessary memory is allocated.) If exceeded, a warning is
printed and outer parts of the molecule are ignored; the parts which are farthest from
the origin are more likely to be cut off. Thus, if this happens for one molecule in free
boundary conditions (FREEBC) which contains parts which can be released and fly away
(like water molecules), these water molecules will be simply ignored. Cf. AllocSizeLim.

wall.g (0) Gravity in the direction of ẑ, in the unit of Å/ps2 (internal program units, see
sim/units.h). Note that the “gravity” is usually negative (lower potential for smaller
values of z). May be useful for initializing the adsorbtion of molecules on a wall. Practical
range is up to 10 with intensive thermostatting, otherwise much less.

wall.LJ[nsites].sig

wall.LJ[nsites].neps Optional replacement of the wall–atom Lennard-Jones (12–6)
parameters (the wall-atom potential is integrated 9–3). Must be in the simname.get
file (not simname.def.

wall.LJ[i].sig [Å] is the Lennard-Jones (combined) σ of the “wall atom” vs. atom
number i (i goes from 1 to nsites-1, see sysname.ble).

wall.LJ[i].neps [kB K Å−3] is the Lennard-Jones (combined) ϵ multiplied by the wall
number density (in Å−3).

NOTE: As the default, the wall–atom Lennard-Jones parameters are determined from
the respective (not necessarily Lennard-Jones) atom–atom potential. The last atom in
the “Lennard-Jones” or “Buckingham” or “Busing” table is the material of the walls.

wall.n (0) The walls. Sum of flags and sign:

|wall.n|&1 Wall 0 at z = wall.z[0]Lz.

|wall.n|&2 Wall 1 at z = wall.z[1]Lz.

wall.n>0 Walls are repulsive (the attractive part of the Lennard-Jones potential is set
to zero, only a z−9 term is used.

wall.n<0 Walls are attractive (full Lennard-Jones potential).

Example:

rho=0 z=60 wall.n=-1 wall.z[0]=1/z L[2]=z
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defines one bottom (z = 1 Å) attractive wall in a box with Lz = 60 Å.

wall.rho (19320) Mass density of wall atoms, in kg/m3 (the default is Au).

wall.z[2] (0,1) The positions of the respective walls in the units of z-box size.
wall.z[0]<wall.z[1] is required.

9.2.6 Interactive and batch control

cook runs in both batch and interactive modes. To turn the interactive mode on use option
-s. This also enables scrolling (if compiled so).

The ‘get data’ input module, the use of scrolling and error handling are the same as in program
blend – see the manual for blend!

9.2.7 Interrupt

If not turned off by option -i-1, pressing Ctrl-C (or signalling kill -2 or kill -INT, on
some systems also kill -15 or kill -TERM) causes the program to be interrupted and you can
select (in interactive mode and a serial version from keyboard, in PARALLEL version and/or
batch mode by option -i):

0 = (r)esume: continue calculations Continue running as without interrupt.

1 = (i)nterrupt: finish cycle then save all and read next data In interactive mode
just the running cycle will be finished and you will be prompted for other data. Not so
useful for the batch mode because the data are read from a file.

2 = (.)stop: finish cycle then save all and stop Stop cook gracefully (both in
interactive and batch modes). Default for the batch mode.

5 = (j)ump to stop: finish step then save all and stop (incomplete cycle!) Stop
cook less gracefully. The configuration will be saved but measurements will not be
recorded in proper intervals (one per a cycle). To be used if you want to start cook

again with init=2.

-1= (e)xit immediately (nothing saved!) Kill cook.

9 = (s)croll (then type ? for help) Enter scrolling; once prompt $ appears, type a
scroll command or ? for help.

NOTE: You can disable the Ctrl-C handler totally by deleting #define SIG from main.c.
See comments there!



Chapter 10

Parallelization

MPI support was removed at cook V2.5a. Now there are two shared memory versions
implemented using POSIX threads (“pthreads”).

10.1 Compiling

The version is determined by compile-time switch PARALLEL (#define PARALLEL) in
simopt.h. Several options are possible (see below). The pthread library is linked by option
-lpthread.

Script configure.sh takes care about all settings.

10.2 Running

The number of threads is given by the environment variable NSLOTS. See more below.

If cook is submitted using SGE (PBS) command qsub, the number of requested cores (“slots”)
is specified by parameter -pe shm NUMBER; it is passed in the form of environment variable
NSLOTS to the node. Example:

qsub -cwd -b y -q sq-8-16 -pe shm 2 ./cookewslcp0P2 polwater slab -t

10.3 Linked-cell list and Ewald parallelized

#define PARALLEL 1 : This version is suitable for simulation of large periodic systems.

The Ewald k-space part is parallelized in the natural way by splitting the sums over charged
sites into parallel threads.

The linked cell list method is parallelized by slabs (2D arrays of cells) in the x-direction. There
are No.cell[0] such slabs; it should be an integer multiple of the number of threads, otherwise
a bad load-balancing occurs.

If you are running cook on your own machine, it may be advantageous to specify No.lcth.
It will split the Ewald k-space part into given number of threads while the r-space sums into
No.cell[0] threads (more than processors).

148
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10.4 Ewald k-space and r-space running in parallel

#define PARALLEL 2 : This version is suitable for smaller systems. It uses two processors, in
one the Ewald k-space part is calculated and in the other and the other the r-space part (of
Ewald plus Lennard-Jones). It is good to set the Ewald parameters (in the standard situation
for el.test=-10 this means trying several values of cutoff) so that the time spent by both
parts is the same, otherwise load-balancing will be lost. The r-space part may be either all-pair
or linked-cell.

10.5 Pair sums for a single big molecule parallelized

WARNING: not implemented now

#define PARALLEL 3 : This version is suitable especially for 1 big macromolecule in
free boundary conditions (version FREEBC). All pairs in the pair-sum are considered and
parallelized as in the following scheme:

-----------------------------------------

1-0

2-0 2-1

Thread 1

3-0 3-1 3-2

4-0 4-1 4-2 4-3

-----------------------------------------

5-0 5-1 5-2 5-3 5-4

Thread 2

6-0 6-1 6-2 6-3 6-4 6-5

-----------------------------------------

7-0 7-1 7-2 7-3 7-4 7-5 7-6 Thread 3

-----------------------------------------

The amount of “lines” is determined in such a way that the amount of work is approximately
the same for each thread. The algorithm allocates a copy of forces (though not of the full length
in all cases) for each thread.

BUG: Measurements of radial distribution functions and dihedral angle distributions are not
supported.



Chapter 11

Algorithms and parameters

There are many parameters that control the accuracy end efficiency. Most of them have
reasonable defaults that will work at least fairly well in most typical cases. But one is never
watchful enough. You must be able to recognize that something is getting wrong, so do not
skip this chapter completely!

11.1 Accuracy

From the technical point of view, there are four sources of inaccuracies in the generated
configurations:

• Integration errors. They are controlled by the integration method used (option -m) and
the timestep h.

• Cutoff errors. These (in periodic b.c.) consist of the site–site (Lennard-Jones) cutoff
errors and electrostatic cutoff errors. For Ewald summation, the latter consist of the
k-space and r-space errors.

• Constraint errors. These are caused by different phenomena and must be corrected to
some low value.

• Inaccurate calculation of charge–charge interactions (r-space sums). Normally negligible.

• Inaccurate ensemble. E.g., serious problems may arise when the friction thermostat with
short correlation time is used for small molecules (they will rotate faster than corresponds
to the temperature).

From the physical point of view, there may be many reasons why things go wrong. A few
typical reasons follow:

• Long correlation times of crossing large energy barriers. For instance a convergence to
equilibrium between cis and trans conformations may be slow.

• Small coupling between different degrees of freedom, e.g., slow coupling between fast
bond vibrations and translations/rotations. That is why constrained bonds may be more
accurate/efficient than simulating a fully flexible model. A slow convergence of the Nosé–
Hoover thermostat is of similar nature.
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• Finite size effects. Especially important for systems close to a critical point. Increasing
system size not only slows down the simulation algorithm but also increases the correlation
times.

The following quantities serve to observe inaccurate sampling of the phase space:

• Conservation of integrals of motion. The most important is the total energy
(Hamiltonian), in free b.c. the angular momentum

• Translational and intramolecular (+rotational) temperatures (called Ttr and Tin) can
reveal a possible wrong equipartition (e.g., the “flying ice cube problem” of the Berendsen
thermostat)

• Errors of constraints

• (POLAR only) Errors in self-consistent field

11.1.1 Errors of constraints

The following quantities are available to observe the accuracy of the constraints:

cerr.r1 Error of constraints of predictor; reported as ”constr err 1” in statistics.

cerr.r2 Error of constraints after integration step.

cerr.r3 Error of constraints (of true configuration, i.e., after correcting constraints).

cerr.v1 Error of velocity constraints of predictor; reported as ”v constr err 1” in
statistics.

cerr.v2 Error of velocity constraints after integration step

cerr.v3 Error of velocity constraints (of true configuration)

All these quantities are normalized to be dimensionless.

Generally, cerr.r1 should be several times higher than cerr.r2 which should be several times
higher than cerr.r3 and similarly for cerr.v’s (with the exception of cerr.v1/cerr.v2

which is rather high anyway). If all cerr.r’s are comparable (ratios less than 2), the
constraint dynamics is solved too inaccurately and epsc and/or eps should be decreased. If
cerr.r2/cerr.r3 or cerr.v2/cerr.v3 is too high (say, > 100), epsc is unnecessarily low and
efficiency is lost.

11.1.2 Energy conservation

The total energy should be in principle constant. The exception is the friction thermostat (and
friction-like isobaric ensemble and similar) which spoils in principle the energy conservation
– even if you wish to use the friction thermostat, try once a while a short microcanonical
run to check the energy conservation! But even in the true microcanonical ensemble, various
inaccuracies cause both statistical fluctuations and systematic secular drift in the total energy
(the Hamiltonian).
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1. Integration errors cause cooling (energy decrease) for the 4-value Gear method for 2nd-
order equations which is the case of cook with the default value of option -m. In other
cases they cause heating.

2. Cutoff errors (i.e., small jumps or peaks in the potentials and forces) cause heating (energy
increase)

3. Inaccurate constraint dynamics causes heating

The first reason usually is (and should be) most important.

For the Nosé–Hoover canonical ensemble the drift does not matter because it means only some
rescaling. The drift, of course, must not be too high: the good criterion is not the drift during
the entire (possibly very long) simulation but the drift during a typical correlation time (say,
1 ps) which should be set according to the demanded accuracy. The same holds true for the
statistical fluctuations of the total energy.

The situation is not so simple for the microcanonical ensemble where energy drift causes cooling
or heating. To avoid this, set tau.E to a typical correlation time (at least 1ps) and energy E will
be conserved; the difference of E-<measured Etot> as well as sqrt(Var Etot) (both quantities
are measured and statistically analyzed) is then the equivalent measure of the quality of the
simulations.

The problems are usually smaller for the Verlet integrator (with SHAKE for constraints) which
is time reversible so that (if there are no other sources of errors) there is no energy drift. In
addition, the Verlet integration can be treated as exact integration of a perturbed Hamiltonian
so that the errors are bound. (To be exact, this holds true only for certain class of continuous
potentials with derivatives. Typical potentials like Lennard-Jones with singularities for particle
overlaps exhibit energy increase. This phenomenon is for typical timesteps usually negligible.)

11.1.3 Self-consistent field accuracy

Applies to POLAR version only. The reported errors, selffield maxerr (maximum found in
the configuration) and selffield stderr (standard deviation) of induced dipole moments are
in the program units (one program unit is 0.0117501 D, or see sim/units.h for details). See
also the explanation of scf.eps variable. see Sect. 27.

11.2 How to set Ewald parameters α and κ

Both α = el.alpha and κ = el.kappa depend on the r-space cutoff (cutoff). It must not
exceed half the box size L/2 (to be precise, a tiny overflow is accepted; in addition cutoff

may exceed half box if the linked cell list method is used, but this method becomes efficient for
large systems so that using cutoff>L/2 is not recommended. For small systems (say, number
of sites < 1000), half the box size is the optimum value. For larger systems a lower value is
optimum. If you select cutoff<0 (this is the default), cook calculates a value that should work
fairly well in typical cases (it uses the final density rho to calculate the final box size). But if
you want to optimize the run, you should try several values of cutoff and measure the time.
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11.2.1 Simple way

It follows from the formulas in Appendix 24 that the main term of the r-space error is
erfc(αcutoff) ∝ exp[−(αcutoff)2] whereas the k-space error is exp[−(πκ/α)2]. Let ϵ be the
desired accuracy. Then the estimated parameters are

α =

√
− ln ϵ

cutoff
, κ =

α

π

√
− ln ϵ. (11.1)

Usually ϵ = exp(−π2) ≈ 5.2× 10−5 is a reasonable choice. Then

κ = α = π/cutoff (11.2)

Example of code:

el.test=0 ! no automatic setting of alpha,kappa

el.alpha=pi/cutoff ! simple estimate

el.kappa=el.alpha ! simple estimate

11.2.2 More accurate way

As the default (parameter el.test=-10), cook implements approximate formulas [11] based
on the assumption that charges in the system are distributed randomly. The value of the r-
space cutoff is here a free parameter and el.alpha and el.kappa are calculated to satisfy
the accuracy requirements given by errors el.epsr and el.epsk.

But be aware that approximate error formulas are used. They tend to overestimate the k-
space cutoff errors for large systems without free charges (i.e., if all charges are parts of small
electroneutral groups). In addition, the k-space cutoff errors are both positive and negative
and do not cause any violation of energy conservation. Hence, el.epsk may be several times
higher than el.epsr.

11.2.3 Most accurate way

Since only approximate formulas are used for the cutoff errors, I recommend to check them
against the actual errors. This is done in a special module that is entered by specifying el.test
different from 0 and -10. The following data are available:

el.alpha As in the main get data module

el.kappa As in the main get data module

cutoff As in the main get data module; must be positive.

eps As in the main get data module; the original value is restored automatically when the
Ewald testing module is left.

el.epsk As in the main get data module

el.epsr As in the main get data module

el.grid As in the main get data module
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el.test Control:

el.test=0 Leaves Ewald testing module Ewaldtest and calculates (additional get data
are not read, must be prepared before el.etest is invoked).

el.test=1 Calculates forces and energy and, if reference is set, errors.

el.test=2 Calculates forces and energy and store them as a reference for evaluating
errors in next steps, sets el.test=1.

el.test=-1 Calculates el.alpha and el.kappa from cutoff el.epsr el.epsk and
performs el.test=1.

el.test=-2 Calculates el.alpha and el.kappa from cutoff el.epsr el.epsk,
performs el.test=2 and sets el.test=-1.

el.test=-3 Calculates el.alpha and el.kappa from cutoff el.epsr el.epsk and
waits for further data.

el.test=-10 Calculates el.alpha and el.kappa from cutoff el.epsr el.epsk,
works silently and quits Ewaldtest afterwords.

el.test=-9 Exit cook* immediately.

el.minqq As in the main get data module

No.cell As in the main get data module

x Auxiliary variable

Testing should not be performed using the initial configuration which is very artificial – it
should be at least a little bit condensed and equilibrated. An example follows:

eps=1e-9 ! sufficiently high accuracy for calculating the Lagrange

! multipliers (not to introduce other inaccuracies!)

epsc=1e-9 ! sufficiently high accuracy for calculating constraints

LJcutoff=6 ! cutoff in the module should not fall below cutoff

scf.eps=1e-8 scf.omega=0.95 ! if POLAR: iterate to high precision

el.test=-2 ;! switch to the Ewaldtest routine (step 7. of ‘program flow’

! above) and select automatic setting of alpha and K

!

el.epsr=1e-4! sufficiently high accuracy for real-space errors

el.epsk=1e-4! sufficiently high accuracy for $k$-space errors

el.test=-2; ! 1) alpha,kappa determined from epsr,epsk

! 2) accurate forces and energies are evaluated and stored as

! "reference" benchmark values

!

el.epsr=.05 ! working accuracy

el.kappa=.5 ! working accuracy

el.test=-1; ! 1) alpha,kappa determined from epsr,epsk

! 2) errors (from the reference) calculated

!

el.test=0; ! abandon Ewaldtest; remember to return the changed variables!
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11.3 Constraint dynamics

The constraint dynamics comes in two versions, one using Lagrange multipliers for calculating
the constraint forces, and the SHAKE algorithm. The SHAKE algorithm is based on the second-
order Verlet integration method while the multiplier method allows higher-order integrators (see
option -m). The multiplier method requires a step correcting the constraints.

11.3.1 The SHAKE algorithm with Verlet integration

Several versions of SHAKE are available differing in efficiency only marginally.

undefined Shake is not implemented (only Gear+Lagrangian constraint dynamics is
available).

#define SHAKE 1 Simple update in sweeps. This is the default in configure.sh.

#define SHAKE 2 Information on moved sites is kept and only the bonds between sites that
have moved in the previous step are updated. May be slightly more efficient in some cases

#define SHAKE -1

#define SHAKE -2 As above and a more complicated algorithm taking into account the angle
between the old and new constraint is used. Some more tests are added. Might be slightly
better for diatomics. Not tested recently.

The velocity algorithm comes in four compile-time flavors. The trajectory is the same and
given by the Verlet algorithm with SHAKE. The velocity algorithm affects the kinetic energy
and kinetic part of the pressure tensor. It does not affect the .vlb file which always corresponds
to VERLET=0 (shifted by h/2). The differences in speed are small.

#define VERLET 0 The simplest, fastest, and least accurate O(h) version, v(t) = [r(t+ h)−
r(t)]/h. Essentially, velocity is shifted by h/2 from positions. Correct averaged energy of
the harmonic oscillator. Good enough with the friction (Berendsen) thermostat. (Added
in V2.4a)

#define VERLET 1 Compromised speed, velocity accurate to O(h2): v(t) = [r(t+ h)− r(t−
h)]/(2h). Averaged energy of harmonic oscillator has error O(h2). (Added in V2.4a) This
is equivalent to the velocity Verlet algorithm.

#define VERLET 2 Best energy conservation (exact for harmonic oscillator but with O(h2)
error), slowest, v(t)2 = [r(t)−r(t−h)]/h·[r(t+h)−r(t)]/h. (The off-diagonal components
of the pressure tensor are approximated as average of both possible h/2-shifted terms).

#define VERLET 3 Compromised speed, velocity and energy conservation accurate to O(h2)
(slightly worse than for VERLET=1), but with correct averaged energy of harmonic
oscillator. Energy and pressure tensor components are averages of both shifted values
v(t) = [r(t + h) − r(t)]/h and v(t) = [r(t) − r(t − h)]/h. Many quantities are more
accurate then for VERLET=1. This is the recommended default.

#define VERLET 4 With Nosé-Hoover thermostat only: velocity and energy from the TRVP
predictor. Not included in the distribution.
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#define VERLET 5 Mixed, best equipartion for a rotating diatomics (?).

#define VERLET 6 On average equivalent to Beeman up to O(h4).

#define VERLET 30 Energy=3/pressure components mixed, not included in the distribution.

SHAKE is controlled by two parameters, omegac and epsc. The first one is the relaxation
(mixing iteration) parameter: omegac=1 means direct iterations, omegac>1 overrelaxation,
and omegac<1 underrelaxation (mixing with the previous iteration). In most cases, values
around omegac=1.2 are optimum. ANCHOR version (see Sect. 15.12) may require omegac<1.
Parameter epsc is the required relative accuracy of constrained bonds.

Since V2.4a, a negative value of omegac causes automatic determinantion of the optimum
omegac, separately for each species. The optimization starts from the absolute value, but it is
not stored (is done again even if init=0 is selected). Use option -v&4 to get detailed protocol
on the process of optimization.

The numbers of needed SHAKE iterations are recorded and statistically analyzed in variable
nitc and reported as corr constr it separately for the 1st molecule and averaged rest.

11.3.2 Constraint dynamics with Gear integrators

An alternative to SHAKE is the Lagrangian formulation1 of constrained dynamics [18]
implemented with the Gear integrators. The algorithm follows; see also the comments in
constrd.c. The Newton equations of motion are modified by adding the constrained forces:

→̈
r i =

1

mi

(
→

f i +
→

f
c

i). (11.3)

The constrained forces are in the direction of constraints,

→

f
c

i =
∑
a

ga
∂ca
∂
→
r i
, (11.4)

where ca denotes the a-th constraint. For a bond constraint between atoms ia and ja it holds

ca =
1

2
[(

→
r ia −

→
r ja)

2 − l2a], (11.5)

where la is the bond length. In order to write equations for the unknown multipliers ga, let us
take the second time derivative of ca’s:

ċa =
∑
i

→̇
r i ·

∂ca
∂
→
r i

c̈a =
∑
i

→̈
r i ·

∂ca
∂
→
r i

+
∑
i,j

→̇
r i ·

∂2ca
∂
→
r i∂

→
r j

· →̇r j.

The constraints are fixed, so c̈a = 0. By inserting
→̈
r i of (11.3) into the above c̈a, we arrive at

equation (in matrix form)
Mg +G = 0, (11.6)

1The older versions of cook supported also the Hamiltonian formulation, however, this procedure suffered
from growing momenta.
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where M is an nc × nc matrix (nc = No.c is the number of constraints)

Mab =
∑
i

1

mi

∂ca
∂
→
r i

· ∂cb
∂
→
r i
, (11.7)

Ga =
∑
i

→

f i

mi

· ∂ca
∂
→
r i

+
∑
i,j

→̇
r i ·

∂2ca
∂
→
r i∂

→
r j

· →̇
r j. (11.8)

To evaluate the above formulas for bond constraints (11.5), we easily calculate

∂ca
∂
→
r i

= (
→
r ia −

→
r ja)(δi,ia − δi,ja). (11.9)

The diagonal elements are:

Maa =

(
1

mia

+
1

mja

)
(
→
r ia −

→
r ja)

2. (11.10)

A nondiagonal element is nonzero only if constraints ca and cb share a common site; for bond
constraints, at most one such site exists. E.g., if ia = ib then

Mab =
1

mia

(
→
r ia −

→
r ja) · (

→
r ia −

→
r jb). (11.11)

Matrix M is sparse and coded as a list (type M t in simglob.h). The set of linear equations is
solved by the conjugate gradient method2; the multipliers g are predicted between time steps.
Matrix M is also needed for normal modes calculation, See Sect. 14.9.2.

11.3.3 Constraint forces by Lagrange multipliers

The conjugate gradient method is used to calculate Lagrange multipliers and then the constraint
forces. The algorithm is described in constrd.c. The method is controlled by one parameter,
eps, which is the maximum relative (dimensionless) error. If eps is too high, you will get into
troubles with correcting constraints (see Sect. 11.1.1).

Another guide to optimization is the number of iterations: nit, or Lagr mult it, (the number
of iterations of the conjugate gradient method needed to calculate the Lagrange multipliers)
should not exceed (too much) the number of bonds; if it does, eps is unnecessarily small (or
there is something seriously wrong like bad cutoffs etc.).

11.3.4 Correcting constraints

Integration and cutoff errors and inaccurately calculated Lagrange multipliers cause errors in
constraints. It is necessary to correct these errors, otherwise they cumulate and the algorithm
explodes. The constraint errors are—and must be—corrected every integration step.

The correction to be added to particle positions is

∆
→
r i =

∑
a

ϵa
1

mi

∂ca
∂
→
r i

(11.12)

2Optionally, Cholesky preconditioning can be turned on by #define PRECOND, with a marginal impact on
efficiency
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where ϵa solves equation
Mϵ+ E = 0, Ea = ca (11.13)

Similarly, the velocities are corrected by adding the following velocity components perpendicular
to the constraints

∆
→
v i =

∑
a

νa
1

mi

∂ca
∂
→
r i

(11.14)

where νa solves equation

Mν + V = 0, Va =
∑
i

→̇
r i ·

∂ca
∂
→
r i

(11.15)

Two methods are available to correct the constraints.

Scorrect is a SHAKE-like iteration method. The inverse-mass weighting ensures that the total
momentum is conserved (within machine precision). This method is selected by unset bit 1
in option -c (was -c3 prior V2.4a). It is controlled by two parameters, epsc and omegac.
epsc is the maximum relative error of the constraints and omegac is the relaxation parameter:
omegac=1 are pure SHAKE-like iterations. Usually, small overrelaxation (omegac=1.1-1.2)
is more efficient. The number of iterations is recorded and printed (separately for the 1st
molecule and average for the rest). Scorrect is more efficient than the following method
for simple constraints provided that good values of the parameters are set. It may become
inefficient for molecules with many small cycles and/or bond angle constraints.

conjgrad uses the same conjugate gradient method and the same (inverse-mass weighted)
matrix that has been used for calculating Lagrange multipliers for the constraint dynamics,
hence, the total momentum is conserved as above. The method is selected by bit 1 in option -c

(-c4 prior V2.4a). It works fairly well for both simple and complex constraints. It is controlled
by one parameter epsc and it seems that the value epsc=0.05 (default) is OK if the order of
multiplier predictor is the same as of the method (see options -m and -p). However, it requires
more memory than Scorrect above.

For as complex systems as proteins a pessimistic choice of eps, epsc, or omegac affects the
efficiency only slightly because calculating the force field is most time consuming anyway. See
the discussion on cerr above.

Note that for conjgrad the conjugate gradient method in the Lagrange formalism is called
twice (once for length constraints and once for velocity constraints).

For Scorrect, the number of iterations depends on omegac. If it is too high, conjgrad should
be used instead of Scorrect.

Summary:

• eps about 1e-5..1e-6 should work (for -m4 and -p4)

• use Scorrect, epsc=eps and omegac=1.2 for simple molecules

• use conjgrad and epsc=0.05 for complex molecules (omegac is irrelevant)

• conjgrad requires more memory than Scorrect. If Scorrect is to be used also for
complex molecules, it is recommended to adjust omegac to get the minimum value of the
number of iterations. (This is automated since V2.4a)
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11.3.5 Dependants

A dependant is a massless site which is calculated from other sites (parents). The configuration
of the parents must be rigid (constrained). Forces on dependants are distributed back to parents
before constraint dynamics.

There are two types of dependants:

M “Middle” dependants are a linear combination of the parents. The forces are distributed
back using the same coefficients. Example: site M in the TIP4P water model.

L (New in cook V2.5f): “Lone” dependants are based on three atoms, but they lie out of
the plane defined by these three atoms. Example: site L in ST2 or NE6 water models.

There may be several mechanically separated dependants (of both types) in one molecule.

Data for the dependant mechanics are collected in table “dependant” in the ble-file. The
“Middle” dependants are calculated by blend. For water models, utility waterdep is available.

Lone dependant mechanics: Rigid reference

A position of this “Lone”-type dependant is derived from a rigid triangle (for water HOH). The
lenghts and angles must be constrained! The dependant may be in any relative position to this
fixed triangle.

Let us denote the positions of the three parents as
→
ra, a = 1, 2, 3. The calculations need a local

orthonormal coordinate system (x̂, ŷ, ẑ), where vectors x̂, ŷ are in the plane of the parents and
ẑ is perpendicular:

x̂ =
∑
a

xa
→
ra (

∑
a

xa = 0),

ŷ =
∑
a

ya
→
ra (

∑
a

ya = 0),

ẑ = x̂× ŷ.

Constants xa, ya are defined in the ble-file, table “dependants”. Particularly for water (models
POL4D, NE6) it holds (as calculated by waterdep):

xL = −1/c, xH1 = 0.5/c, xH2 = 0.5/c for c = |OH| cos(HOH/2)

yL = 0, xH1 = 0.5/c, xH2 = −0.5/c for c = |OH| sin(HOH/2)

The dependant position is

→
r =

∑
a

wa
→
ra + wz ẑ (

∑
a

wa = 1) (11.16)

where again wa and wz are defined in the table “dependants”. Particularly for water it holds:

wz = ±|LO| sin(LOL/2)

wH1,2 =
−|LO| cos(LOL/2)

2|OH| cos(HOH/2)
wL = 1− 2wH1,2
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To distribute force f on the dependant back to the parents, we first calculate its components
in the local coordinate system,

fx = x̂ ·
→

f, fy = ŷ ·
→

f, fz = ẑ ·
→

f. (11.17)

The force on parent a, a = 1, 2, 3, is

→

fa = wa

→

f + (tx,afx + ty,afy)ẑ. (11.18)

The ‘torque constants’ tx,a, ty,a are again defined in the table “dependants”. For water:

tx,L =
±|LO| sin(LOL/2)

|OH| cos(HOH/2)
, tx,H1,2 = −tx,L/2

ty,L = 0, ty,H1 =
±|LO| sin(LOL/2)

2|OH| sin(HOH/2)
, ty,H2 =

∓|LO| sin(LOL/2)

2|OH| sin(HOH/2)

Pressure tensor calculation The force-calculating module also calculates the virial of
force and optionally also components of the pressure tensor, see Sect. 15.7. For the “Lone”
dependants, a correction must be made because of force redistribution,

V∆
↔

P =
∑
a

→

fa(
→
ra −

→
r) =

∑
a

(tx,afx + ty,afy)ẑ(
→
ra −

→
r)− wz

→

f ẑ (11.19)

where we used (11.16) to simplify the expression. The virial of force correction is the trace,

V Tr∆
↔

P =
∑
a

(tx,afx + ty,afy)ẑ · (
→
ra −

→
r)− wzfz = −wzfz (11.20)

because the torque part (in the sum) has a zero trace.

Note that the pressure tensor corrections are zero for the “Middle” dependants.

Rowlinson-type dependant mechanics: Flexible reference

This site is perpendicular to a (generally flexible) tringle at a point. The example is a
“Rowlinson” site L in water models: LO is perpendicular to the HOH plane and at a fixed
distance. The triangle may be flexible.

Because of flexibility, the weights cannot be pre-calculated; an example for water follows. To
calculate the dependant position, we must calculate a vector perpendicular to the molecule
plane

→

l =
→

h1 ×
→

h2 (
→

hi =
→
rHi

− →
rO, i = 1, 2) (11.21)

Then
→
rL1,2 = rO ± |LO|

→

l /|l|.
To distribute forces, we calculate the torque (moment of force):

→

M =
→

l ×
→

fL (11.22)

We have to decompose
→

M to components perpendicular to vectors
→

h1,2; it is easier to decompose

a perpendicular (but sign) vector to vectors
→

h1,2. Thus we calculate a perpendicular vector
proportional to M lying in the HOH plane:

→

M
p

=
→

l ×
→

M (11.23)
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The decomposition should be
→

M
p

= a1
→

h1 + a2
→

h2 (11.24)

so that

a1 =
(

→

M
p

·
→

h1)h
2
2 − (

→

M
p

·
→

h2)(
→

h1 ·
→

h2)]

h21h
2
2 − (

→

h1 ·
→

h2)2

a2 =
(

→

M
p

·
→

h2)h
2
1 − (

→

M
p

·
→

h1)(
→

h1 ·
→

h2)]

h21h
2
2 − (

→

h1 ·
→

h2)2

Then the equivalent forces to both hydrogens, Hi, i = 1, 2, are ai
→

l /l2, i = 1, 2, to Hi (and

subtract both from the oxygen). The total force on oxygen is thus
→

fO =
→

fL − (a1 + a2)
→

l /l2.

11.4 Site–site potential cutoff

Let u(r) be an interatomic potential at atom-atom separation r. This non-bonded potential
normally includes repulsive and attractive (London) forces, but not Coulomb interaction of
(partial or full) charges, which are treated elsewhere, see Sect. 24 or 15.3. In the simulation,
we use a truncated and smoothed (but not shifted) potential uMD(r),

u(r) = uMD(r) + ∆u(r), (11.25)

where the correction ∆u(r) = 0 for r < C1 and C1 is the inner cutoff. Note that the cutoff
truncating scheme for blend differs, see Sect. 3.5. In cook it holds:

uMD(r) =


u(r) for r < C1

A(r2 − C2
2)

2 for C1 < r < C2

0 for C2 < r

(11.26)

where C2 = LJcutoff is the real cutoff (so that uMD(r) = 0 for r > C2). Constants A and C1

are calculated from the potential and the cutoff C2 so that function uMD and its derivative are
continuous, see Fig. 11.1.

The most typical site–site potential is that of Lennard-Jones,

uLJ(r) = 4ϵ
[
(σ/r)12 − (σ/r)6

]
= ϵ

[
(RvdW/r)

12 − 2(RvdW/r)
6
]
, (11.27)

see Sect. 3.2. If C2 ≫ σ (for Lennard-Jones or any potential with van der Waals r−6 limiting
behavior) it holds C1 ≈ 0.775C2.

The homogeneous cutoff corrections are calculated by numerical integration (hence, any
potential can be easily implemented) using the assumption that g(r) = 1 for r > C1. If
i, j are two sites, then the contribution is

∆Uij = 4πN
∫ ∞

C1,ij

∆uijdr (11.28)

where N = N/V is the number density of all sites. The total energy correction is

∑
i<j

∆Uij ≡
En.corr

V
, (11.29)
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Figure 11.1: The enlarged tail of the original and truncated potential (for the Lennard-Jones
argon and C2 = 7 Å)

where the sum is over all site pairs. cook calculates ∆Uab for all site types a, b and sums
them with weights Na(Na − 1)/2 for like sites and NaNb for unlike sites, multiplied by volume.
This quantity (independent on volume) is called En.corr and it is reported; the cutoff energy
correction is En.corr/V .

Since it holds ∫ ∞

C1

r∆u′dr =
[
r∆u(r)

]∞
C1

−
∫ ∞

C1

∆udr = −
∫ ∞

C1

∆udr (11.30)

(note that ∆u(C1) = ∆(∞) = 0), the correction of pressure is simply

∆p =
En.corr

V

2

. (11.31)

Variable corr determined whether the above corrections are included in the final values of
energy and pressure.

About 3 LJ sigma for LJcutoff seems to be sufficient for liquid phase (but not for fluids close
to the critical point!). This is the default: LJcutoff=-3 in input data means that the real
cutoff for each pair of interacting sites will be just 3 times their LJ sigma. For small systems
cutoff=LJcutoff=L/2 is OK. (L is the smallest box size).

11.5 The timestep

The errors (total energy drift and fluctuation, with caution also cerr’s) are proportional to
higher powers of the timestep h (with the exception of the Verlet drift, see Sect. 11.1.2). If
they do not scale with these higher powers once h is changed it means that other errors (e.g.,
r-space cutoff errors) spoil the energy and constraint conservation.

For Ewald, the r-space cutoff errors (see Sect. 11.2) should be comparable with the integration
errors. Check it: an increase of el.epsr (or explicitly decrease cutoff or increase el.alpha)
or an increase of h should worsen the conservation of energy while a decrease of el.epsr or
decrease of h should not significantly improve it.
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The optimum timestep size generally depends on the complexity of molecules and the
temperature and pressure. Good h in normal conditions is around 0.002 ps if there are no
explicit hydrogens but h=0.001 if there are hydrogens; the latter pessimistic value is the default.
Vibrating bonds (see option -u), especially for hydrogens, require h=0.0005.

11.6 Functions for r-space Ewald sums

The following functions are needed to calculate the r-space part of Ewald sums for point charges
(for Gaussian charges see Sect. 24.2):

eru(x) = αe(α
√
x),

erd(x) = −α3 e
′(α

√
x)

α
√
x

, (11.32)

erud(x) = eru(x), the corresponding macro also returns byerd = erd(x)

where

e(y) =
erfc(y)

y
,

e′(y) =
de(y)

dy
,

erfc(y) =
2√
π

∫ ∞

y
exp(−t2)dt

Functions eru(x) and erd(x) are approximated by hyperbolic splines (functions A+B/(x+C),
no jumps in the derivative). These simple functions are fast to evaluate, however, large tables
are required to reach a good accuracy. The accuracy is controlled by el.grid which means that
unity in the argument is divided into el.grid subintervals; i.e., there is el.grid subintervals
for r ∈ [0, 1/α]. The spline table size is [(rangeα)2 + 1], where range = cutoff + el.rplus.

The maximum error occurs at the minimum distance el.minqq (the value of this variable
affects the reported accuracy only, you can call eru and erd for any distance from 0 to
cutoff2). By default, cook has el.minqq=1.0. Since this minimum distance occurs normally
for constrained bonds, the error in eru/erd in el.minqq is constant as well and cannot affect
energy conservation. A minimum intermolecular distance is longer, errors lower but more
relevant.

If requested so by #define COULOMB -2 in simopt.h or −2 from “Select algorithm for
ELECTROSTATIC calculations”, cook uses a more accurate erfc formula for 1–2 and 1–3
distances (and auxiliary charges in POLAR version) so that larger el.minqq applies. Also
POLAR implies COULOMB=-2.

Low el.grid may include some systematic errors into calculations, especially with
COULOMB=-1 (which is not recommended). High el.grid may slow down the calculations
(consider the cache memory!). The default is 256 for point charges (32 for Gaussian charges,
see Sect. 24.2).

For ambient TIP4P water, a typical error with the default el.grid=256 caused by using
COULOMB=-1 is 10 kPa in pressure and 1 J/mol in energy per particle. These errors are
constant (for the same trajectory). A trajectory is not affected because all imprecise forces
are constrained and are removed.
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11.7 Hammonds–Heyes correction

The k-vectors beyond cutoff can be to some extent taken into account by changing α[12]. This
is called α′ or AP method. The k-space is run as usual using parameters κ = el.kappa and
α = el.alpha. The r-space including the “self-term” then uses a modified α′ (reported as
alphar).

α′ = α erf
(
πκ

α

)
.

Figure 11.2 moderate shows improvements for both pressures. To keep the accuracy high,
cutoff=20 is recommended, which is close to the Ewald optimum speed. Decreasing κ to about
0.05/Å could give a considerable speedup here. Note also that usually a higher k-space error
is acceptable. But to be on a safe side, a lot of tinkering is needed before productive runs.
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Figure 11.2: The differences of pressure from an accurace reference for molten salt Cs850I850
(force field by Young–Cheatham, T = 1550.3 K) in dependence on κ. Parameters estimated
fromel.epsr=el.epsk=0.1 K/Å are:
top: cutoff= 20 Å, alpha=0.169269, kappa=0.180637,
middle: cutoff= 15 Å, alpha=0.227104, kappa=0.243901,
bottom: cutoff= 10 Å, alpha=0.343618, kappa=0.372304.
Shifted energy and forces (el.rshift=3 or 7) in the r-space. Three configurations shown.



Chapter 12

NV T and NPT ensembles

12.1 Kinetic temperature

The kinetic temperature is

Tkin =
Ekin
1
2
knf

(12.1)

where nf is the number of the degrees of freedom,

nf = 3N − nbonds − ncons, (12.2)

where nbonds is the number of bonds and similar mechanical constraints (as keeping selected
atoms in place). ncons is the number of conserved degrees of freedom (as momenta in periodic
b.c.), optionally including energy conservation.

12.1.1 Should we subtract 1 from nf for energy conservation?

In the Nosé–Hoover thermostat (and combined methods), there is one additional degree of
freedom (nf+=1) and one Hamiltonian conservation (ncons+=1) which cancel out; then, it is
proven[19, 20] that the system is canonical. There is a question whether to include consistently
the energy conservation also in the NVE ensemble (and similarly the Berendsen thermostat)
into the number of conserved quantities, ncons. The NVE and Berendsen results are subject to
O(1/N) errors anyway so that the question actually is, which option is more accurate? But
this question is not well formulated either: Should we prefer the fastest convergence to the
thermodynamic limit, or the best match with NV T (with the same N)?

Based on simulations with N = 32, see table 12.1, we conclude for NVE that:

• For liquid and solid argon, nf = 3N − 3 (energy conservation not included in ncons) is
better for both kinetic temperature and pressure.

• For dense gas, nf = 3N − 3 is slightly better (both nf = 3N − 4 and nf = 3N − 3 are
likely the same for ideal gas), but for pressure nf = 3N − 4 is better.

Similarly, the averaged temperature for Berensen differs from the thermostat temperature, so
that it is not clear which temperature should be used for comparison (cf. the last lines of Table
12.1. Anyway, we observe that

166
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Table 12.1: Argon simulations; unless given otherwise, N = 32, h = 4 fs, cutoff = LJcutoff =
7.85 Å, VERLET = 3. Pressure correction (corr&4) is used, nf = 3N − 3 unless marked∗.
cookewps is used because cutoff > (half box size). Potential and internal energies are per atom.

method parms Tkin/K Epot/ Jmol−1 U/ Jmol−1 P/kPa

gas T = 150 K, ρ = 500 kgm−3

Nose as below, N = 256 149.994(9) −1872.46(15) −9.08(21) 7500(4)

Nose T = 150 K, τ = 0.2 ps 149.981(11) −1777.87(13) 34.20(21) 7307(6)

NVE∗ U = Nose 150.914(8) −1769.53(9) 34.21(0) 7352(5)

NVE U = Nose 149.304(8) −1769.67(10) 34.21(0) 7175(5)

Ber τ = 1 ps 149.770(4) −1772.41(12) 37.10(11) 7247(5)

Ber∗ τ = 10 ps 149.653(4) −1774.73(13) 13.93(12) 7114(5)

Ber τ = 10 ps 149.662(4) −1769.28(11) 38.94(10) 7237(5)

Ber Gear m = 4 149.661(3) −1769.29(11) 38.91(12) 7244(4)

Nose T = TBer 149.654(12) −1779.37(12) 28.75(21) 7248(6)

liquid T = 100 K, ρ = 1350 kgm−3

Nose as below, N = 256 99.983(9) −4905.10(5) −3663.02(12) 34213(12)

Nose T = 100 K, τ = 0.2 ps 99.985(11) −4926.79(8) −3718.78(14) 27251(15)

NVE∗ U = Nose 100.984(6) −4925.70(8) −3718.74(0) 27844(15)

NVE U = Nose 99.903(5) −4925.76(6) −3718.74(0) 27531(11)

Ber τ = 1 ps 99.606(5) −4928.39(7) −3724.96(5) 26914(14)

Ber∗ τ = 10 ps 99.570(5) −4937.44(9) −3747.38(6) 25090(18)

Ber τ = 10 ps 99.568(5) −4928.52(10) −3725.55(7) 26878(19)

Ber Gear m = 4 99.570(5) −4928.53(8) −3725.53(6) 26880(16)

Nose T = TBer 99.576(12) −4930.53(8) −3727.46(17) 26396(17)

fcc crystal T = 50 K, ρ = 1851.27 kgm−3

Nose as below, N = 256 50.000(5) −6992.84(4) −6371.69(3) 229780(6)

Nose T = 50 K, τ = 0.2 ps 50.003(5) −7010.80(5) −6406.66(2) 225278(10)

NVE∗ U = Nose 50.526(4) −7010.52(5) −6406.64(0) 225565(10)

NVE U = Nose 49.993(4) −7010.66(5) −6406.64(0) 225327(10)

Ber τ = 1 ps 49.769(4) −7013.14(5) −6411.83(1) 224650(11)

Ber∗ τ = 10 ps 49.746(5) −7019.29(6) −6424.73(1) 223167(11)

Ber τ = 10 ps 49.755(3) −7013.45(4) −6412.31(1) 224566(8)

Ber Gear m = 4 49.745(4) −7013.36(5) −6412.34(1) 224585(10)

Nose T = TBer 49.763(4) −7013.57(4) −6412.34(2) 224525(8)

∗ nf = 3N − 4 (additional 1 degree of freedom “for energy conservation” deducted from
“standard” nf = 3N − 3 in periodic boundary conditions.)
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• nf = 3N − 3 is better except for gas potential energy where nf = 3N − 4 wins.

Therefore, from cook* version V3.2, the default is not to deduct 1 for energy conservation. The
old option is available by corr&64 flag.

12.2 Constant temperature simulations

The thermostat is turned on by selecting variable thermostat. The value of tau.T is then the
typical correlation time to keep the temperature constant, irrespective of the method.

There are three kinds of thermostats available, the friction (Berendsen) thermostats, the Nosé–
Hoover canonical ensemble, and the Maxwell–Boltzmann thermostats.

Special effects are obtained by decoupled inter- and intramolecular friction thermostats, selected
by non-zero thermostat>10.

12.2.1 The Berendsen (friction) thermostat

The friction method, attributed to Berendsen, is based on the idea of velocity rescaling. In its
crudest version the velocities are rescaled in every step so that the desired kinetic temperature is
recovered or gradually approached. The differential form is equivalent to differential equations
with friction term:

→̈
r i =

→

f i

mi

− 1

2τT

→̇
r i ln

Tkin
T
, (12.3)

where

Tkin =
1

nfkT

∑
i

miṙ
2
i (12.4)

and T is the desired temperature and τT the typical time (it equals the correlation time for
ideal gas or when the heat capacity is given by that of ideal gas with nf degrees of freedom).

For tau.T=h the crude rescaling method is approximately recovered. In order not to spoil
trajectories, tau.T should be comparable to the typical correlation time in the system and
much longer than h, at least 1 ps for common biochemical systems.

The above formulation can be used also for constraint dynamics.

Advantages of the friction thermostat:

• Exponential convergence, for reasonable choices of tau.T usually fast.

• Simplicity, suitable also for Verlet/SHAKE

Disadvantages:

• Flying icecube problem – artifacts for rotating molecules not sufficiently coupled to the
rest of the system. In this case, the rotational degrees of freedom are systematically
hotter. Thus, problems are expected for fluids of small and weakly interacting molecules
(hydrocarbons) while large molecules and with care (tau.T>=1) also water is OK. Note:
this affects also one molecule in free boundary conditions, however, the system sets the
angular momentum to zero. These artifacts can be observed via variables Ttr and Tin,
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which should be the same if the system is well equipartitioned. (They may both differ
from the kinetic temperature Tkin by not more than 1/nf , where nf = number of degrees
of freedom).

• Does not generate the canonical ensemble. If tau.T is long enough, then some distribution
with T=<Tkin> is obtained, the fluctuations, however, differ from the canonical values
(heat capacity cannot be obtained from fluctuations of internal energy). If tau.T is not
long enough, the results are undefined.

• The energy is no longer constant – this strong test that our simulation is OK is lost.

I would like to stress that the above method is something different than the method used to
correct energy drift introduced by the integrator (by using tau.E) because errors of h^(order
of the method) are corrected. The velocities are rescaled by values that are of the order of the
integration errors that occur anyway so that no additional errors are introduced. The energy
conservation criterion is replaced by the difference between E and measured total energy but
it is not lost.

The friction thermostat is selected by thermostat=1 or thermostat="friction" or
thermostat="Berendsen".

12.2.2 Decoupled translational and intramolecular thermostats

The translational thermostat affects only motions of molecular centers-of-mass, the intramolec-
ular thermostat affects only relative motions with respect to the center of mass (incl. rotations).

The decoupled thermostats should be used for smaller compact molecules with intramolecular
motions weakly coupled with the rest of the system. Be aware that the improvement is to some
extent only optical because the coupling remains week. You will get the correct average kinetic
temperature, but the distribution of intramolecular kinetic energy may be incorrect.

12.2.3 The Nosé–Hoover canonical ensemble

The second approach by Nose [19, 21] adds one additional degree of freedom to the system is
such sophisticated way that (provided that the system is ergodic) the true canonical ensemble
is obtained.

The equations of motion follow. This form is directly used in the program (only constraint
dynamics has been added). It was obtained from [19] by using his ‘time transformation’ and
ξ = ln s instead of s, [20, 21].

→̈
r i =

→

f i

mi

− →̇
r iξ̇ (12.5)

ξ̈ =
1

τ 2T

(
Tkin
T

− 1
)

(12.6)

Here, ξ is the additional degree of freedom. Note that f = 3N − 3 for N atoms in periodic
boundary conditions: there are 3N +1 degrees of freedom (ξ included) and 4 constraints, 3 for
conserved total momentum and 1 for the (generalized) Hamiltonian; for constraint dynamics
the number of constraints has to be subtracted.
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If fi/mi is omitted and the equations are linearized, we get a harmonic oscillator of the form
(schematically)

v̈ = − 2

τ 2
(v − v0) (12.7)

I wrote “If fi/mi is omitted” and you may ask whether this is a good approximation.
Unfortunately, it is—note that absolute and linear terms in the forces cannot change the
oscillatory behavior and small varying positive/negative contributions behave like a noise. The
more complex and denser liquid, the higher coupling between the auxiliary degree of freedom
s and the system is provided, and the faster convergence occurs.

The Nose method is unsuitable for fluids at low densities and for soft potentials like exp-6.

The typical convergence profile of the kinetic temperature in the Nose simulation is:

*

* * ** ** ** ** ** *

* * * ** * * ** *** ** ** ** * *

* * * * * ** * *** ** ** **

* * * * *** ** **

*** *

The typical length of one cycle is tau.T. The time to get a good canonical distribution is longer
and depends on tau.T in a way which is not straightforward – the convergence profile should
be observed (using 20.1).

The convergence problems occur also when starting from unequilibrated state. The initial
oscillations of Tkin may be as high as 1:10 and it takes a long time to damp them. It is
recommended to use another thermostat first.

The Nose thermostat can be also used for calculating one molecule in gas phase using the
cookfree version. (The molecule must not be too simple to guarantee ergodicity).

The Nosé-Hoover thermostat is selected by thermostat=2 or thermostat="Nose". The
implementation is straightforward for the Gear integrator. With the Verlet integrator, there
is a problem that the standard Verlet method with SHAKE does not allow velocities in the
right-hand side. MACSIMUS solves this problem by using predicted velocities (of both particles
and ξ̇)1 The predictor length is selected by option -pC; the default is C=2, which gives time
reversibility of O(h7). See Sect. 26.

12.2.4 Maxwell–Boltzmann thermostat

The third method, suitable for systems without constraints (see option -u), is to replace once
a while the velocities by new ones drawn from the Maxwell–Boltzmann distribution. It can be
done in two ways: periodically (in time intervals given by tau.T, all velocities are replaced:
thermostat="Maxwell"), or to update randomly chosen atoms (thermostat="Andersen").
Advantages

• Fast convergence.

1Other methods include iterations to obtain self-consisteny in velocities and RATTLE, methods based on
the Trotter decompositions[21].
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• True canonical ensemble

Disadvantages:

• Problematic for constraints and Gear integration

• Spoils time development of trajectories

• The Andersen thermostat erases any energy conservation information

This thermostat is fully and correctly implemented for vibrating bonds and Verlet/SHAKE only.
For weak coupling, (long tau.T), it can be used, with some loss of accuracy, for constrained
bonds or Gear integration. It works worse for constrained bonds and Gear integration
(Lagrangian dynamics).

The same effect as the the Maxwell thermostat, but executed just onece, can be obtained by
specifying initvel.

12.2.5 Langevin thermostat

Random force and friction are added to the equations of motion,

ẍ = − ẋ

τT
+

√
2kBT

mτT
X (12.8)

where X is uncorrelated Gaussian random noise, ⟨X(t)X(t′)⟩ = δ(t − t′), x stands for one
coordinate (of atom or center of mass), and m is the atom or molecule mass. The time constant
τT = tau.T in the data (in ps). The random force is implemented (with respect to time step
h) as normalized Gaussian random number divided by

√
h.

Bugs: Implemented for Gear only, the correlation time is twice as long as should. Cf. tau.CM.

12.2.6 Which thermostat

For easy systems there is no difference between thermostats. Problems start with systems with
fast and slow motions not coupled together: e.g., the full-atom model of methane. When the
C-H potentials are harmonic springs, then the energy transfer between the fast C-H vibrations
and other degrees of freedom is very slow (and the integration errors accumulate to violate
the thermal equilibrium between different degrees of freedom). Then, the Maxwell–Boltzmann
thermostat is recommended because it samples all degrees of freedom. In less problematic
cases (e.g., constrained bonds but not angles) the decoupled thermostats may be a choice. In
all these cases the Nose and simple friction thermostats will be inefficient. Sometimes it may
help to start with the Maxwell–Boltzmann thermostat for fast equilibration and continue by,
e.g., Nose or friction (the latter with a long tau.T to avoid its artifacts). In any case, it is
strongly recommended to monitor the ‘internal’ and ‘external’ (translational) temperatures.

12.3 Constant pressure simulations

Nonzero value of tau.P allows for a variable box size. The barostat pressure to keep is given
by variable P. See also rescale and bulkmodulus.
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12.3.1 Friction (Berendsen) barostats

Unless thermostat="NPT", the barostat is a simple Berendsen-style one. Pressure is calculated
onece every cycle (noint steps) and either the configuration is rescaled once after every cycle
(for tau.P<0) or after every step by a proportionally smaller value (for tau.P>0).

Unless bulkmodulus is set, the friction term is derived using ideal-gas compressibility (more
exactly with the number of degrees of freedom instead of the number of particles). In dense
systems the compressibility is several times smaller (16 times for water, roughly 100 times
for ambient-temperature solids), therefore the values of tau.P must be increased in the same
proportion; tau.P=10 to 1000 is a useful range. Alternatively, variable bulkmodulus can be set;
tau.P is then a realistic relaxation time. This (realistic) tau.P should be several times longer
than tau.T anyway. Setting bulkmodulus is recommended for solids at very low temperatures
where the ideal gas approximation is very bad indeed; the bulk modulus of solids is of the order
of 1e10 Pa.

12.3.2 MTK thermostat and barostat

The Martyna-Tobias-Klein (MTK) barostat [8] provides the NPT ensemble defined by the
following semiclassical partition function

ZNPT =
∫
ZNV T e

−βPV µ(V )dV, (12.9)

where ZNV T is the canonical partition function and the “volume measure”, “density of volume
states”, or “scale function” µ is

µ =
{
1/V for tau.CM=0
const for tau.CM set, see 9.2.5

The standard MTK version without sampling the momenta (tau.CM=0) in the periodic
boundary conditions is sometimes referred to as (N −1)PT ensemble [14]. The NPT ensemble
is selected by thermostat="NPT" or thermostat="MTK". The pressure tensor (virial pressure
in the isotropic case) is needed and calculated at every step. Temperature T, pressure P, and
time constants tau.T and tau.P must be set.

The periodic simulation box with all three box sides fluctuating independently is described by

tensor
↔

λ = ln(
↔

L) (by components). MACSIMUS currently supports only diagonal components,
i.e., a rectangular box; however, we keep the tensor notation for consistency. The code is in
constrd.c, function Shake(), in parts/files indicated below. Tags with @ refer to the same
tags in the code. For a version without barostat (Nosé–Hoover only), see Sect. 26.

↔

L@1 constrd.c = exp(
↔

λ), by components; in the code λ := ln(L) (12.10)

V@2 constrd.c = LxLyLz (12.11)

fi@3 forces()[,SCF] = − ∂U

∂
→
r i

(12.12)

@4 trvpscale.c TRVP: predict all velocities at t from t− h
2
, t− 3h

2
,. . . (12.13)

Vf@43 trvpscale.c = ξ̇ +
Tr

↔̇

λ

f
in the code: ξ = logs, Vf = Vfactor (12.14)

@53 trvpscale.c scaling predictor, see (12.29) and (12.30) (12.15)
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→̇
v i@6 verlet.c =

→

f i

mi

−
(
Vf

↔

I +
↔̇

λ
)
· →
v i & leap-frog (12.16)

@7 constrd.c SHAKE with predicted scaling of bond lengths (12.17)
↔

Ekinshakev#.c =
1

2

∑
i

mi
→
v i

→
v i, Ekin = Tr(

↔

Ekin) = En.Pkin (12.18)

↔

P cfg@93 thermo.c =
1

V

(
2
↔

Ekin +
∑
i

→
r i

→

f i + · · ·
)
+ Pcorr

↔

I (12.19)

ξ̈@A3 thermo.c =
2Ekin +

∑
αMP,αλ̇

2
αα − (f + f+)kBT

MT

(12.20)

@B3 thermo.c leap-frog for ξ (12.21)
↔̈

λ@C3 thermo.c =
1

MP

[
V (

↔

P cfg − P
↔

I ) +
2Ekin

f

↔

I

]
− ξ̇

↔̇

λ (12.22)

@D3 thermo.c leap-frog for λ (12.23)

@E3 thermo.c box rescaling (12.24)

where f+ is the number of independently fluctuating box sides and
↔

I is the unit tensor. Note

also the different definitions of Ekin = Tr(
↔

Ekin) and Pcfg = Tr(
↔

P cfg)/3.

The ellipsis in (12.19) stands for other terms (constraint forces, polarizable terms, etc.; see
Sect. 15.7). The cutoff correction is assumed to be isotropic (see Sect. 11.4):

Pcorr = −∂U
∂V

=
En.corr

V 2
(12.25)

The masses of the extended degrees of freedom are related to the thermostat and barostat
characteristic times

MT = fkBTτ
2
T , (12.26)

MP = fP (f + 3)kBTτ
2
P , (12.27)

where fP is the number of fluctuating (not constant) box sides. (Note the difference between
fP and f+. E.g., if x and y fluctuate synchronously and z is independent, then fP = 3 and
f+ = 2.)

For ideal gas and τT ≪ τP (which is recommended), it holds

τ(Ekin) =
τT√
2
, τ(V ) =

√
3τP , (12.28)

where τquantitiy is the inverse circular frequency obtained from the time autocorrelation
function[?]. Table 12.2 contains the pseudoexperimental characteristic times.

WARNING: the above MP differs from the MP in [8]; in addition, the equations of motion do
differ by factors of 3 inside the algorithm as well. Effectively for the isotropic barostat, formula
(12.27) gives τP which is 1/3 of the characteristic time τP of [?]. However, out choice of tauP
is closer to the experimental correlation times in condensed systems.

These equations do contain a correction to the conserved total momentum [8] (term Tr
↔̇

λ/f in
(12.16) or 3λ̇/f in (12.39)) so that Ekin should not be rescaled by (f + 3)/f , cf. (15.15).2 A
warning is printed on incorrect use.

2In the case of this correction added anyway, 3/f in (12.39) would be replaced by 6/f , so in fact the correction
would be applied twice.
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Table 12.2: The thermostat and barostat characteristic times, Eq. (??), and the corresponding
real characteristic times of the controlled quantities determined from the respective time
correlation functions. All data are in ps.

system τT τ(Ekin) τP MACSIMUS τP literature τ(V )

ideal gas, Eq. (12.28) 0.2 0.7071 3 9 5.196

SPC/E 0.2 0.227 3 9 1.79

RTIL-flex 0.2 0.1965 3 9 1.406

RTIL-rigid 0.2 0.1962 3 9 1.256

liquid nitrogen 0.2 0.1371 0.5 1.5 too damped

liquid nitrogen 0.2 0.1575 2 3 0.56

liquid nitrogen 0.2 0.1613 2 6 1.155

The MACSIMUS implementation uses a time-reversible velocity predictor (TRVP, see Sect. 26).
This is not sufficient if there are constraints treated by SHAKE because the scaling (box size)
is needed to know the bond lengths at time t+ h. A sufficiently accurate workaround predicts
the value of λ(t+ h) as

↔

λ(t+ h) =
↔

λ(t) + h
↔̇

λ(t+ h/2) (12.29)

with a second-order predictor for the difference

↔̇

λpred(t+ h/2) = 2
↔̇

λ(t− h/2)−
↔̇

λ(t− 3h/2). (12.30)

The Verlet-based values of
→
r ij to be constrained are then multiplied3 by the predicted

anisotropic scaling exp[h
↔̇

λpred(t+h/2)]. After
↔

λ(t+h) is calculated by Verlet, the configuration

is rescaled by exp[
↔

λ(t + h) −
↔

λ(t)]. The constraints are subject to error on the order of
h2λ̈(t) ∝ (h/τP )

2.

General independent scaling of all box sides is selected by rescale="XYZ", scaling of x and y
(keeping Lz constant) by rescale="XY", etc.

If a synchronous scaling, i.e., constant ratio λxx : λyy or λxx : λyy : λzz, is requested (by
rescale="XX" or rescale="XXX"), the value of f+ changes to 2 or 1, and the second derivative
in (12.24) is modified by

λ̈xx = λ̈yy :=
λ̈xx + λ̈yy

2
or λ̈xx = λ̈yy = λ̈zz :=

λ̈xx + λ̈yy + λ̈zz
3

=
Tr

↔̈

λ

3
, (12.31)

respectively.

The conserved total energy is

Etot = Ekin +
MT

2
ξ̇2 +

MP

2
(
↔̇

λ)2 + U + PV + (f + f+)kBTξ (12.32)

It can be easily proven by taking Ėtot. Symbol (
↔̇

λ)2 = λ̇2xx + λ̇2yy + λ̇2zz.

3Actually
→
r ij inside the SHAKE algorithm are rescaled by exp[h

↔̇

λ(t+ h/2)]
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For NPT in a cubic box there is simply L = exp(λ), λ = Tr
↔

λ. This is selected by
rescale="xyz". This option option differs from rescale="XXX" because the isotropic pressure
(not pressure tensor) is used. This is faster (if PRESSURETENSOR=3 is not configured);
however, for cutoff electrostatic less accurate. Real positions are

→
r i = L

→
ρi (

→
ρi are the scaled

dimensionless coordinates), velocities with respect to the “background” are
→
v i = L

→̇
ρi (i.e., not

dragged with if the whole box shrinks/swells). “Real” (not useful) velocities including the

“drag” caused by fluctuating box would be
→̇
r i. Number of degrees of freedom = f ; for simple

fluid f = 3N − 3 (minus 3 for periodic b.c.).

For isotropic fluctuations the algorithm reads as:

L@1 constrd.c = exp(λ) (12.33)

V@2 constrd.c = L3 (12.34)

fi@3 forces()[,SCF] = − ∂U

∂
→
r i

(12.35)

@4 trvpscale.c TRVP: predict all velocities at t from t− h
2
, t− 3h

2
, . . . (12.36)

Vf@41 trvpscale.c = ξ̇ +

(
1+

3

f

)
λ̇ f = No.f, 1+

3

f
= No.NPT (12.37)

@51 trvpscale.c scaling predictor (12.38)

→̇
v i@6 verlet.c =

→

f i

mi

− Vf
→
v i & leap-frog (12.39)

@7 constrd.c SHAKE with predicted scaling of bond lengths (12.40)

Ekinshakev#.c =
1

2

∑
i

miv
2
i (12.41)

Pcfg@91 constrd.c =
1

3V

(
2Ekin +

∑
i

→
r i ·

→

f i + · · ·
)
+ Pcorr (12.42)

ξ̈@A1 thermo.c =
2Ekin + 3MP λ̇

2 − (f + 1)kBT

MT

f + 1 = No.fx (12.43)

@B1 thermo.c leap-frog for ξ (12.44)

λ̈@C1 thermo.c =
1

MP

[
V (Pcfg − P )+

2Ekin

f

]
− ξ̇λ̇

1

f
= No.invf (12.45)

@D1 thermo.c leap-frog for λ (12.46)

@E1 thermo.c box rescaling (12.47)

Terms in red are zero in the algorithm by Hoover[22], available by thermostat="HooverNPT".

12.3.3 Simulation along given V (t) time dependence

Simple box rescaling at every step according to defined function V (t) leads to poor energy
conservation. The following algorithm uses ideas of the extended Lagrangian barostat of
Andersen:

fi@3 forces()[,SCF] = − ∂U

∂
→
r i

(12.48)

@4 trvpscale.c TRVP: predict all velocities at t from t− h
2
, t− 3h

2
, . . . (12.49)
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↔

V f@4b trvpscale.c =
1

h
ln

↔

L(t+ h/2)
↔

L(t− h/2)

 is scalar for V (t) (12.50)

@5b trvpscale.c scaling predictor (12.51)

→̇
v i@6 verlet.c =

→

f i

mi

−
↔

V f
→
v i & leap-frog (12.52)

@7 constrd.c SHAKE with predicted scaling of bond lengths (12.53)

Ekinshakev#.c =
1

2

∑
i

mi
→
v
2
i (12.54)

Pcfg@D1 thermo.c =
1

3V

(
2Ekin +

∑
i

→
r i ·

→

f i + · · ·
)
− Pcorr (12.55)

@Eb thermo.c box rescaling, cf. @A–@E in the above algorithms (12.56)

This algorithm is requested by negative tau.rho:

tau.rho=-1 for a cubic box (with rescale="xyz"). In this case,
↔

L and
↔

V f become scalars.
Text file simname.box should contain lines of pairs {t, ρ}, where t is time in [ps] and ρ
is the density in kgm−3. The file must be ordered by t. Note that init>=2 sets t := 0,
otherwise the time continues.

tau.rho=-3 for controlling all three box sides separately (with rescale="XYZ"). Similarly,
text file simname.box should contain lines of {t, Lx, Ly, Lz}, where box sides are in Å.
(NOT TESTED).

The interaction with thermostats is unknown, Berendsen will likely work, for models without
constraints also Andersen and Langevin. The code for Nose should be checked.

12.3.4 Adjusting force field parameter to pressure

Instead of scaling the box, it is possible to change a selected “atom size” (size-like parameter
of the force field, as the Lennard-Jones σ, or a sum of Rmin radii, or similar) and to rescale it
in the Berendsen (friction) way so that pressure reaches the predefined value (P ).

To do this, there must be a line in the ble-file in the nbfixes table for given pair of site types;
do not forget to set variable nnbfixes. In the nbfixes table, the first two columns are the
respective sites coded as symbolic names (e.g., KR AR), the third parameter is an energy-
like parameter (e.g., Lennard-Jones ϵ), and the fourth column is the size-like parameter (e.g.,
Lennard-Jones σ), to be scaled. In the cook input data, the respective sites are tau.i and
tau.j, coded as numbers. These numbers correspond to the line of the table of non-bonded
interaction (e.g., Lennard-Jones or Buckingham) in the C-style (1st line has index of 0, the
last line nsites-1; the i column in the table does not apply). 1–4 term is not supported here.

Similarly as for the Berendsen barostat, bulkmodulus should be set to define the sensitivity
of pressure to particle size. Variable tau.sig then defines the correlation time (like tau.P for
Berendsen NPT ensemble). For a good stability, tau.sig should be several times longer than
tau.T (e.g., tau.T=1 and tau.sig=10). If the sigma-like parameter has a meaning of inversed
size (e.g., parameter B in the Buckingham force field), bulkmodulus must be negative.

During simulation, the selected value of σ (or B) fluctuates so that the instantenous pressure on
average equals parameter P. The final value of σ is stored in the cfg-file for further steps/restart.
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The value of σ is also recorded in column 4 of the cp file (where normaly density is recorded)
and statistics is calculated.

To start the σ-fitting mode, specify tau.sig (and bulkmodulus); if there is nonzero σ in the
cfg-file, it is used, otherwise the initial value of σ is taken from the ble-file. On the other hand,
for tau.sig=0 the value possibly stored in the cfg-file is ignored and the standard ble-file value
applies; in addition, sigma=0 is set for subsequent write to the cfg-file.

BUG: Smooth cutoff is always recalculated if σ changes. However, the cutoff corrections are
not recalculated, which is a bug in principle, although in practice the error is small.

In V2.7t and older, only single atom (not pair) σ was supported, there was tau.R instead of
tau.sig, and tau.j was not used.



Chapter 13

Initial configuration

There are several ways how to generate initial configurations. Small molecules can be placed
in vertices of a lattice, bigger either to enlarged box (to be compressed lated) or shot to an
(enlarged) lattice at random. A small lattice with a periodic configuration can be repeated
several times. A problem of immersing a big molecule into a liquid (of small molecules) can be
solved by removing overlapping small molecules.

13.1 Random-shooting algorithm

If init=3 or init="random" is specified in input data, the initial configuration is generated by
the following algorithm suitable especially for small or moderately large molecules.

1. For given initial density (variable initrho), an attempt is made to fill the simulation box
by randomly distributed and rotated (if No.rotatefrom permits) molecules. Molecules
are inserted one-by-one and there is an energy limit (variable Emax); if it is exceeded, the
insertion of the molecule is rejected.

2. If step 1. is not successful (i.e., if the insertion probability exceeds the limit of pins), the
density is lowered and step 1. is repeated. Ignored if pins=0.

3. If pins<0 only: If 1. is successful, however, the system is too dilute (i.e., the insertion
probability of step 1. has been greater than sqrt|pins|), step 1. is repeated with a
higher density.

4. Velocities are assigned (approximately according to temperature T) and both velocity and
length constraints are adjusted.

A configuration obtained by this algorithm can be dilute and should be shrunk. The final
density is named rho (and is in kgm−3). The speed of changing the density is given by typical
time tau.rho (in ps). Recommended values are 0.1–1 ps; too low values may cause a crash. If
you meet problems, we recommended to run first several steps with tau.rho=0 (this means in
fact infinity, i.e., changing density switched off). Use the friction thermostat to cool the heat
of compression.

178
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13.2 Crystal initial configuration

Alternatively, small molecules may be placed at vertices of a regular lattice which is selected
by init=5. The lattice type is defined by variable pins either explicitly (values 1,2,3) or left
to program’s decision (pins=0) to obtain lattice with minimum number of vacancies. There is
no overlap check and it is user’s responsibility to choose, if necessary, density low enough not
to have overlapping molecules; see also option -q which offers possibility to turn off random
rotation of molecules.

If pins>3 then the configuration is obtained by repeating an elementary cubic cell containing
a prepared configuration of pins molecules; see the explanation of pins for details.

13.3 Immersing a large solute into solvent

Rapid changes in density can destroy a structure of a big macromolecule. For building an initial
configuration consisting of (for example) a big protein in water, there are two possibilities:

METHOD 1

1. Prepare the .ble-file with the macromolecule as the first molecular parameter given to
blend. Thus, it has index 0.

2. Select cook option -j1 to freeze the atom positions of the protein.

3. Run the initializer init=3 with initrho=rho (or only slightly lower if necessary) and
very high Emax and pins=0 (or so low so that the initializer succeeds);

4. Use the friction thermostat (set tau.T and T). You may have to specify a rather low
timestep h if the initial Emax was very high. In normal cases, tau.T should not be (much)
lower than the typical relaxation time in water which is about 1ps; you may have to use
longer values for complex proteins with cavities.

5. Run cook again without option -j.

METHOD 2

1. Prepare the .ble-file with the macromolecule as the first molecular parameter given to
blend. Thus, it has index 0, and the solvent has index 1.

2. Prepare independently a configuration (may be small, but normally at least about 50
molecules) of the solvent (water) and export it using -l option. Your protein will
be immersed into this configuration (possibly periodically repeated) so that you must
precalculate the appropriate size of the system to allow this.

3. Rename the ascii dump to cfgns.pins; e.g., cook/cfg3.50 contains such configuration of
50 TIPS water molecules.

4. Run cook with option -j1 to freeze the positions of the protein.
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5. Run the initializer init=5 with pins equal the number of molecules from step 1. Emax

should be quite high.

6. Some of the solvent molecules are removed. Record the changed numbers of molecules
and edit the .def file accordingly.

7. Run cook again without option -j. As in METHOD 2, equilibrate, preferably first with
the friction thermostat.



Chapter 14

Measurements

14.1 Units of measurements

I’m sorry, but three systems of units of measurements are used by program cook:

• File sysname.ble defining the force field uses kcal/mol as the energy unit and Å as the
length unit because these units are used by CHARMM. See the documentation of blend
for details.

• Internally, cook uses Ångström to measure lengths, ps to measure time, Kelvin to measure
temperature and k·K (where k is the Boltzmann constant) to measure energy (loosely,
energy is measured in Kelvins). See units.h for details. The values of constants are
based on CODATA 2019.

• cook communicates with the user in SI units: density in kg/m3, pressure in Pa, energy
in J/mol; however, energy is often given in Kelvins (I have a better feeling on Boltzmann
probabilities if the Boltzmann constant is defined as unity).

14.2 Convergence profile

The convergence profiles are important for observing whether the system is in equilibrium.
Many numerical or physical problems are also discernible from convergence profiles. Note that
the term “convergence profile” here means just time dependence of quantities, not running
averages of any kind.

cook records several quantities every cycle as the default, more quantities can be specified in file
sysname.def, See Sect. 9.2.3. The default quantities have changed, those given below
do not apply in all versions of cook.

column 1 = Etot Total energy in Kelvin (more precisely, Etot/kB is in Kelvin). For NVE
simulation or Nose-Hoover thermostat or MTK thermostat+barostat or simulation with
given box vs. t dependence it includes the extended degrees of freedom; therefore, it
should be constant (with noise and only a small drift). See Sect. 11.1.2, for details.

column 2 = Tkin Instantaneous (kinetic) temperature in K. From showcp, the total kinetic
temperature is combined with the translatioal part (column 7 = Ttr) and the rest
(rotational and vibrational, column 6 = Tin).

181
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column 3 = Epot Total potential energy, in J/mol (of the whole configuration).
Note: Epot = LJ + Ecorr + bond + Eel

LJ Non-bonded (LJ) energy, separately available with direct pair forces algorithm
(not LINKCELL), without cutoff correction.

Ecorr Cutoff energy correction.

bond All bonded forces (bonds, angles, torsions), separately available with direct
pair forces algorithm (not LINKCELL) (?).

Eel (also elst) = electrostatic energy (POLAR: incl. self-term)

column 4 The meaning depends on the simulation ensemble. Possible quantities are:

rho Density in kgm−3, for NPT and other simulaion with changing density.

PdV Pressure obtained from the virtual volume change, see variable dV.

Ep+k Sum of potential + kinetic energies, in J/mol (differs from Etot because no
extended degrees of freedom are included).

Ep0 No.first molecules [J/mol], not tested recently.

column 5 = P Pressure in Pa; in special cases replaced by rho or PdV (see above) or svdW
(see tau.sig).

column 6 = Tin Rotational + vibrational kinetic energy, in K.

column 7 = Ttr Translational kinetic energy, in K. In a well equipartioned system Tin =

Ttr. Note that for the Berendsen thermostat generally Tin may slightly differ from Tkin.

|M| Total simulation cell dipole moment [p.u.=0.0117501021272 Debye]

|J|
√
J2, simulation cell current density in Am−2

self self-field in [p.u.]

Additional quantities to be recorded can be given in file simname.cpi, see Sect. 9.2.3.

For technical information on cp-file format, see Sect. 16.2.

14.3 Analysis of statistical errors

Let Q be an arbitrary quantity measured in the simulations and Qi, i = 1..n, its values obtained
in consecutive measurements. Then the expected error of the average ⟨Q⟩ is given (under some
assumptions) by the formula

δQ =
√
VarQ(1 + 2τ) (14.1)

where the (discrete) correlation time is defined by:

τ =
∞∑
t=1

ct (14.2)

and the autocorrelation coefficients are

ct =
Cov(Qi+t, Qi)

VarQ
, Cov(Qi+t, Qi) = ⟨Qi+tQi⟩ − ⟨Qi+t⟩⟨Qi⟩, VarQ = Cov(Qi, Qi) (14.3)



14: Measurements [Contents] – [Index] 183

ct should go to zero and the sum for τ should converge (if it does not or does slowly, another
methods should be used). In practice, the sum for τ is truncated at a certain t = tmax; if tmax

is too low, τ is usually underestimated; if t = tmax is too high then the inaccuracies in ct may
cause too large errors in τ .

It is possible to extrapolate ct to infinity, usually by ct = A exp(−Bt) (one bottleneck process
or barrier) or ct = At−3/2 (hydrodynamic tail) and thus to correct τ .

Another way is to use blocking or sub-averages and the same method with only few first
autocorrelation coefficients, or perhaps none (just blocking)m but it is better to include at
least c1.

To understand the output of statics.c, let us consider the following example produced by
testing program staticst.c:

------------------------------------------------------------------------

r No = 100000 range = <0.78591037,4.2648801> = 3.4789698

Mean = 2.50087886 Var = 0.232787747 StDev0 = 1.5257e-03

_t__c[t]_1+2tau__StDev_ _t__c[t]_1+2tau__StDev_ _t__c[t]_1+2tau__StDev_

1 0.8020 2.604 2.5e-03 2 0.6440 3.892 3.0e-03 3 0.5170 4.926 3.4e-03

4 0.4143 5.755 3.7e-03 5 0.3311 6.417 3.9e-03 6 0.2654 6.948 4.0e-03

* 1 0.7225 2.445 3.2e-03 2 0.4652 3.375 3.8e-03 3 0.2981 3.972 4.1e-03

* 1 0.5652 2.130 3.9e-03 2 0.2402 2.611 4.3e-03 3 0.1096 2.830 4.5e-03

* 1 0.3662 1.732 4.4e-03 2 0.0763 1.885 4.6e-03 3 0.0114 1.908 4.7e-03

------------------------------------------------------------------------

1+2tau and StDev that appear in the table use truncated sums up to the lags of t. The first
line marked by * refers to the analysis of data averaged in blocks of length 2, the second line
marked by * in blocks of length 4, etc. The result (rounded) is <r> = 2.501+-0.005, to be
compared with the following exact results for the example:

<r> = 2.5

standard deviation of <r> = 4.564e-03

Var r = 25/108 = 0.2315

NOTE: in newer versions, a summary determined from maximum blocked StDev with c1
included is printed.

Try to run staticst.c several times for different n’s to see how the method works!

See also utility autocorr, 20.10.
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14.4 Kinetic quantities from equilibrium molecular dy-

namics

14.4.1 Diffusivity

Green–Kubo

Diffusivity can be calculated from the velocity-velocity time autocorrelation function (more
precisely the covariance) using the Green–Kubo formula

Di =
∫ ∞

0
⟨ẋCM

i (0)ẋCM
i (t)⟩, (14.4)

where xCM
i (t) is the x-coordinate of the center-of-mass of molecule i. MACSIMUS offers a direct,

but (sometimes) costly, calculation of the covariance ⟨ẋCM
i (0)ẋCM

i (t)⟩ by setting variable lag.v
(time range in the units of noint*h), see also lag.dim (1 to record the sum over coordinates
x,y,z or 3 to record the all separately) and lag.nv (number of molecules). By averaging these
covariances (over all molecules of the same species and all three coordinates) and integrating
them (use utility runint), the diffusivity can be obtained.

The program unit of diffusivity is Å2/ps = 10−8 m2/s = 10−4 cm2/s.

Einstein

It is possible to calculate the diffusivity from recorded configurations using the Einstein relation.
The mean square displacement is

msd(t) =
1

6

∑
i

{
mi[

→
r i(t)−

→
r i(0)]

}2
(∑

i

mi

)2
t→∞
= const +Dit, (14.5)

where the sums are over all sites of one molecule.

MACSIMUS calculates msd(t) if MSD.mode=1 is set. It is recommended to calculate it from a
stored playback file via option -m1 and variables reread.*. The algorithm follows the path of
the particles in the periodic boundary conditions so that dt.plb in the simulation must not be
too long (particles must not travel more than half the box within one frame recorded, which is
checked by the algorithm).

Whole calculations should be repeated with different blocks, averaged and possibly corrected
for the hydrodynamic tail and finite size effects. Utility plb2diff automates the calculations.
See Sect. 21.20.

Finite-size effects

The diffusivity obtained by either method is subject of large finite-size errors [23]. These errors
are caused by the periodic images traveling in the same direction. The MD diffusivity is thus
underestimated. The corrected diffusivity is [23, 24]

D = DMD +
2.8373kBT

6πηL
(14.6)
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where η is the shear viscosity. This formula applies to cubic boxes L3 only.

This correction is large. In order to calculate an accurate value of the diffusivity, both the
periodic (MD) diffusivity and the viscosity must be calculated, and typically the uncertainty in
viscosity has a higher impact on the result. Since the viscosity calculation itself is not subject
to large finite-size effects[24], and the statistical accuracy is low for large numbers of particles,
it is recommended to determine the viscosity using a smaller system1 and the diffusivity using
a larger system.

Recently, we tested the above correction for argon and water [25]:
Ar

^^

EvdW=-0.2380684 kcal/mol, RvdW=1.910992 AA

T=143.76 (T*=1.2)

rho=1344.2582 kg/m3 (rho*=0.8)

viscosity (Green-Kubo): eta=0.00017543 Pa.s

D is in 1e-9 m^2/s

Dcorr = Dsim + 2.837*k*T / (6*pi*eta*L)

==================================

N method tau/ps Dsim stderr Dcorr

----------------------------------

250 B 0.2 4.217 0.019 4.954

250 B 1 4.229 0.022 4.966

250 N 0.2 4.210 0.021 4.947

250 N 1 4.220 0.022 4.957

2000 B 0.2 4.560 0.012 4.928

2000 B 1 4.567 0.011 4.935

2000 N 0.2 4.568 0.013 4.936

2000 N 1 4.578 0.010 4.947

==================================

2000: L=46.21296 AA

250: L=23.10648 AA

N=Nose+Gear

B=Berendsen(+Shake)

SPCE water

^^^^^^^^^^

T=298.15 K

===================================

N method tau/ps Dsim stderr Dcorr

-----------------------------------

250 B 1 2.30 0.06 2.84

250 B 1 2.26 0.07 2.80

2000 B 1 2.49 0.10 2.76

2000 B 1 2.56 0.09 2.83

==================================

viscosity (N=250): 0.00058(6) Pa.s

L=19.575161 AA (N=250)

NB: later results, N=300

viscosity=0.00073(4) Pa.s

Dsim=2.390(8), D=2.80(2) [1e-9 m^2/s]

14.4.2 Conductivity

Partial molar conductivity is proportional to the diffusivity

λn =
z2ne

2

kBT
Dn =

z2nF
2

RT
(14.7)

where z = charge in e, F = Faraday constant, R = gas constant, and Vm = molar volume.
Equivalently we may define the partial conductivity as

κn =
z2e2Nn

kBTV
Dn =

z2F 2cn
RT

Dn (14.8)

where Nn is the number of molecules of species n and cn is the concentration (in mol/dm3). In
program units (k = 1) this formula becomes

κn =
NnDnz

2
n

TV
, (14.9)

1In addition, the Green–Kubo route requires a short noint.
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where the program unit of conductivity is 111.26501 S/m (but the user interface uses SI units).

The Green–Kubo formula for the (total) conductivity is

κ =
V

kBT

∫ ∞

0
⟨Jx(0) · Jx(t)⟩ (14.10)

and the same in the y and z directions (three independent values). The current density
→

J is

→

J =
1

V

∑
i

qi
→̇
r i (14.11)

Three covariances ⟨Ja(0)Ja(t)⟩, a ∈ {x, y, z}, are calculated by cook for lag.J set. In addition,
a guide how to finish the calculations is printed.

For a successful calculation, DT=h*noint must be fine enough and the lag lag.J long enough,
which is best checked using graphs of covariances and their running integrals.

The corresponding Einstein relation (derived from the current, not current density) reads as

mscd(t) =
1

6

{∑
i

qi[
→
r i(t)−

→
r i(0)]

}2
t→∞
= const + kBTV κt (14.12)

The calculations should be performed in the reread mode, see option -m and variables rered.*.
Similarly as for diffusivity, plb2diff can be used to calculate mscd and in turn the partial and
total conductivities, see Sect. 21.20.

In the non-equilibrium molecular dynamics, the conductivity is given by

κ =
Jz
Ez

(14.13)

where we assume that only the z-component of the electrostatic field, Ez = el.E[2] (in V/m),
was set. Since the Jz = Jz [A/m2] is reported in SI units, κ will be in S/m.

14.4.3 Viscosity

The Green–Kubo equation for viscosity is

ηab =
V

kT

∫ ∞

0
⟨Pab(t)Pab(0)⟩dt, a ̸= b (14.14)

where the pressure tensor components are for pairwise interactions given by (15.10). Three
covariances are calculated by cook for lag.Pt set. cook prints a guide, too, and similar rules
as for the conductivity apply. If lag.Pt is too short, the hydrodynamic tail (∝ t−3/2) should
be used for extrapolation. A support for off-diagonal pressure tensor components is needed
(PRESSURETENSOR=7, see See Sect. 8.2).

It is also possible to calculate viscosity from traceless diagonal components[26]

ηaa =
3

4

V

kT

∫ ∞

0
⟨P ′

aa(t)P
′
aa(0)⟩dt, P ′

aa = Paa −
1

3

∑
b=x,y,z

Pbb (14.15)

The following mix of both formulas is recommended[26]

η =
3

5
ηoff +

2

5
ηtrless, ηoff =

1

3

∑
ab=xy,yz,zx

ηab, ηtrless =
1

3

∑
a

ηaa. (14.16)
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Note that ηab is symmetric. MACSIMUS since V1.7p prints also these components (full off-
diagonal support and lag.Pt are needed).

Note: it is (probably) not possible to calculate viscosity from the Einstein relation obtained by
the following “naive integration” of the Green–Kubo formula (see [27], p. 86+).

Pab =
1

V

(
N∑
i=1

pi,api,b
mi

+
N∑
i=1

ri,afi,b

)
=

1

V

 N∑
i=1

pi,api,b
mi

+
N∑
i<j

rij,afij,b

 (14.17)

2tη =
V

kT
⟨[Lab(t)− Lab(0)]

2⟩ (14.18)

where

Lab =
1

V

∑
i

ri,api,b (14.19)

Limited support present in plb2diff is thus meaningless. For a work-around, see[28] (not
implemented in MACSIMUS).

14.5 Kinetic quantities from the Einstein relations

Conductivity and autodiffusion measurements by Einstein relation See plb2diff.c, 21.20, and
sim/sfdx.c

NOTE: The Green–Kubo-based conductivity is usually more precise, but the grid has to be
short enough, sometimes 2*h, and the lag long enough, which may be a problem for one-particle
diffusivities. The analysis may be rather subjective because a graph has to be analyzed. The
Einstein version is very similar if the same lag is used. It becomes safer (less systematic error)
but less accurate (larger statistical error) as the lag increases.

14.5.1 Requirements

• Periodic b.c.

• NV T or NPT ensemble (for NPT , see below)

• Stored configurations:

– either in a plb-file (simname.plb, generated by cook* with dt.plb placed in the
def-file (not get-file)

– or simname.1,simname.2,... (generated by cook -r)

14.5.2 Usage

Copy/link files to another name, then re-run cook:

• either with option -m1 (to read simname.plb); dt.plb should math that of the productive
run,

• or -m0 (to read simname.1,...), dt.cfg should match that of the productive run,
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Input data are:

reread.from First frame (stored configurations) read, default=1

reread.to Last frame read (hint: use plbinfo simname.plb to get the max frame!)

reread.by Stride (reread.by=1 reads every configuration).

Example:

for ext in cfg def ; do ln -s SIMNAME.\$ext NEWSIMNAME.\$ext ; done

\# edit NEWSIMNAME.def, create NEWSIMNAME.get

cook* -m SYSNAME.ble NEWSIMNAME SIMNAME.plb

with reread.from=5, reread.to=9, reread.by=2 placed in NEWSIMNAME.get, will read
frames 5,7,9 from NEWSIMNAME.plb

14.5.3 Results

simname.prt Protocol (is the screen if option -s)

simname.m.cp Mean square displacements of the center of mass:

COLUMN 1 mean square displacement for species 0:

1 2 2

msd = ----- SUM {SUM m [r (t) - r (0)]} / {SUM m }

6 N_0 n i i i i i i

where m i = mass of site i, SUM i is over all sites of species 0, SUM n is over all
molecules of species 0, N 0 = SUM n 1 = number of molecules of species 0

COLUMN 2 as above, species 1

...

COLUMN nspec+1 The sum over the whole simulation box.

1 2

mdif = - {SUM m [r (t) - r (0)]}

6 i i i i

Note that mdif=0 but rounding errors because of momentum conservation!

simname.q.cp mean square charge displacement:

COLUMN 1 cumulative mean square charge displacement for species 0:

1 2

mscd = - SUM {SUM q [r (t) - r (0)]}

6 n i i i i

where q i = charge of site i, SUM i is over all sites of species 0, SUM n is over all
molecules of species 0,

NOTE: mscd is SUM while msd is AVERAGE (divided by N 0)
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COLUMN 2 as above, species 1

...

COLUMN nspec+1 total mean square charge displacement:

1 2

mscd = - {SUM q [r (t) - r (0)]}

6 i i i i

where the sum is now over the whole simulation box. This is related to the
conductivity, see below.

14.5.4 Analysis of results

See also plb2diff which makes time averages and automates the following algorithm.

DIFFUSION COEFFICIENTS Run:

showcp -p SIMNAME.q.cp

and estimate the time derivatives

D = d msd(t) / dt

Hints:

• Frames are separated by dt.plb*# or dt.cfg*# ps (# denotes the -f option, -f# or -f-#).

• Several first data should be skipped

• Estimate the slope from from the plots or by linear regression of; the linear regression
should use weight 1/t because the error of msd(t) is proportional to sqrt(t).

• And all this should be done for several blocks to have statistics!

D is the diffusion coefficient of given species (column 1 = species 0) in program units [A^2/ps];
in usual units it holds:

• D*1e-8 = diffusion coefficient in m^2/s

• D*1e-4 = diffusion coefficient in cm^2/s

Make also sure that the last column in simname.q.cp (mdif) is small.

NOTES: 1st 2 columns of simname.q.cpa and the plots are incorrectly labeled as Etot and
Tkin instead of 0 and 1. In addition, the last column in simname.q.cpa just repeats the 1st
column, thus the “last column in simname.q.cp” is actually the second-last in simname.q.cpa.



14: Measurements [Contents] – [Index] 190

CONDUCTIVITY Run:

showcp -p SIMNAME.q.cp

and the LAST graph (named cond) should be approximately linearly increasing function of
time, cond(t); of course, it is not and averaging should be done over different runs or blocks
of one run! The conductivity (per unite volume) in program units is:

κ =
1

TV

dcond(t)

dt
(14.20)

where T = average temperature in K and V is the volume of the simulation box. In MACSIMUS
units:

kappa*111.26502 = conductivity in S/m

kappa*1.1126502 = conductivity in S/cm

PARTIAL CONDUCTIVITIES kappa n are obtained from columns 0,1,..nspec-1 in the
same way. Note that the total bulk conductivity is a sum of the partial conductivities only if
the ions are uncorrelated which holds true in special cases and only approximately. It holds

κn =
Dnz

2F 2

RTVm
, (14.21)

where z = charge in e, F = Faraday constant, R = gas constant, and Vm = molar volume,
which in program units (k = 1) becomes

κn =
NnDnq

2
n

TV
, (14.22)

where Nn = number of molecules of species n, V = volume of the simulation box, qn = charge
of species n.

Note that for monoatomic ions, mscd = Nnq
2 msd. For molecules generally mscd(t) ̸= Nnq

2

msd(t) although the time derivatives should be the same (but statistical noise).

FINAL NOTES See also util/plb2diff.c, 21.20!

For NPT ensemble (tau.P is nonzero), cook produces scaled (by powers of V^(1/3)) quantities
and the above factors should be recalculated! However, plb2diff does it for you.

14.6 Structure factor

14.6.1 Structure factor for pure simple fluids

The structure factor is in principle the Fourier transform of a radial distribution function, see
see Sect. 30. Here, we use the atomic masses to weight different atoms. We define a k-vector by
→

k =
→
n/λ, where λ is the wavelength and

→
n, |→n| = 1, its direction. (This k-vector is common in

crystallography, whereas in physics a ‘circular’ k-vector is more common, 2π
→
n/λ. In cook V2.6h

and older, the circular definition was used, from V2.6i the above ‘crystallographic’ definition
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is used. The definition is noted in the output files.) In a periodic box only some k-vectors are

available,
→

k =
→

ki/
→

L ≡ (kix/Lx, k
i
y/Lz, k

i
x/Lx) and

→

ki is an integer vector. The structure factor
of a simple fluid is:

S(
→

k) =
1

N
|Q(

→

k)|2, Q(
→

k) =
∑
j

exp[−2πi
→

k · →
r j] (14.23)

and the sum is over all atoms j.

The structure factor is used to detect crystallization and glassy state of liquids.

14.6.2 Structure factor for mixtures

Theory

A sensitivity of atoms to scattering is described by weights, in neutron diffraction ‘coherent
scattering lengths’ bj. They are generally complex numbers (LIMITATION: MACSIMUS
supports only real values). The mixture structure factor is then

S(k) = 1 +N
⟨|Q(

→

k)|2⟩ −∑
j b

2
j(∑

j bj
)2 (14.24)

where
Q(

→

k) =
∑
j

bj exp[−2πi
→

k · →r j] (14.25)

and the sums are over atoms.

Implementation

The scattering lengths bI should be written ‘by hand’ to the ble-file to the table of pair potential
parameters (Lennard-Jones, Busing-12, ...) after the last column. (If this column is missing,
atomic masses mI are used instead, however, do NOT write bI instead of masses to the 2nd
column!)

Cook has to be run again with option -f (see there) to calculate the structure factor from stored
configurations. Variables init and no are the first and last frames processed, respectively.
Variable el.kappa is the maximum k-vector calculated.

Sphericalized structure factor

The structure factor of fluids is isotropic. A sphericalized structure factor is

S(k) =
∑
k=|

→

k|

S(
→

k)/
∑
k=|

→

k|

1 (14.26)

LIMITATIONS: MACSIMUS can calculate a sphericalized structure factor for a cubic
simulation cell only.

Sphericalization is requested el.sf=1 in the data (while running cook with option -m). el.sf=3
in the data specifies the full 3D structure factor.
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It is not possible to calculate both sphericalized and 3D structure factors at the same run.
Note that a sphericalized structure factor can be obtained from the 3D one provided that the

numbers of vectors
→

k giving the same k are known (the last column, cf. utility avdata).

See also utility sfourier.

14.7 Radial distribution functions

If rdf.grid is selected, the program measures the site–site correlation functions, also called
radial distribution function (RDF). The results are stored in binary file with extension .rdf

and may be printed and viewed using program rdfg. Site types used for RDF are listed in
table Lennard-Jones (or similar according to the force field used) in the ble-file in 2nd column
(denoted as atom). By default there is one RDF for each pair of site types even if this site type
appears several times in a molecule (molecules).

WARNING: program rdfg (and also harmg) uses for site–site correlation functions formulas
giving ‘incorrect’ limits

lim
r→∞

gIJ = 1 (14.27)

and not the correct (conforming the NV T definition)

lim
r→∞

gIJ =
{
1− 1/NI for I = J
1 for I ̸= J

(14.28)

Formula (14.27) is probably a better approximation of the thermodynamic limit, however, in
certain cases (e.g., when integrals of RDFs are calculated), (14.28) should be preferred. In most
cases the difference between (14.27) and (14.28) is irrelevant.

Options for RDF are controlled by variables and by file simname.s-s.

rdf.grid (0) Grid for calculating the site–site radial distribution functions, in 1/Å(i.e.,
the number of histogram bins per 1 Å). If negative, there is one summary (equally
weighted) function for all combinations of site types. If positive, there is a separate
function measured for each combination of site types (if simname.s-s is missing) or only
selected site–site pairs are measured (if simname.s-s exists, see below). If rdf.grid=0,
the radial distribution functions are not measured.

rdf.cutoff (0) Max range for which the site–site radial distribution functions are measured,
in A. If rdf.cutoff=0 then the value of cutoff is assumed (default).

rdf.onefour (1) Controls whether 1-4 (or 1-5 if distance14=4 in the ble-file) are to be
included to measured radial distribution functions. E.g., in a united-atom model of
butane, CH3-CH2-CH2-CH3, there is a peak on the CH3-CH3 radial distribution function
caused by intramolecular CH3-CH3 pairs. Setting rdf.onefour=0 will eliminate this
intramolecular peak.

More options can be specified in file simname.s-s. Data in this file are active if rdf.grid>0.

Site types are listed in table Lennard-Jones (or similar according to the force field used) in the
2nd column (denoted as atom).

File format:
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! define group of atoms of given TYPE:

ID TYPE SPECIES.ATOM [SPECIES.ATOM ...]

ID ...

! include all pairs of types and stop reading TYPE1-TYPE2 data:

*

! include RDF of TYPE1-TYPE2:

TYPE1 TYPE2

...

where

ID Lowercase letter or a decimal digit. The full group identifier is a concatenation ID+TYPE
(e.g., aCH3). It is not possible to have different atom types in one group.

TYPE Atom type, see above

SPECIES Species number (numbered from 0 in the order given to blend and used in the
ble-file)

ATOM Atom (site) number, see the mol-file or table sites (in the corresponding species section)
of ble-file.

One group of atoms should correspond equivalent (with respect to symmetry) atoms. All
atoms of the same type not listed in any group comprise a ‘default’ group (with identifier =
TYPE without prefix).

Examples of simname.s-s for a simulation of a united-atom model of pentane CH3E-CH2E-
CH2E-CH2E-CH3E (species 0) follow.

To measure only RDF of CH3E-CH2E and CH3E-CH3E pairs:

!type type

CH3E CH2E

CH3E CH3E

To measure all RDF’s so that the central CH2 is distinguished, use:

c CH2E 0.2

*

If, in addition, individual atom pairs are to be selected, the ID’s are prepended, e.g.:

c CH2E 0.2

CH2E CH2E

CH2E cCH2E

cCH2E cCH2E

14.8 Cluster (oligomer) analysis and bond kinetics

Let us consider bulk fluid simulation of atoms (ions) (or small molecules – not fully
implemented) interacting via strong attractions so that it is reasonable to say that two atoms
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are bonded if their distance is less than certain limit. Typical example is molten salt like AlCl3
consisting of individual ions. In the melt, the ions are bound to relatively very stable molecules
like calculates the clusters (molecules).

14.8.1 Cluster overview

1. Reads stored configurations (simname.plb or simname.1..., see option -f)

2. Calculates bonds between molecules (species), bonds are defined by a distance criterion
between selected sites (atoms) in molecules

3. Analyzes connectivity of molecules and splits each configuration into clusters

4. Makes statistical analysis of clusters. Clusters are distinguished by size, stoichiometry,
and topology (with the exception of very large clusters)

5. Calculates time development of selected clusters, prints summary of all clusters in all
configurations

14.8.2 Compilation and synopsis

cook must be compiled with #define CLUSTERS: can be specified while running configure.sh

or directly in simopt.h. The calculation can be performed both during simulation
and from stored trajectory. For the latter case, see options -m0,-m1 and variablesr-
eread.from,reread.by,reread.to.

14.8.3 Input data

Cluster calculations are requested by setting cl.mode (see there). You can perform cluster
calculation during simulation or from playback, see option -m1 and variables reread.*.

Commented example of sysname.cli:

bonds ! section defining bonds, end the section by an empty line

AL CL 2.1 ! create bond between AL and CL in different molecules if |AL-CL|<2.1

AL S 3 ! AL CL S are ATOM names

maxn=20 ! If given, cluster counts up to size maxn are printed to the

! prt-file for each frame analyzed in the format defined by

! variable format (see below).

! Cluster topology is not distinguished here, only sizes matter.

! keyword format is equivalent to cl.format in input data

! formats can be combined; e.g., format=15 will print all four lines

! WARNING: there must be integer after =, not a formula (NOT format=2+16)

format=1 ! (default):

! 1st column = number of single molecules in the frame

! 2nd column = number of pairs

! ...
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! maxn-th column = number of clusters of size maxn and bigger

! last column before keyword = size of the largest cluster

! keyword CLUSTERCOUNT1

! number of clusters

! format=2 ! as above with different order:

! 1st column = size of the largest cluster

! 2nd column = number of single molecules in the frame

! 3rd column = number of pairs

! ...

! last column before keyword = number of clusters of size maxn and bigger

! keyword CLUSTERCOUNT2

! number of clusters

! format=4 ! lists individual cluster sizes (from largest to smallest), e.g.:

! 222 111 44 44 3 2 1 1 1 CLUSTERCOUNT4 number_of_clusters

! format=8 ! lists individual cluster sizes with counts, e.g.:

! 222*1 111*1 44*2 3*1 2*1 1*3 CLUSTERCOUNT8 number_of_clusters

! format=16 ! print simulation time in front of each line (as column 1)

! WARNING: the columns are shifted by 1 to the right

! format=32 ! print all clusters (molecule numbers), one line for each cluster:

! 1st column = cluster number (numbered from 0)

! 2nd column = cluster size (number of molecules in the cluster)

! 3rd column = molecule 1

! ...

! keyword CLUSTERCOUNT32

! number of clusters

maxcluster=15 ! larger clusters are not topologically distinguished

! (would be too slow)

! equivalent to cl.maxcluster in input data

mincluster=0 ! ignore all smaller clusters in detailed output (format&32)

! topology of named (registered) clusters is in the che-format

! (see blend for details):

! blank line required after the molecule

cluster AlCl3 ! named cluster for convergence profile, empty line after section

Cl Cl

\ /

Al

|

Cl

cluster AlSCN ! another named cluster, Al CL SCN are MOLECULES
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Al--SCN

$i extra.cl ! include file (cannot nest)

clusters ! mol- and plb-files will be created for clusters, showing

! the connectivity of molecules which are represented by

! site[0] only. Use ‘show’ to view the cluster structure.

! Good for monoatomic molecules, equivalent to bit cl.mode&2 set

configurations ! mol- and plb-files will be created for whole

! configurations (frames), full molecules are shown,

! but intermolecular bonds are shown between site[0] only

! Good for monoatomic molecules, equivalent to cl.mode&4 set

bonddynamics ! record created/broken bonds

! may be memory consuming in some cases

! equivalent to cl.mode&8 set

colors ! Good for monoatomic molecules only:

! data used to make a gol-file when "clusters" specified

! The first column is species name (not atom)!

Al MAGENTA 1.1

Cl GREEN 1.5

I YELLOW 1.8

Comments:

• A bond is created between different molecules if there exists a pair of sites less than the
limit (keyword bond) apart.

• Of course, molecules may consist of one atom only. Molecule named “Al” may contain
only atom “AL” (note case sensitivity!). “Al” refers to “species Al” in a sysname.ble
and thus to files Al.mol etc. for blend.

• maxcluster is the maximum cluster size (number of molecules) for which the topological
analysis is performed. Larger clusters of the same stoichiometry but different structure
are not distinguished (even if they are named). Limited by 1024 (more than 20 too slow
anyway).

• maxn is limited by 65536

• cluster NAME defines a named cluster in simplified CHE-format. There must not be any
blank line after the cluster NAME line.

• If colors is given, gol-files will be created for each cluster shown.

• No gol-file is created for configurations. If you wish to have proper colors, use molcfg
and link or copy simname.gol to simname.#.gol

• Equal sign = is optional between a keyword and its value, e.g., $i=FILE (bug: FILE must
not contain ‘=’). For better compatibility, also $iFILE (without space) is allowed
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14.8.4 Results

simname.prtx Final statistics of clusters. The clusters are sorted by size and stoichiometry
(we call this “standard order”). If the cluster is named, the name is printed. Then, a list
of bonds is printed: atoms are numbered consecutively in the order of the stoichiometry
formula. E.g., Al.Cl4 has bonds 0-1 0-2 0-3 0-4 because Al has number 0 and four Cl are
numbered 1,2,3,4.

simname.cl.cpa Convergence profile of counts of named clusters. Columns correspond to
the named clusters in standard order (not in the order in which the clusters appear in
simname.def after ;). Each line corresponds to one configuration analyzed.

simname.#.mol, simname.#.plb #=1,2,... denotes frame number. This applies only if
keyword configurations has been specified in sysname.def. To view the configuration
with molecule-molecule connectivity, use e.g.:

show simname.1

*.mol, *.plb To view the clusters. Applies only if keyword clusters has been specified. For
instance, Al3.Cl9b.mol or , Al3.Cl9b.plb. The last configuration (position of atoms)
encountered is used to show the cluster, each molecule is represented by the 1st atom.

simname.rm.sh Shell script which will remove all files created with keyword clusters: run
it as

sh simname.rm.sh

14.8.5 Bugs and caveats

• The topology analyzer is inefficient—it requires n1! n2!...nN! operations for a cluster
with stoichiometry MOL1 n1 MOL2 n2...MOLN nN. Hence, the practical maximum
maxcluster is around 15.

• Molecule-molecule bonds in *.mol are always created between site[0] irrespective of the
actual site that passed the distance condition (no problem with one-atom molecules).

14.8.6 Bond kinetics

Files simname.created.cpa and simname.broken.cpa are created:

column 1 time

column 2 created[0] or broken[0] = 2*(# of broken/created bonds since the previous frame)

column 3 created[1] or broken[1], as above but the bond is not counted if the same bond has
been or will be created/broken immediately before/after

column 4 created[2] or broken[2], as above, one other change allowed between cre-
ation/breakage of the same bond

more etc., according to compile-time switch #define BONDHIST
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ALGORITHM:

• For bond definition see the ‘cluster analysis’ above

• The algorithm works on the basis of a list of bonded molecules attached to each molecule.
The current and previous lists are compared and the differences determine the broken
and created bonds (column 2).

• In addition, the list of created and broken bonds (at each molecule) is searched for time-
ordered sequences created-broken, broken-created, created-broken-created, etc.; sequences
with even number of changes (=the bond returns to the same state) are omitted, odd
sequences are included as one creation or breakage (for time of the middle change,
e.g.. for created-broken-created for the time of the middle breakage). These sequences
for created[1] or broken[1] must not be interrupted by creation or breakage of another
bond (CreateBondTo77-CreateBondTo13-BreakBondTo77 is not recognized as bond to
molecule 77 created and immediately broken).

• For created[2] or broken[2], one change in between is allowed (the above example is
recognized and does not count for created/broken bonds to molecule 77)

• Etc., up to created[BONDHIST] or broken[BONDHIST]: BONDHIST-1 changes in
between are allowed

• It may happen that created[i] or broken[i], i > 0, are odd since the ‘does not count’
condition may occur for one molecule from the bonded pair, e.g. (A-B C) → (A B-C) →
(A-B C). This looks strange but is not a bug—is a feature.

14.9 Normal modes of vibration

14.9.1 Without constraints

For notation simplicity, let us assume that the local minimum occurs at
→
r i = 0 and U(0) = 0.

We shall also drop the vector symbol (→): in ri, index i will thus run over 3N components (N
particles × three coordinates). The potential can be expanded in

U =
1

2

∑
i,j

riAijrj, Aij =
∂2U

∂ri∂rj
. (14.29)

In accord with the notation, A is a 3N × 3N matrix and its values are calculated at the
minimum. The Newton equations of motion are

r̈i =
fi
mi

= − 1

mi

∑
j

Aijrj (14.30)

A vibration can be written as (i denotes here the imaginary unit)

ri(t) = Rie
iωt (14.31)

where Ri are numbers and ω = 2πν is the circular frequency. By inserting (14.31) to (14.30)
we get

−ω2Rie
iωt = − 1

mi

∑
j

AijRje
iωt (14.32)
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and hence in the matrix notation
ω2R′ = A′R′ (14.33)

with

R′
i =

√
miRi, A′

ij =
Aij√
mimj

. (14.34)

Matrix A′ is symmetric. We diagonalize it by the threshold Jacobi method. The normal mode
calculation is available both in blend (see options -J, -M,-N,-P) and cook (see variables nm.*).

14.9.2 With constraints

We have to expand the right hand side of the equations o motion (11.3),

→̈
r i =

1

mi

(
→

f i +
→

f
c

i), (14.35)

at minimum to the first order in the amplitude
→
r i.

The forces are no longer zeros at minimum because they may have nonzero components in the
direction of constraints. The expansion of forces is then

→

f i =
→

f
0

i −
∑
j

↔

Aij ·
→
r j,

↔

Aij = −∂
→

f i

∂
→
r j

=
∂2U

∂
→
r i∂

→
r j
, (14.36)

where we have adopted the tensor notation: Matrix A is treated as an N ×N matrix of tensors
(3×3 matrices); we will use consistently the dot-product symbol · for any sum over components

while
→
a
→

b is a 3× 3 tensor. Matrix A is symmetric (whether a matrix of tensors or numbers).

To expand the constraint forces
→

f
c

i =
∑
a

ga
∂ca
∂
→
r i
, (14.37)

we have to expand ∂ca/∂
→
r i as well as ga given according to (11.6) by

ga = −
∑
b

M−1
ab Gb, Gb =

∑
i

→

f i

mi

· ∂cb
∂
→
r i
, (14.38)

To expand ga we have to expand both Ga (composed of
→

f i and ∂ca/∂
→
r i) and generally also M .

Here we make a simplification valid for rigid models (e.g., water): We will assume that matrix
M does not depend on the configuration.

The expansion of constraint derivatives is

∂ca
∂
→
r i

=
∂c0a
∂
→
r i

+
∑
j

∂2ca
∂
→
r i∂

→
r j

· →
r j. (14.39)

Now we insert expansions (14.36) and (14.39) into (14.38). The absolute terms represent the

equilibrium condition,
→

f i +
→

f
c

i = 0. Linear terms can be collected into equation

→̈
r i = −

∑
j

↔

Bij ·
→
r j, (14.40)
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where
B = B0 +B1 +B2 +B3 (14.41)

Component B0 comes directly from the expansion (14.36) of
→

f i,

↔

B
0

ij =
1

mi

↔

Aij. (14.42)

Component B1 arises from expanding ∂cb/∂
→
r i in Gb,

↔

B
1

ij =
1

mi

∑
a,b

M−1
ab

∂ca
∂
→
r i

∑
k

→

f
0

k ·
∂2cb

∂
→
rk∂

→
r j

(14.43)

Component B2 is from the expansion of forces in Gb,

↔

B
2

ij = − 1

mi

∑
a,b

M−1
ab

∂ca
∂
→
r i

∑
k

1

mk

∂cb
∂
→
rk

· Akj (14.44)

and finally expanding constraints in ga leads to

↔

B
3

ij = − 1

mi

∑
a

ga
∂2ca

∂
→
rk∂

→
r j
. (14.45)

For bond constraints (11.5) we have formula (11.9) and

∂2ca
∂
→
r i∂

→
r j

= (δi,ia − δi,ja)(δj,ja − δj,ja)
↔

I , (14.46)

where
↔

I is the diagonal unit (identity) 3× 3 tensor.

The contributions to B1 are calculated in a double loop over constraints a, b with contributions

↔

B
1

iaib
+=

1

mi

∑
a,b

M−1
ab (

→
r ia −

→
r ja)

 →

f ib

mib

−
→

f jb

mjb


↔

B
1

iajb
−=

1

mi

∑
a,b

M−1
ab (

→
r ia −

→
r ja)

 →

f ib

mib

−
→

f jb

mjb


↔

B
1

jaib
−=

1

mj

∑
a,b

M−1
ab (

→
r ia −

→
r ja)

 →

f ib

mib

−
→

f jb

mjb


↔

B
1

jajb
+=

1

mj

∑
a,b

M−1
ab (

→
r ia −

→
r ja)

 →

f ib

mib

−
→

f jb

mjb

 .
The components of B2 are calculated in a triple loop over constraints a, b and index j:

↔

B
2

iaj −=
1

mia

∑
a,b

M−1
ab (

→
r ia −

→
r ja)(

→
r ib −

→
r jb) ·

↔

Aibj

mib

−
↔

Ajbj

mjb


↔

B
2

jaj +=
1

mja

∑
a,b

M−1
ab (

→
r ia −

→
r ja)(

→
r ib −

→
r jb) ·

↔

Aibj

mib

−
↔

Ajbj

mjb


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The contributions to B3 are calculated in a loop over constraints a

↔

B
3

iaia −=
1

mia

ga
↔

I

↔

B
3

iaja +=
1

mia

ga
↔

I

↔

B
3

jaia +=
1

mja

ga
↔

I

↔

B
3

jaja −=
1

mja

ga
↔

I

From (14.40) it follows that the fundamental frequencies are given by eigenvalues of matrix
B and the normal modes by its eigenvectors. There are two problems to solve. First, matrix
B is not symmetric nor symmetrizable. Yet it has (for physical reasons) all eigenvectors real.
Second, some modes correspond to motion along the constraints.

The second problem is solved by constructing a linear space perpendicular to the constraints. It
is done by orthonormalizing the space of constraints (by the Gram–Schmidt algorithm), adding
random vectors and orthonormalizing (if the random vector is almost parallel to the already
obtained orthonormal basis, a new one is generated). The resulting space perpendicular to the
constraints is represented by a matrix P composed of 3N − nc row 3N -vectors. The projected
matrix (of rank (3N −nc)× (3N −nc)) is B

P = PBP T ; if its column eigenvectors are R′, then
the original eigenvectors are R = P TR′.

The first problem is solved by using the Jacobi method to convert BP into the Schur normal
form2. This leads to orthonormal matrix U such that S = UTBPU is upper triangular matrix.
The eigenvalues are then on the diagonal, λi = Sii. However, the columns of U are no loger
eigenvectors (as for symmetric B). Let us denote the j-th column of U as uj (with components
uji = Uij). The first eigenvector of BP is R′

0 = u0 (indices start from 0),

BPR′
0 = λ0R

′
0. (14.47)

Then the i-th eigenvector can be written using either uj, j < i, or equivantly using previous
R′

j, j < i:

R′
i = ui +

∑
j<i

xjR
′
j. (14.48)

Let us multiply equation BP · R′
i = λiR

′
i from left by R′

k·, k < i. We arrive at a set of i linear
equations for xj, j < i:

R′
k ·BP ·R′

i − λiR
′
k ·R′

I =
∑
j<i

(λi − λj)R
′
k ·R′

jxj (14.49)

or in matrix form∑
j<i

Ckjxj = Pk, Ckj = (λi − λj)R
′
k ·R′

j, Pk = R′
k ·BP ·R′

i − λiR
′
k ·R′

i. (14.50)

Finally R = P TR′.

2Alternatively, an octave script can be called. This is faster, but more memory consuming.
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14.9.3 Harmonic Verlet correction

While numerical verification of the above formulas, it is useful to consider the frequency error
of the Verlet (≡ leap-frog) integrator.

Let us consider a harmonic oscillator
r̈ = −ω2

0r, (14.51)

where f0 = ω/2π is the frequency.

Let us insert
r(t) = eiωt, v(t) = Aeiωt (14.52)

into the leap-frog integration of (14.51),

r(t+ h) = r(t) + hv(t+ h/2), v(t+ h/2) = v(t− h/2)− hω2
0r(t). (14.53)

After some algebra we get the equation for ω:

1− cos(ωh) =
ω2
0h

2

2
or sin

(
ωh

2

)
=
ω0h

2
. (14.54)

Approximately for the wavenumber ν̃ = f/c

ν̃ = ν̃0(1 +
π2

6
c2ν̃20). (14.55)

Maximum frequency and wavenumber that can be (inaccurately) integrated are

fmax =
1

2πh
, ν̃max =

1

2πch
. (14.56)

14.10 Thermodynamic integration from a harmonic

crystal

14.10.1 Consistent and inconsistent models

Any model – as classical or quantum molecular dynamics or Monte Carlo simulation based on
forces between molecules – is only a better or worse description of reality. A model that can
be used in one simulation – as determining a phase equilibriuum using the slab geometry – is
a “consistent” model.

On the contrary, there are models which describe different phases using different approxima-
tions, for instance: (i) including the Berensen “missing term” in water/vapor equilibrium cal-
culation, (ii) using the electronic continuum approximation (which appears as scaled charges)
plus correction terms in condensed phases and no scaling in the gas phase, (iii) using quantum
mechanics for a crystal and (semi)classical mechanics for the fluid phases, or even (iv) using
the experiment for one phase and calculations for the other. Such models are “inconsistent”
and one cannot directly simulate both phases in one box (as droplets, bubbles, nucleation,
interfaces).

Here we deal with classical consistent models. Using classical mechanics implies that the results
must not depend on the value of the Plack constant nor masses of particles.
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14.10.2 Reference state

Although calculations provide the “absolute” chemical potential of a model, it is convenient
to use a combination of all constituent molecules, ions and atoms at the ideal gas state at the
same temperature and some standard pressure pstd (typically 1 bar) as the reference,

µ̃(p, T ; pstd) = µ(p, T )−
∑
i

νiµid,i(p
std, T ) (14.57)

where µ(p, T ) is the calculated chemical potential (of a crystal) per a molecular formula with
stoichiometric coefficients νi and subscript id refers to the ideal gas state (of the same model
and the same approximation).

We use classical mechanics, therefore µ̃cr(p, T ) depends neither on the value of the Planck
constant nor atomic masses; this is actually a strong test of calculations. Particularly, the
spectrum does depend on massed of particles so do the partition functions of molecules in gas,
but their difference according to (14.57) must be the same. Note that equalizing masses of
particles (light hydrogens become heavier, heavy oxygens lighter) not only allows for longer
timesteps in simulations, but also decreases the width of the spectrum and increases the
precision of normal modes calculations.

For many purposes, the reference chemical potential is taken “inconsistently” from the
experiment as the ideal gas value at given T and a standard pressure pstd. The chemical
potential with respect to this reference is

µ̃expt ref(p, T ; pstd) = µ̃cr(p, T ) +
∑
i

νi
[
µid,i(p

std, T )− µexpt
id,i (T, p

std)
]
, (14.58)

where µid,i is now calculated from (14.71) with real masses and the experimental Planck
constant. The difference between both references should be small for a good model.

14.10.3 Thermodynamic functions

Let Q be the semiclassical canonical partition function of a system of N structureless (point)
and identical particles,

Q =
1

h3NN !

∫
exp

[
−Etot(r

N , pN)

kT

]
drNdpN , (14.59)

where h is any constant of dimension energy ×time, k is the Boltzmann constant, T the absolute
temperature, Etot(r

N , pN) = Epot(r
N)+Ekin(p

N) is the sum of the potential and kinetic energy,
and rN , pN denote concisely N vectors of atom positions and momenta, respectively. The
integration in positions is over volume V and in momenta over infinite range. No observable
quantity (e.g., the Gibbs energy of a crystal with respect to ideal gas reference) must depend
on the value of h.

If h is the Planck constant, the above Q is called the semiclassical partition function; it
represents a good approximation of the true quantum partition function provided that the
products of typical energies and times are much less than h.

It is straightforward to generalize the above formula to molecules described by internal
coordinates (e.g., rotating rigid bodies) treated via the classical mechanics as well as to mixtures
of such molecules.
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The Helmholtz free energy and Gibbs energy are then

A = −kT lnQ, G = A+ pV. (14.60)

For the sake of the thermodynamic integration, it is advantageous to work with ratio −A/T
(called the Massieu potential) because the differential contains quantities easily measurable in
simulations, internal energy U = ⟨Etot⟩ and pressure p,

d(−A/T ) = U

T 2
dT +

p

T
dV, (14.61)

This differential form is easy to integrate using simulation-based integrands unless we are close
to two singular cases, a low-temperature state limiting to harmonic crystal and a low-pressure
state limiting to ideal gas.

14.10.4 Classical crystal

Harmonic crystal

First, let us consider a classical harmonic oscillator in one dimension defined by force constant
K. Its potential energy is

u(x) =
K

2
(x− x0)

2. (14.62)

The semiclassical partition function of this oscillator is

q =
1

h

∫ ∞

−∞
dx
∫ ∞

−∞
dp exp

[
−u(x) + p2/2m

kT

]
=
kT

h
2π

√
m

K
=
kT

hν
, (14.63)

where ν is the frequency of motion. The semiclassical partition function

q =
T

Tν
, Tν =

νh

k
, (14.64)

where Tν is the vibrational temperature.

For comparison, the quantum partition function is

q =
e−Tν/2T

1− e−Tν/T
. (14.65)

A crystal in the harmonic approximation is characterized by a set of Nf fundamental
frequencies; for N sperically symmetric molecules in periodic boundary conditions with zero
total momentum it holds Nf = 3N − 3. The crystal partition function is then

Qharm =
Nf∏
i=1

T

Tνi
(14.66)

and the Helmholtz energy is

Aharm = −kT lnQharm = NfkT ln
T ν

T
, T ν =

Nf∏
i=1

Tνi

1/Nf

, (14.67)
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Table 14.1: Harmonic sinjarite crystal (CaCl2.2H2O)96 at 365 K. eq is the factor for equalizing
masses within a molecule (for eq = 1 the masses of H and O are the same), T nu is the geometric
average of vibrational temperatures, aharm is given by eq. (14.67), a∗harm = aharm(Nf + 3)/Nf ,
gid is the sum on the right hand side of (14.57). The calculation uncertainties are on the order
of the last given digit.

eq T nu aharm gid aharm − gid a∗harm − gid

1 K J/mol J/mol J/mol J/mol

0.0 370.6504 977.6 −269304.5 270282.1 270283.5

0.2 338.6379 −4770.5 −275052.7 270282.2 270275.1

0.4 322.6019 −7857.6 −278140.1 270282.5 270270.8

0.6 312.9599 −9788.6 −280071.0 270282.4 270267.8

0.8 307.0343 −11005.0 −281287.4 270282.4 270266.0

1.0 303.9410 −11649.4 −281931.8 270282.4 270265.0

0.8 307034.8 428573.6 158946.2 269627.4 270266.1

where T ν is the geometric mean of the vibrational temperatures. This potential diverges as
temperature approaches zero.

No divergence occurrs if the vibrations are treated by quantum mechanics, as in the Debye
model. One would be tempted to use quantum mechanics to calculate the partition function.
However, such an approach is not consistent with classical simulatios: Equilibria calculated
from quantum-based crystal would not be consistent with direct simulations of crystals in a
solution or melt.

In the ideal gas reference the number of the degrees of freedom will be 3N not decreased by
3 for the periodic boundary conditions. This introduces an inconsistency because the final
result in the classical mechanics must not depend on the value of Planck constant h and in
the classical Gibbs energy we always have term NfkT lnh. Finite-size error on the order of
O(1/N) is inevitable, but in this inconsistency the error would depend on the value of h which
is “arbitrary” in the classical mechanics. A natural solution is to multiply Aharm by factor
(Nf +3)/Nf . However, an O(1/N) dependence on the masses of the atoms is introduced, which
we consider as a minor problem.

Since the calculation of T ν is relatively easy, we extrapolate (see later) T ν to the thermodynamic
limit and calculate the Helmholtz energy per one molecule as

aharm = nfkT ln
T ν

T
, (14.68)

where now nf is the number of degrees of freedom per a chemical formula; for models without
constraints it holds nf = 3

∑
i νi, for rigid water nf = 6.

Real crystal

In order to calculate the Helmholtz energy of real crystal with simulation-based energy, we will
start from the harmonic crystal at temperature T , integrate down to zero, and then integrate
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back with the simulation internal energy[29]. (A similar trick is used to calculate the fugacity
of real gas.)

Acr = Aharm + E0 − cT
∫ T

0

Etot − E0 − Etot,harm

T 2
dT

= cAharm + E0 − T
∫ T

0

Epot − E0 −NfkT/2

T 2
dT

because ⟨Etot,harm⟩ = NfkT , ⟨Ekin⟩ = NfkT/2 for both crystals, and ⟨Epot,harm⟩ = NfkT/2. The
potential energy at zero temperature, denoted as E0, is added.

The integrand is no longer singular. However, precision is lost close to T = 0 because the
standard deviation in the potential energy is proportional to T so is the statistical error (with
the same trajectory length). Consequently, the statistical error in the integrand is proportional
to 1/T . This is the same behavior as for the gas at pressure approaching zero (unless we know
the second virial coefficient). Finally, the Gibbs energy of the crystal is

Gcr = Acr + pV. (14.69)

14.10.5 Gas and liquid

Ideal gas

The classical partition function of (generally molecular) ideal gas is

Q =
1

N !

(
V q

Λ3

)N

, Λ =
h√

2πmkT
, (14.70)

where q is the internal partition function. The Gibbs energy is then

Gid = NkT

[
ln

ph3

N(kT )5/2(2πm)3/2q
+

lnN !

N
+ 1

]

= NkT

[
ln

ph3

(kT )5/2(2πm)3/2q
+

ln(2πN)

2N
+O(N−2)

]
,

where we used the ideal gas equation of state, pV = NkT . Term ln(2πN)/2N vanishes in the
thermodynamic limit, thus the chemical potential (per molecule) is

µid,i = kT ln
ph3

(kT )5/2(2πmi)3/2qi
= kT ln

pΛi

kTqi
. (14.71)

where subscript i denotes species.

For instance, for rigid clasical water the semiclassical partition function includes only rotations,

q =

√
π

σ

∏
a={x,y,z}

(
2IakT

h̄2

)1/2

=
(2π)7/2

h3
(kT )3/2

√
IxIyIz, (14.72)

where the symmetry number is σ = 2).
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Mixture of ideal gases

In the Boltzmann statistics, the partition function of a mixture is a product of partition
functions of molecules. Thus

Gid =
∑
i

Niµid,i +NkT
∑
i

xi lnxi +
kT

2

∑
i

ln(2πNi), (14.73)

where Ni is the number of molecules of species i, N =
∑

iNi, and xi = Ni/N is the mole
fraction. The last term is the estimated finite-size error.

Real gas

The corection for nonideal behavior is given by the integral of the volume difference from the
ideal gas mixture over pressure at constant T ,

G = Gid +
∫ p

0

(
V − NkT

p

)
dp. (14.74)

The integrand is not singular; since it limits to BN , where B is the second virial coefficient, in
simulation we may avoid precision loss by calculating B and using it as the constraint in the
low-pressure limit.

Crystal–liquid equilibrium

For calculating melting temperatures of pure crystals (ice, rock salt, etc.), the chemical
potentials equal the Gibbs energy divided by the number of molecules. In general mixtures
(e.g., to calculate solubilities of crystals in water), we need the chemical potentials of species,

µi = µid,i + kT lnxi

∫ p

0

(
V i −

NikT

p

)
dp, (14.75)

where V i denotes the partial molar volumes of species. Particularly, having crystal with
composition given by stoichiometric coefficients νi, we need combination

µsol =
∑
i

νiµi (14.76)

and therefore
∑

i νiV i. It means to run (at least) two NpT simulations with different
compositions. Alternatively, the Kirkwood–Buff integrals can be used.

To reach liquid, we have to add thermodynamic integration over temperature and pressure
around the critical point to avoid gas–liquid phase transition (there are other options, eg.g,
to start from Lennard-Jones liquid and transmute Lennard-Jonesium into molecules we need).
The integration over temperature requires partial molar enthalpies,

µsol(T2)

T2
− µsol(T1)

T1
=
∫ T2

T1

∑
νiH i

T 2
dT. (14.77)

Since the composition of the liquid (solution) may be different, we equate the chemical potential
of crystal

µcr =
∑
i

νi
Gcr

N
(14.78)

and the chemical potential of the solution, µsol, integrated to the same temperature and
pressure. Note that xi = Ni/N ̸= νi/

∑
i νi unless we are in an eutectic point.
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14.10.6 Finite-size effects

One dimension

To derive the functional form of the finite-size effects of Aharm, let us first consider a periodic
chain of N atoms (one-dimensional crystal) which may vibrate by N modes with frequencies
approximately given by ν = cn/Na (double degenerate), n ∈ {1, . . . N/2}, where a is the lattice
constant and c the speed of sound. We assume that c is a constant, N is even, and neglect
momentum conservation. The Helmholtz energy (14.67) is

Aharm = −2kT
N/2∑
n=1

ln
NakT

hcn
(14.79)

= −kTN ln
akT

hc
− 2kT

N/2∑
n=1

ln
N

n
(14.80)

= −kTN ln
akT

hc
− 2kT (N lnN − ln(N/2)!) (14.81)

≈ −kTN ln
2akT e

hc
− ln(πN), (14.82)

where we used the Stirling asymptotic expansion of factorial with terms O(1/N) and higher
neglected. The finite-size correction per particle is then ln(πN)/N , as a direct consequence of
term ln

√
2πN in the Stirling formula.

A more accurate calculation should take into account dispersion. To the second order it holds
ν = (1 − C(n/N)2)cn/Na ≈ cn/Na exp(C(n/N)2), where C is a constant independent on N .
The term to be added to Aharm is

N/2∑
n=1

C
(
n

N

)2

≈ C

8
(14.83)

for large N (1/N neglected), leading to the correction on the order of N−1.

In addition, the number of degrees of freedom is N − 1 because of momentum conservation.
This changes the estimated Helmholtz energy by a constant and the finite-size error by an
O(1/N) term.

Three dimensions

Let us estimate the finite-size correction for a cubic crystal in periodic boundary conditions.
The key term of the Helmholtz energy, Aharm, contains the sum over integer vectors (positive
coordinates) up to certain maximum n = |→n| < m ∝ N1/3,

S =
∑
ν

ln
1

ν
= constN −

∑
→
n

lnn. (14.84)

The above formula is based on two approximations: (i) the speed of sound does not depend on
the direction (this is not generally true even for cubic crystals), and (ii) we have to sum over
both longitudal and transversal waves. While enlarging N and m (and dividing by N) we get
finer grid; in turn, the finite-size correction equals the sum S minus the integral of the same
argument and in the same bounds.
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In order to calculate the correction, we first shift the integration bounds by 1/2; in fact,
the upper bound is slightly less because of the conserved momenta. This will produce terms
proportional to less thanm2 lnm (for nx, ny, nz = 1) and tom2 lnm (for n = m). The remaining
error is estimated using formula ∫ 1/2

−1/2
f(x)dx− f(0) ≈ f ′′(0)

24
(14.85)

valid for small higher derivatives. After applying this formula in three coordinates (the second
derivative leads to a Laplacian ∆), replacing the sums into integrals, and using spherical
coordinates, we get a term proportionala to∫ m

const
∆ ln r 4πr2dr = 4πm− const. (14.86)

The leading terms are then m2 lnm/N and smaller m/N .

This is in disagreement with numerical tests where such large terms have not been detected.
The formula consistent with data is

µharm(N) = µharm(∞) +
a lnN

N
+

b

N
, (14.87)

where constants a, b are fitted by the least-square methods with weights proportional to N2. In
addition, we extend this formula to non-cubic crystals provided that the shape (aspect ratios) is
preserved. Interestingly, a lattice model of ice exhibits the same finite-size behavior [J. Kolafa,
JCP 140, 204507 (2014)].

14.10.7 Miscelaneous notes

Massieu and Planck potentials

Slightly simpler expressions can be obtained using the Massieu and Planck potentials,
respectively,

Φ = S − U

T
= −A

T
= k lnQ, dΦ =

U

T 2
dT +

p

T
dV, (14.88)

Ξ = Φ− V
p

T
= −G

T
= k lnQ− pV

T
, dΞ =

H

T 2
dT − V

T
dp. (14.89)

Possible extension to integration over pressure

We define the reference as a limiting behavior for T → 0 which can be then extended to a
harmonic crystal with linear compressibility. Its Planck potential is

Ξharm = −E0 + pV0(1 + α0T )

T
+Nfk ln

T

T ν

, (14.90)

where H0 = E0 + pV0 is the enthalpy at T = 0, αT = (1/V )(∂V/∂T )p is the thermal expansion

coefficient, and T
Nf

ν =
∏
Tνi . The full Planck function is then given by integration over T at

constant p

Ξ = Ξharm +
∫ T

0

H −H0 −NfkT − pV0α0

T 2
dT, (14.91)
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where H is available from an NpT simulation. Note that the integrand is not singular.

or per mole

µm = µid,m +
∫ p

0

(
Vm − RT

p

)
dp. (14.92)

14.10.8 Enthalpy

The enthalpy is
H = Epot + Ekin + pV + cutoff corrections [J/mol]. (14.93)

In cook version V4.3m and newer, hints are also printed in the prt-file how to calculate enthalpy
from other columns in the cp-file.

In cook version V4.3l and newer:

NPT For tau.P ̸= 0, p = P (barostat parameter). For thermostat="MTK", the enthalpy variance
is related to the isobaric heat capacity, CP = VarH/RT 2.

NVT and NVE For tau.P = 0, p is the configurational pressure.

BUGS: In cook version V4.3k and older, always p = configurational pressure and cutoff
corrections have been added twice. In this case, calculate the enthalpy by.

showcp -a -b1 SIMNAME.cp

tabproc C+a*B+b*D < SIMNAME.cpa

where

a = R*No.f/2 # for No.f, see SIMNAME.prt, and R=8.314462618

b = P*RHOX*6.02214076e-07,

where RHOX is the number from the following formula found in

SIMNAME.prt in the following line (example):

rho = 16981814.9518 / V (for rho in kg m^-3 and V in AA^3)



Chapter 15

Special versions

I should write more about boundary conditions in cook. Now, see Sect. 8.2 for an overview.
Also comments in file simopt.h may be useful. Only a few particular versions and special
terms are listed below; some details may be out-of-date.

15.1 Fixing positions of selected atoms

Positions of selected atoms can be fixed via harmonic springs, which is requested by option k#

with a nonnegative argument. See also see Sect. 15.12. The potential is

Ufix =
∑
i

K

2
(ri − rfixi )2. (15.1)

Note that a harmonic potential elsewhere is written without factor 1/2. File simname.fix
defining sites to be kept fixed is needed:

# this is comment

! this as well

! the following line specifies that site # 2 will be fixed:

2

! the following line specifies that sites 5 6 7 8 will be fixed:

5-8

! the following line specifies that site 12 will be fixed

! to the position x,y,z given (if no x,y,z are given, the positions

! are taken from the initialization)

12 5.5 6.6 7.7

! then the initial file written while init>=3 is not needed.

! * Site numbers for the first molecule can be found in mol-file or

! ble-file (table sites), otherwise have to be calculated

! This is incorrect line:

2 3

This file has the same format as molname.keep or molname.mark from blend and can be
copied (however, atom positions are not present).

Note that the format of file simname.fix for ANCHORing (negative option -k) is different!

211
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• Force constant K = option -k (if positive). K is in units K/Å2. Reasonable values
are probably in range 100–10000. Too low values do not keep atoms in positions firmly
enough, too large values cause bad energy conservation and other artifacts.

• (New in V3.6k) Option -k0 fixes the atom positions exactly in the place given. It is similar
to anchoring (version ANCHOR) except that ANCHORing also measures the force and
(thus) has several limitations.

• A single atom of mass Mg/mol and -kK will oscillate with period
√
m/K × 6.89 ps.

• Value -k-16 [default] turns off any fixing and file simname.fix is ignored.

• For negative values, ANCHOR version is required, see Sect. 15.12.

• If a line containing keyword fix is present in simname.cpi and option -k is positive,
energy Ufix is recorded in the convergence profile.

Initialization (was changed in V2.4j):

• If simname.fxc exists, it is read and the positions saved there are used as fix locations.

• If simname.fxc does not exist, the positions are taken from the configuration at job start.

• If, in addition, atom positions are present in file simname.fix, they replace the positions
given above.

In any case, file simname.fxc is written to be used next time. In the next start of cook -kK,
K > 0, simname.fxc is used; it may be modified by coordinates specified in simname.fix

Conserved quantities: Presence of non-symmetric potential causes the momentum and
angular momentum (for free b.c.) not to be conserved. For general 3 or more fixed atoms,
this is correctly taken into account in calculating the number of degrees of freedom (needed to
evaluate Tkin). In addition, correcting the momentum and angular momentum for numerical
errors is turned off (unless drift is specified)

Bugs: for 1 or 2 atoms to be fixed (or linear set of atoms), the number of degrees of freedom
calculated and correcting the angular momentum is incorrect and must be set using drift and
conserved.

Tested with FREEBC only, but in principle should work with other b.c. too

15.2 Notes on water models

There are THREE versions of TIP3 water:

1. Flexible TIP3 water, as used in blend, with small intermolecular H-O and H-H Lennard-
Jones terms to prevent H-O charge singularity. Because of flexibility, the H-bond energies
are lower (dimer energy = −6.8322 kcal/mol). To use this model also in cook, do not use
option -h in blend and run cook -u9999 -x.
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2. Rigid TIP3 water, with the same intermolecular H-O and H-H Lennard-Jones terms as
above. This is used in cook when *.ble file has been created by blend -h AND cook -x

(and no -uK option selecting flexible terms is used). Dimer energy = −6.5920 kcal/mol.
It is recommended to use this model with the random initializer (init=3="random") to
prevent singularities.

3. Rigid ‘original’ TIPS3 water: blend -h needed and no -x nor -uK is used. If possible,
optimized code is used (using the optimized code is suppressed by cook -x0; the numerical
results should be the same). Dimer energy = −6.5390 kcal/mol.

As regards other water models, they are usually defined without H-H and H-O Lennard-Jones
terms. There are, however, optimized and unoptimized versions of TIP4P and ST2. (Note:
TIP4P dimer energy = −6.2345 kcal/mol).

• cook prints a warning when it recognizes water and blend -h has not been used.

• blend without -h and cook -x -u9999 will use the flexible water also in MD. This is
less efficient.

• cook need not recognize water (to use optimized code) that has been added to the system
in other way than via ‘blend hoh’ and consequently uses the general code (with H-O and
H-H terms). The molecule is still rigid (if blend -h)

15.3 Cut off electrostatic forces

Instead of the Ewald summation (which can be regarded as more accurate, but is more costly),
the simulation in periodic boundary conditions can neglect electrostatic forces beyond certain
cutoff. This version of cook is requested by #define COULOMB 2 or #define COULOMB 0 in
simopt.h.

The 1/r term in the Coulomb energy is replaced by

1

r
≈


1/r − shift, for r < αcutoff
(r − cutoff)3(AFA(r) +B FB(r)), for α cutoff < r < cutoff

0, for cutoff < r
(15.2)

where FA(r) = 1 and FB(r) = r are the base functions.

The electrostatic force is thus neglected beyond the cutoff, shifted at short separations, and
smoothly interpolated in between.

The default value of α = 0.7; the optimum values are around 2/3, which comes from a
comparison with the method by Fennell and Gezelter[51]1. The former default 0.9 is not good
[30]. The cutoff must be less than one half of the box size.

For #define COULOMB 2 this cutoff electrostatic is implemented by quadratic splines, for
#define COULOMB 0 directly by formulas. In fact, the COULOMB=2 version it makes use of
the structure of the Ewald summation, where the k-space part is turned off (K=0) and the erfc
functions (implemented by rational splines, #define COULOMB -1) are replaced by quadratic
splines that are more suitable. Both the COULOMB=2 and COULOMB=0 are approximately
of the same speed, but this may depend on the architecture.

1Available by #define COULOMB 3
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Table 15.1: Comparison of the Ewald and cut-off electrostatics for SPC/E water, cubic box with
500 molecules, temperature 300 K (Berendsen tau.T=0.5), density 997 kgm−3, time 110 ns,
and cutoffs LJcutoff=cutoff=12.3318 Å. Pressure P is based on the virial theorem whereas
Ptens uses the corresponding force.

method ϵr Tkin Epot P Ptens

[K] [J/mol] [MPa] [MPa]

Ewald 72.79(58) 299.9373(4) −46714.40(83) −2.835(88) −2.743(87)

cut-off 72.01(59) 299.9373(4) −46756.51(86) −13.896(88) −4.904(89)

The cutoff electrostatic should not be used for systems with free charges unless the cutoff is
longer than the Debye screening length. It is acceptable for systems with partial charges but
neutral groups, possibly also for charged systems solvated e.g. by water. Table ?? shows a
comparison of both methods for SPC/E wateat ambient conditionsr. Note that P and Ptens

would converge to the same value with higher Ewald precision irrespective of the calue of cutoff
(especially more terms in the k-space are needed), for the cut-off electrostatics we need cutoff

→ ∞. It is seen that the dielectric constants are indistinguishable, the potential energy and
pressures are lower for the cut-off version, and the pressure based on the pressure tensor (not
using the virial theorem) is more accurate.

The pressure calculation assumes that the virial of electrostatic forces is the same as the
electrostatic energy. This holds exactly for the Ewald summation (and therefore the virial
pressure calculated by the virtual volume change [see variable dV] is the same as the virial
calculated directly from pair interactions). However, this is an approximation only for the cut
and shifted electrostatic. The virial pressure is not consistent with the used potential; this
need not mean that it is worse approximation of the full electrostatic system, though.

15.4 Gravity simulation (STARS)

In this version, requested by #define STARS, the sign of the Coulomb interactions is changed
to attraction of equal ‘charges’. To be used with FREEBC. For instance, a globular star cluster
can be simulated.

15.5 Forces by Gaussian

FREEBC required, under development, some quantities are not supported, unfinished guide.

1. Prepare your simulation (initial configuration = cfg-file) using standard force-field
simulation in the free boundary conditions. The atom names must be understandable
by GAUSSIAN input, otherwise the ble-file must be edited. For water, SPC/E is OK.

2. File simname.com0 must contain the following lines, in this order:

1 #-line (with keywords) for calling Gaussian without measurements, single-point
calculation, NoSymmetry, forces. The log-files (Gaussian output) will be erased.

https://web.vscht.cz/~kolafaj/jiri/movies/stars.htm
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2 #-line for calling Gaussian with measurements (the last step of the noint-cycle).
Typically, Prop may be present. These log-files will be numbered and stored.

3 Line with charge and multiplicity (two integers, no leading space).

4 %-line, typically with the %mem= keyword. The predictor requires guess=(Read,TCheck)
and %chk=SIMNAME.

5-8 Optionally more %-lines (but not %Nproc=, see below), not more than 8.

more @-lines define the predictor (see cook/gaussian.c).

Using this information, the Gaussian input com-files are generated. The NSLOTS
environment variable is used to generate the %Nproc= statement. Example:

# B3LYP/6-31G* SP guess=(Read,TCheck) NoSymmetry force EmpiricalDispersion=GD3BJ

# B3LYP/6-31G* SP guess=(Read,TCheck) NoSymmetry force EmpiricalDispersion=GD3BJ Prop

0 1

%mem=16000MB

%chk=xnewtest

@2

3. The following environment variables must be exported: GAUSS EXEDIR and GAUSS EXE;
also, LD LIBRARY PATH (the same as GAUSS EXEDIR). Optionally scratch. Example of a
job for the “Grid Engine” batch system:

#/bin/bash

#$ -q "nq-16-8@n29.vscht.cz"

#$ -cwd

#$ -V

#$ -j y

#$ -pe shm 4

export GAUSS_SCRDIR=/scratch/$USER/gaussian_$$

mkdir -p $GAUSS_SCRDIR

export GAUSS_EXEDIR=/SOMEWHERE/G16/g16

export LD_LIBRARY_PATH=$GAUSS_EXEDIR

[ -e gaussian ] || ln -s $GAUSS_EXEDIR/g16 gaussian

[ -e formchk ] || ln -s /usr/local/programs/custom/PHOTOX/bin/formchk formchk

[ -e unfchk ] || ln -s /usr/local/programs/custom/PHOTOX/bin/unfchk unfchk

echo NSLOTS=$NSLOTS

./cookgaussian spce -x0 -u9999 spce3

Note that cookgaussian calls ./gaussian, ./formchk, ./unfchk. The latter two are
needed with prediction (@-codes). This job can be submitted via command qsub.
Parameters: -q requests a queue, -cwd changes the working directory, -V copies
the environment, -j y concatenates stderr and stdout, -pe shm 4 requests 4 threads
(NSLOTS exported). Note that -u9999 requests flexible bonds and -x0 turns off standard
optimized water models.
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15.6 Polarizable dipoles

For a general theory and formulas, see Appendix 25.

While point induced dipoles are used in blend, they are approximated by macroscopic dipoles
in cook. A polarizable site i (with an optional charge qi) accepts and additional charge −Q
and there is an auxiliary site δ

→
r apart with charge +Q:

q_i-Q +Q E

o------o ---->

dr

It holds
→
µi = Qδ

→
r i =

↔
αi ·

→

Ei =
↔
αi ·

→

F i/Q (15.3)

or
δ
→
r i =

↔
αi ·

→

F i/Q
2 (15.4)

where
→

Ei is the electric field acting on site i,
→

F i is the electric force,
→
µi is the induced dipole, and

↔
αi is the polarizability tensor. (See also Appendix 25.) The larger Q, the better approximation
of point dipoles, but lower numerical accuracy; Q = −1000e seems to be a good tradeoff.

Particularly, equation (25.19) is approximated by the numerical derivative

→

f rep,i = −κiQδ
→
r i ·

→

∇i

→

f ij ≈ −κiQ[
→

f ij(
→
r i + δ

→
r i)−

→

f ij(
→
r i)]. (15.5)

Equation (15.3) should be valid for all polarizable atoms in the system. Since the field
→

E
depends on the induced dipoles on other atoms, we have a set of equations for the so-called
self-consistent field (SCF). Let us write it shortly as

D = Iter(D) (15.6)

where D is the set of induced dipoles (or equivalently δ
→
r ’s) and operator Iter() denotes one

iteration. In this iteration, all electrostatic forces are calculated (using the fixed set of atomic
charges and current induced dipoles) and from them the new induced dipoles.

If the iterations diverge, it is called the ‘polarization catastrophe’. It may happen if the
polarizability is too large and/or atoms are too close together (e.g., at too high temperature).

The SCF equation can be rewritten as

D = ωIter(D) + (1− ω)D (15.7)

where ω (in the program called scf.omega) is the ‘mixing iteration parameter’. For the
equations of motion for the induced dipoles, see also Appendix 27.

15.6.1 Polarizability models

Several models of polarizability are available. They are selected in the simopt.h file by #define
POLAR number, where number is a sum of the following numbers (or via configure.sh):

1 Repulsive antipolarizability (shell-core model [31]). All polarizable atoms can interact.
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2 Saturated polarizability (see Sect. 25).

4 Makes some optimizations if there are also uncharged atoms. Use this option if there are
more than about 1/4 of uncharged atoms in the system.

8 Axial polarizability supported. The polarizability is a tensor. The principal axis of this
tensor is defined by a pair of atoms, such pairs are listed in table axials in the ble-file
[see the blend manual, Section 5: Output format (ble-file)]. Bugs: tensor polarizability
cannot be saturated. POLAR 8 has been checked with the shell-core model (POLAR 1)
and it is not clear whether it can be used without it.

16 Special (see constrdaa.c and gear2polg.c)

32 Modifier of 1: repulsive antipolarizability for polar-nonpolar pairs only. (E.g., polarizable
anions and nonpolarizable cations).

64 The ADIM model [32]: also all intramolecular induced dipole–induced dipole interactions
are included

E.g., #define POLAR 9 selects the shell-core model with a support for axial polarizability
tensors; the code will be optimized for no (or a few) uncharged atoms in the system.

If #define POLAR 0 is specified, only scalar linear polarizability is supported.

If POLAR is not #defined the polarizability support is turned off.

In addition, switch GAUSSIANCHARGES (to be used with COULOMB=-3 and POLAR=0)
selects all charges to be of Gaussian distribution (of width given as sigma in the ble-file as the
last parameter).

BUG: Gaussian charges are not supported in blend and via par-files. To use them, you should
create the ble-file as well as the respective mol and gol files by a point-charge version, the
ble-file must be edited “by hand” to add the sigmas.

15.6.2 Integration methods

There are three integration methods available.

• Iterations This method is most accurate but also most time demanding because
electrostatic forces are calculated several times in one integration step. The self-consistent
field is iterated until sufficient accuracy (given by variable scf.eps) of the induced dipoles
is reached. The value of scf.eps is given in program units, 1 p.u. = 0.0117501 D. Values
of scf.eps less than 0.01 prog. units are normally recommended for the iteration mode.
Since prediction of the induced dipoles from previous integration steps is used at the same
time, (cf. option -p) usually 2–4 iterations are sufficient.

This method can be used with both Gear integration (option -m#, # > 2) and
Verlet/SHAKE (-m2 = default). For Gear, you may use either the ASPC predictor
(default) with the mixing iteration parameter scf.omega=1 or higher (superrelaxation), or
a higher-order partially stable predictor (see option -p); here, scf.omega less than 1 may
be more efficient2. By careful testing of available predictors and the values scf.omega,
often very accurate induced dipole can be obtained for two iterations per step.

2scf.omega can be also set by option -^
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• ASPC Method using a stable second-order predictor see Sect. 27. It should be used with
Verlet/SHAKE. This method normally requires one evaluation of electrostatic forces per
step, however, the self-consistent field is less accurate (and a little delayed behind the
correct SCF); the time-reversibility (and energy conservation) is good, though.

This method is selected by option -p. The default is the k = 2 predictor (equivalent to
-p229). The value of scf.omega is set to the theoretical stability limit. However, (much)
more precise integration can be obtained by careful optimizing the value of scf.omega.
To do this, run a series of short simulations (let us say by 100–1000 steps) with increasing
values of scf.omega, starting from the theoretical stability limit (k+2)/(2k+3) by steps
of about 0.01. Set scf.eps 10–100× grater than the expected error. Follow quantities
called “polar one-step maxerr”, “polar one-step stderr”, “selffield rate”, and “selffield
iter”; in the .cpi file, use “pstd”, “pmax”, “Pstd”, “Pmax”, and “rate” (so they appear
in the convergence profile file .cp). Use scf.omega by 0.02–0.05 smaller than the value
where the iterations become unstable (the error increases and the number of iterations
> 1).

• Combined strategy In practical simulation, if ASPC is not accurate enough, a much
better accuracy (by one order and with a good energy conservation) can be obtained by
using exactly two iterations per MD step. This is requested by scf.eps=-2. The value
of scf.omega can be much larger than with one iteration, sometime even biger than 1;
careful setup is needed, though, because there is no accuracy limit anymore to prevent
the polarization catastrophe.

• Car–Parrinello-like approach (also called Lagrangian or extended Lagrangian) is a
mechanical model of a polarizable dipole. The Lagrangian is:

L = L0 +
∑
i

(M/2)Dṙ2i −
∑
i

(K/2)Dr2i (15.8)

where L0 is the unperturbed Lagrangian and K = Q2/α (only scalar polarizability is
supported). For a fixed configuration at zero temperature, the equilibrium values of the
dipoles are the same as the SCF dipoles, during simulation they will oscillate around the
SCF solution.

This method is selected by option -p, zero 2nd position.

The ‘mass’ of the additional degree of freedom is set indirectly using its typical correlation
time tau.dip:

M = Q2tau.dip2/α (15.9)

(One free ‘mass’ M in a constant field exhibits small harmonic motion with period
2πtau.dip.)

BUGS:

– The current implementation does not support keeping the SCF subsystem
at low temperature. Do not use it.

– In FREEBC, the algorithm removing the angular momentum drift is not correct and
leads to energy drift (decrease). Use drift unless friction thermostat.

Car-Parrinello-like method is new in version 2.0c.

NOTE: name “Car–Parrinello” is rather misleading. It is not the quantum Car-Parrinello
method.



15: Special versions [Contents] – [Index] 219

15.7 Pressure tensor

New in version 2.4a, definition modified in 2.4m. Pressure tensor (also called stress tensor3)
is for a system of point interacting particles in free space given by

↔

P =
↔

P kin +
↔

P vir =
1

V

N∑
i=1

(
mi

→̇
r i

→̇
r i +

→

f i
→
r i

)
(15.10)

The scalar pressure is 1/3 of its trace, P = tr(
↔

P )/3.4

For models with rigid bonds (or rigid models described by sites and rigid bonds, see Sect. 11.3)
it is given by

↔

P =
↔

P kin +
↔

P vir =
↔

P kin +
↔

P constr +
↔

P config, (15.11)

where
↔

P constr =
1

V

∑
a,b

→

f
constr

ab

→
rab, (15.12)

the sum is over all bonds a–b and
→

f
constr

ab is the constrained force (fictitious force needed to
maintain the bond, available readily in the MD code). The configuration al part in periodic
b.c. has to be also expressed by pair interactions,

↔

P config =
1

V

N∑
i<j

→

f ij

→
r ij. (15.13)

For long-range forces the sums must run also over all periodic images. Formulas for the Ewald
summation are summarized in excellent paper [33]; for the r-space cutoff less than half the

minimum box size the the real-space part of
↔

P config is evaluated in the same way as (15.13).

Notes:

• For atomic systems without rigid bonds (constraints) in the NV T ensemble it holds

↔

P kin =
NkBT

V

↔

1 (15.14)

The atom-based kinetic part of the pressure tensor for anisotropic systems is no longer
isotropic. Full pressure tensor must be therefore used (typical example is surface tension
of rigid models of water).

• NEW in V2.6m:
If some integrals of motion are preserved (e.g., 3 components of the momentum in the
periodic b.c. with the Nosé–Hoover thermostat), then the kinetic part of (15.10) is subject
to finite-size errors of the order of ∝ 1/N . More accurate results, especially in dilute fluid

(see Fig. 15.1), are obtained if
↔

P kin is multiplied by a factor which restores the equation
for the kinetic temperature,

↔

P kin =
Nf0

Nf

1

V

∑
i

mi
→̇
r i

→̇
r i (15.15)

3Sometimes the stress tensor is defined as minus the pressure tensor.
4In versions 2.4a–2.4l the pressure tensor was defined with factor 1/3 so that P = tr(

↔

P ).



15: Special versions [Contents] – [Index] 220

0 0.005 0.01

1/N

−2

−1

0

P
/M

P
a

NH+CoM sampling

Berendsen not corrected

Berendsen corrected

NH not corrected

Monte Carlo

NH corrected

crystal

0 0.005 0.01

1/N

36

36.5

37

37.5

38

P
/M

P
a

NH+CoM sampling

Berendsen not corrected

NH not corrected

Berendsen corrected

Monte Carlo

NH corrected

fluid

0 0.01 0.02

1/N

5.8

5.9

6

6.1

6.2

6.3

P
/M

P
a

NH+CoM sampling

Berendsen not corrected

NH not corrected

Berendsen corrected

Monte Carlo

NH corrected

gas

Figure 15.1: Pressure as a function of the number of atoms for Lennard-Jones argon (ϵ/kB =
119.8K, σ = 3.405 Å, MACSIMUS style cutoff 7 Å) in the NV T ensemble. From left: fcc crystal
(T = 60K, ρ = 1.62 g/cm3), fluid (T = 160K, ρ = 1g/m3), gas (T = 140K, ρ = 0.4 g/m3).
Results with the Nosé–Hoover and Berendsen thermostats are shown both with and without
the kinetic pressure correction (for code debugging purposes, these are obtained by independent
runs, although the correction is a simple term kBT/V ). The NH+CoM sampling item uses the
Langevin thermostat of the center of mass, τ = 3 ps, see 9.2.5. The error bars are comparable
to the symbol sizes.
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where Nf0 is the number of degrees of freedom not taking into account conserved
quantities but taking into account mechanical constraints (bonds: Nf0 = 3N −
constraints), Nf is the effective number of degrees of freedom (with all conserved
quantities subtracted); Nf is used in the formula for the kinetic temperature, Tkin. For
atomic systems without constraints and with canonical thermostats, (15.14) is exactly
reproduced; it is not for the Berendsen thermostat where a (smaller) residual finite-size
error∝ 1/N is inevitable. This correction should not be used with the true MTK barostat.
In addition, it should not be used in the slab geometry because of thermodynamic
inconsistency ∝ 1/N present: Test simulations show that the Pzz component of pressure
(i.e., the saturated pressure over slab) converges faster with increasing N without this
correction. See also variable corr.

• The diagonal components can be independently calculated by appropriate scaling of the
box, see variable rescale; the typical application is the surface tension in the slab
geometry, see Sect. 15.8. In the case of systems with constrained bonds, scaling based on
center-of-mass has to be used. To obtain the full tensor, the corresponding kinetic part
calculated from the centers of mass must be added. The result is in the thermodynamic
limit (not numerically for every configuration) the same.

• Direct calculation of the center-of-mass-based configurational part of the pressure tensor
is not supported (in V2.4a).

All pressure tensor components are given in Pa. Symbols used in statistic analysis are:

• Pvir =
↔

P vir =
↔

P constr +
↔

P config

• Pkin =
↔

P kin (atom-based)

• PKin = molecular (center-of-mass) based kinetic pressure tensor

• Pvirc = tr(
↔

P constr)/3

• Pvir pair = tr(
↔

P vir)/3
(without k-space contribution if Ewald summation is used)

• Pvir xy-zz = (Pvir,xx + Pvir,yy − 2Pvir,zz)/3
(good for surface tension of models without rigid bonds)

• Pt = (Pxx + Pyy − 2Pzz)/3
(good for surface tension of all models, needs PRESSURETENSOR=3)

To record components of the pressure tensor in the .cp files, their codes must be given in the
.cpi-file (see Sect. 9.2.3. The four-letter codes are Pvxx, Pvxy, etc., for the site-based virial
parts, Pkxx etc. for the site-based kinetic part, and PKxx for the center-of-mass based kinetic
part, and finally Ptxx, Ptyy, Ptzz, Ptxy,Ptyz, Ptzx for the full pressure tensor components.
All these values are without cutoff corrections and the units are Pa.
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15.7.1 Pressure tensor for Drude oscillators

Let
→
r
′
i be positions of the Drude charges and shortly r = {ri}Ni=1, r

′ = {r′i}Ni=1. Let us denote
U ′ = U ′(r, r′) the potential energy as a function of all point charges (normal and Drude). We
are interested in the self-consistent potential energy,

U(r) = min
r′

[
U ′(r, r′) +

∑
i

Ki

2
(
→
r
′
i −

→
r i)

2

]
(15.16)

The minimum condition is equivalent to

∂U ′

∂r′i
+Ki(r

′
i − ri) = 0 (15.17)

Let us calculate U(r + dr):

U(r + dr) = min
r′′

[
U ′(r + dr, r′′) +

∑
i

Ki

2
(
→
r
′′
i −

→
r i − d

→
r i)

2

]
(15.18)

Here r′′ = r′ + dr′, where dr′ is of the same order as dr. However, the minimum is quadratic
in r′ and therefore replacing r′′ ≈ r′ in (15.18) will lead to a second order error which can be
neglected. From the Taylor expansion of U(r + dr) (or simply taking ∂/∂

→
r i of [. . .] in (15.16))

we get
∂U

∂
→
r i

=
∂U ′

∂
→
r i

−Ki(
→
r
′
i −

→
r i) =

∂U ′

∂
→
r i

+
∂U ′

∂
→
r
′
i

(15.19)

The computer code (r- and k- space Ewald sums for both real and Drude charges) calculates
the following components of the pressure tensor

1

V

∑
i

(
→
r i

→

f i +
→
r
′
i

→

f
′
i

)
= − 1

V

∑
i

(
→
r i
∂U ′

∂
→
r i

+
→
r
′
i

∂U ′

∂
→
r
′
i

)
(15.20)

However, from (15.19) it follows that it should be

− 1

V

∑
i

→
r i
∂U

∂
→
r i

= − 1

V

∑
i

(
→
r i
∂U ′

∂
→
r i

+
→
r i
∂U ′

∂
→
r
′
i

)
(15.21)

Therefore, the following correction should be added

1

V

∑
i

(
→
r
′
i −

→
r i)

∂U ′

∂
→
r i

= − 1

V

∑
i

(
→
r
′
i −

→
r i)

→

f
′
i (15.22)

where
→

f
′
i is the force acting on the Drude charge. Since in our model the force on the Drude

charge is entirely electrostatic, the trace of the above term (contribution to the virial pressure),
the above term is −(2/V )Eself .
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15.8 Slab geometry and surface tension

To enable the z-density profile and surface tension calculations, SLAB must be #defined in
the respective simopt.h, or selected while running configure.sh. In addition, slab.mode=1
and slab.grid must be set to see the table of results with and without cutoff corrections. Slab
centering (see slab.sp) is recommended.

For slab cutoff corrections, see Sect. 31.

To prepare a slab, define first the box; Lx = Ly and Lz = 2.5Lx or Lz = 3Lx is recommended.
Example of data in the def-file:

x=30

L[0]=x

L[1]=x

L[2]=x*3

Note that the efficiency of Ewald summation decreases somehow for a too elongated slab even
if the linked-cell list method is used; cutoff electrostatics is not affected in this case.

15.8.1 Create a slab configuration

1. Use init="slab" with tau.T=0.1 or so. Simple, not good for bigger molecules.

2. Prepare a periodic box first, then enlarge L[2] and load again with load.L[2]=1. You
may use variable shift[2] to shift the configuration.

3. Use variables slab.n, slab.Kz, slab.z0, etc. These artificial forces should be turned off
for measurement. Example:

n=300

N[0]=n

slab.n[0]=n ! will affect n molecules

slab.Kz[0]=10 ! moderate force

slab.z0[0]=x*0.6 ! slab width=1.2x

4. Edit a configuration using utilities plbbox and/or plbstack, then load it using
init="plb".

15.8.2 Slab simulation modes

Strictly periodic mode (default) is recommended for a liquid with a very dilute vapor or
two layers of liquids. The system is fully periodic even in the the z-direction. If the the
vapor pressure is not negligible, molecules moving in the z-direction cross the boundary
and cause that the center of the slab moves slightly in the opposite direction. The z-
density profile is then “smoothed out” and the cutoff corrections may be imprecise, too.
These errors are acceptable if only a few molecules cross the z-boundary in this way. It is
not recommended to use drift=4+8+16+32 (recenter slab and all drifts after every step)
and el.epsinf=-1 (slab-dipole correction) unless very few molecules evaporate.
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Periodic mode with centered measuring (NEW in 2.6c) The autocenter feature (see
slab.sp) now shifts the slab automatically before measuring the z-profiles (not
physically—the trajectory is not affected). Recommended for high vapor pres-
sures/solubilities etc. May not be good for polymers (the centering algorithm ts molecule-
based).

Almost periodic mode is recommended for liquid with moderately dense vapor. In addition,
a very small harmonic force keeping the slab in the center is added (see center.cmn,

center.cmK[2]). Particles can still cross the boundary (there is a jump in forces there,
but very small) but the slab cannot drift too much. The force constant should be set so
that the period of harmonic motion is larger than the evaporation rate; then this method
is unsuitable for very low evaporation rates. Incompatible with drift=4+32.

Z-aperiodic mode is recommended for a slab with dense vapor. It employs two “caps”
preventing particles to move in the z-directions. Example:

z=x*3

n=300

N[0]=n

slab.n[0]=n ! will affect n molecules

slab.Kz[0]=300 ! large force

slab.z0[0]=z/2-3 ! 3 A thick repulsive wall

drift=4+8+16+32 ! recenter slab and all drifts after every step

el.epsinf=-1 ! slab-dipole correction (Ewald only)

15.8.3 Surface tension via pressure tensor

The recommended method, #define PRESSURETENSOR=35 and #define SLAB is required. The
surface tension is calculated directly from

γ = −3

4
LzPt, where Pt =

Pxx + Pyy − 2Pzz

3
. (15.23)

Variable Pt is available under name Pt [Pa]; for models with constraints (incl. rigid bodies),
do not use variable Pvir xy-zz [Pa] because it does not contain the virial of constraint forces.
For other info see above and see Sect. 15.7. The saturated pressure is given (without cutoff
correction) by component Pzz = Ptzz. (Note: in versions 2.4a–2.4l by three times Ptzz.) Do
not forget slab.mode=1 and slab.grid.

15.8.4 Surface tension via virtual area change

This method [34] is based on the formula

γ =

〈(
δU

δA

)
V

〉
(15.24)

5For models without constaints (monoatomic, with vibrating bonds), the kinetic part is isotropic, therefore,
PRESSURETENSOR=1 is enough: use “Pvir xy-zz” in the output data for the calculations.
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where A = 2LxLy and the derivative is interpreted as scaling of x and y coordinates and
simultaneous contra-scaling of z so that the volume is the same. For technical reasons, this is
implemented as: (

δU

δA

)
V

= −3

4
Lz(pvir + pcutoff correction)

pvir = −U(+dV)− U(−dV)

2dVV
where

U(d) = U(qx, qy, z/q2), q = exp(d/3)

This method is turned on by slab.mode&2; dV must be also set. Example of surface tension
measurements:

dV=1e-3 ! step for numerical derivative; for water and 40Ax40A

! box, the systematic error in eta is 1e-5 N/m

slab.mode=3 ! 1=calculate corrections

! 2=use shape scaling V=const

! (default=all coordinates scaled q-times)

Notes:

• This method is useful to verify (the accuracy of) the pressure tensor method.

• rescale="xyzCM" (molecule-based rescaling) is the default; use rescale=0 for atom-
based rescaling.

• Internally, slab.mode&2 causes that rescale&1024 is set; this flag then selects the the
virtual area method.

15.8.5 Surface tension via virial pressure

The fastest route to the surface tension of liquids with negligible vapor pressure is via the
virial of force in the slab geometry. PRESSURETENSOR=3 need not be #defined and the
code is a bit faster (e.g., using the virial theorem for Ewald summation). Surface tension is

γ = −3

4
pLz (15.25)

or more precisely with correction to vapor pressure ps:

γ = −3

4
(p+ ps)Lz (15.26)

where ps can be estimated from the density (use density profile) and the ideal gas EOS. The
value of γ = gamma printed contains cutoff correction of LJ terms calculated by integration
from the current density profile.

The following variables (structures) apply for slab calculations, see Sect. 9.2.5: center,
densprof, el.epsinf, drift. Do not forget to set slab.mode=1 and slab.grid and
with Ewald el.epsinf=-1, check drift. Note that with cutoff electrostatics the virial of
electrostatic forces is not equal to the electrostatic energy. Consequently, better values of the
pressure and surface tension require the virtual volume change method, see below.
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15.8.6 Surface tension via virtual volume change

For completeness, this method is equivalent to the above method, but it uses the virtual
volume change to calculate the virial pressure. This makes sense with cutoff electrostatics
(COULOMB>=0), where the directly calculated virial (replacing the virial of electrostatic force by
the electrostatic energy) gives usually worse results. But there is no efficiency gain because
scaling is used—the virtual area change is a better choice. To select this method, set dV and
an isotropic rescale.

15.9 Slab geometry and vapor–liquid equilibrium

In the slab geometry, the saturated vapor pressure is given by the zz-component of the pressure
tensor, Pzz. This quantity is a result of cancellation of large components and determining of
low pressures is difficult. The following issues must be considered:

1. Do not use the homogeneous Lennard-Jones correction.

2. Do not use (thermodynamically inconsistent) kinetic correction; both points 1. and 2. are
set by corr=0.

3. The Fourier transform slab cutoff correction is recommended, see Sect. 31.1.

4. Use short enough timestep, especially for models with constrained bonds (the virial
of constrained forces is one of the components). Which VERLET version is the most
accurate is not known.

5. For charged systems, use high enough Ewald precision. It can be checked by changing
el.epsk,el.epsr; e.g., for one selected configuration run cook with option -w0 to
prevent writing the configuration, use noint=1 no=1 in the data, and try different
el.epsk,el.epsr.

6. Pzz includes the virial of attraction of dipoles of both slabs; therefore, the vapor pressure
reported is lower (even negative). For the theory, see Sect. ??.

(a) For dipolar systems (without free charges), you can use the Berkowitz correction for
the energy and forces directly: el.corr="z".

(b) For systems with free charges (molten salts), the Yeh–Berkowitz correction leads to
jumps in forces and cannot be used. The following a posteriori correction for the
attraction of the z-periodic “sandwich” of slabs is

P corrected
zz = Pzz +∆corrPzz (15.27)

where

∆corrPzz =
Var(Mz)

2ϵ0V 2
(SI)

= 2π
Var(Mz)

V 2
(CGS)

= 2π
Var(Mz/p.u.)

(V/Å
3
)2

· 13806490Pa (prog.units)
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where the last version is directly applicable: use staprt -nMz SIMNAME.sta to get
the variance (in p.u.) and the volume (in Å3) in SIMNAME.prt.

The values of these corrections are printed to simname.prt, too.

For dipolar systems, both (a) and (b) can be used; it is not clear which approach is
better (more accurate).

(c) If el.corr=12="zCM" (for “z-Corrected-Measurement”) is given in the data, the
above a posteriori correction is transparently added to Pzz (as well as total pressure
and potential energy). The trajectory is identical to el.corr=0 – forces are not
corrected by Yeh–Berkowitz).

(d) If el.corr=0, the above corrections in pressure are printed but not included in the
final pressure tensor.

15.10 Interfacial Gibbs energy by the cleaving method

15.10.1 The method

The implemented method is a modification of the method of [35]. It is turned on by specifying
#define SLAB 2 in the simopt.h file and recompiling. Also PRESSURETENSOR=3 is needed (not
necessary in NV T , but NV T is not suitable anyway – see below).

The Fourier transform slab cutoff correction are recommended, see Sect. 31.1.

Instead of two walls, we use the cleaving potential (a “knife”) in the z-direction; for N
interaction sites:

Φ(σ) =
N∑
i

Kσ bell
(
zi − z0
σ

)
(15.28)

where bell(x) is a bell-like function

bell(x) =


0, |x| > 1,

(1− |x|)2/2, 1/2 < |x| < 1,

1/4− x2/2, |x| < 1/2.

bell′(x) =


0, |x| > 1,

x− sign(x), 1/2 < |x| < 1,

−x, |x| < 1/2.

(15.29)
If σ > Lz/2, the nearest-image conditions apply (there is only one term). This is not
recommended because of possible artifacts.

Parameter σ is the half-width of the “knife” whileK/2 is the maximum steepness. The potential
maximum is Kσ/4. The figure shows the function and its derivatives for one particle.

The force on atom i in the z-direction is

fi = −∂Φ
∂zi

= −K bell′
(
zi − z0
σ

)
(15.30)

and hence the contribution to the virial of force (and the Pzz-component of the pressure tensor)
is

Wi = (zi − z0)fi. (15.31)

From the semiclassical partition function in the isothermal-isobaric ensemble6,

ZNPT =
βP

N !Λ3N

∫
dV

∫
exp(−βU − βΦ− βPV ) (15.32)

6for a pure substance – an extension to mixtures is straightforward
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Figure 15.3: The cleaving potential (“knife”), force f , and the derivative over σ

where β = 1/kBT and Λ = h/
√
2πmkBT is the de Broglie thermal wavelength, we get the

Gibbs energy
G(σ) = −kBT lnZNPT . (15.33)

It is a function of knife width σ, thus by direct differentiation of (15.32) we get(
∂G

∂σ

)
p,T

=

〈
∂Φ

∂σ

〉
NPT

, (15.34)

where

∂Φ

∂σ
=

N∑
i

K
[
bell

(
zi − z0
σ

)
− zi − z0

σ
bell′

(
zi − z0
σ

)]
=

1

σ

(
Φ +

N∑
i

Wi

)
. (15.35)

The interfacial Gibbs energy is obtained by integration over dσ.

The program stores (in the convergence profile) and analyses (calculates averages and errors)
quantity Wcleave normalized by the surface area LxLy and converted to Pa7,

Wcleave(σ) =
1

nLxLy

∂Φ

∂σ
. (15.36)

where n is the number of cleaving walls (n = cleave.n). In other words, Wcleave(σ)dσ is the
element of reversible work per surface area needed to increase σ by dσ, i.e., a pressure; it thus
includes the external z-pressure.

The surface cohesion or adhesion energy per surface area is

Wcoh,adh =
∫ ∞

0
[Wcleave(σ)− ⟨Pzz⟩] dσ, (15.37)

where normally a z-direction barostat is used, thus, ⟨Pzz⟩ = P (simulation parameter, in Pa).
Do not forget to convert σ in the integral from Å to m.

7Internally, the program units are used (K/Å3, or more precisely kK/Å3), which the same as the pressure
unit, 1 p.u. = 13806485.2 Pa (Codata 2014), see sim/units.h
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For liquid, the cohesion energy equals twice the surface tension, Wcoh = 2γl, where γl can be
obtained easily (see Sect. 15.8); note, however, that the current version of the cleaving method
does not include the cutoff corrections.

The solid (crystal) surface energy and interfacial l/s energy are, respectively,

γl/s = γl + γs −Wadh,l/s

γs =
1

2
Wcoh,s/s

15.10.2 User interface

The following quantities are available:

cleave.sigma [default=0] Parameter σ, in Å. Typically should run from zero to several Å in
steps by 0.01–0.1 Å.

cleave.K [0] Parameter K, in K/Å. Typical values are 10000–100000.

cleave.n [0] Number of cleaving walls, max. 2. Both walls have the same K and σ, but differ
in z0. cleave.n is intended for adhesion energy calculations.

cleave.init [0] If bit 20 is set (cleave.init=1) then the cleaving wall positions given below
are used, otherwise the previous versions are loaded. To be used for simulation start.
This bit is then unset so that next time the wall positions are not changed (similarly to
init = continue with simulation).
If bit 21 is set (cleave.init=2) then the cleaving walls (for (cleave.n=2) are adjusted
along with Lz according to the the z-components of the pressure tensor using the same
tau.P and bulkmodulus; use rescale="ZCM" or similar.

cleave.z0 [0] The initial position (z0) of the first wall, in the units of z-box size Lz.

cleave.z1 [0] The initial position of the second wall (for cleave.n=2).

If two walls are used, cleave.n=2, the Andersen (or center-of-mass Andersen) thermostat
should be used to avoid mutual “convection” in both compartments.

A barostat (tested with the Berendsen barostat) should be used in the z-direction (e.g.,
rescale="ZCM"); thus, PRESSURETENSOR=3 configured is required. For cleave.n=2 also the
wall positions are barostatted to maintain the same pressure in both compartments. Note that
the wall positions are stored in the cfg file and used unless cleave.init is set.

The slab cutoff correction (see slab.K) is recommended with cleaving, see Sect. 31.1.
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15.11 Simulations at walls

Setting wall.n in the SLAB version turns on one or two walls or gravity. The atom–wall
potential is the Lennard-Jones integrated (9-3) potential).

The simulation can be combined with the SLIT version (system is not periodic in the z-
direction). Both FREEBC and cutoff electrostatics (see Sect. 15.3) versions are available,
the latter is periodic in x and y directions only and there is no problem with one (bottom)
wall and large z. The Ewald k-space is always z-periodic. The SLIT version is compatible with
LINKCELL; however, z must not exceed Lz.

Not tested recently: The GOLD version performs simulations at vicinity of metal (ideal
conductor) surface.It is (since version 2.0e) treated as sub-version of WALL. The surface is
located at z = 0, bulk metal at z < 0, studied configuration at z > 0. If wall.n=2, then
another Lennard-Jones (non-conducting) wall is added at z = L.

Not tested recently: The WIDOM code differs for a slab and provides a z-dependent profile
of the chemical potential. WARNING: no cutoff corrections included for WIDOM + SLAB.

15.11.1 Atom–surface force field

The atom–surface interaction is based on averaged (integrated) Lennard-Jones, 11.4, of the
interaction between a wall atom and a given atom. Let ρ = wall.rho be the mass density of
(smoothly distributed) wall atoms. Then the effective wall-atom potential is

E = 4ϵρσ3

[
π

45

(
σ

z

)9

− π

6

(
σ

z

)3
]

(15.38)

The atom–(wall atom) Lennard-Jones parameters are obtained from the position and depth of
the minimum of the respective potential. For Lennard-Jones potentials the original parameters
are re-derived, for exp-6-type potentials (version “buck” and “busing”), the equivalent LJ
parameters are thus obtained.

The wall atom is the the last atom in the atom types. This can be changed by parameters
wall.LJ[i].sig and wall.LJ[i].neps.

Repulsive walls (for wall.n>0) have the 1/r3 term omitted.

15.11.2 Atom-metal force field

WARNING: Not tested recently!

The electrostatic forces of a charge with a conducting wall (gold) are obtained by the method
of “inversion”:

(+)

(+)

/ configuration

(-)

(-)

------------------------

(+)
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(+)

\ mirror image with opposite charges

(-)

(-)

The potential energy:

U =
∑
i<j

qiqj

(
1

|ri − rj|
− 1

|r∗i − rj|

)
− 1

2

∑
i

q2i
|r∗i − rj|

, (15.39)

where ri = (xi, yi, zi) and the mirror image is r∗i = (xi, yi,−zi). In the cutoff electrostatics
version all the 1/r terms are modified (see Sect. 15.3).

(To derive this formula, calculate the electrostatic energy of the ‘double’ system with reflected
charged. You will get 2U. Use |r∗i − rj| = |ri − r∗j |, |ri − rj| = |r∗i − r∗j | to simplify.) Note also
that |r∗i − ri| = 2z.

Implementation:

Inside all site–site functions, the Coulomb term is replaced by Coulomb+inverted Coulomb.
Module interpot.c is replaced by gold.c, with the same header file interpot.h. Boundary
conditions macros in intermac.h are updated to treat periodic b.c. in x, y only and extra
support for inversion is added. The SUM i part (along with LJ, see below) is in force.c,
function goldforces().

CAVEAT: optimized water potentials not (yet) implemented, gold must be run with option
-x.

15.11.3 Using WALL and GOLD versions

Programs wall/gold derive rho from real mass density wall.rho in kg/m3 which is available
in the data (the default wall.rho=19320 corresponds to gold). The Lennard-Jones parameters
of the wall material must be listed as the LAST atom in table Lennard-Jones (or tbale of given
force field) in the system ble-file and at the same time it MUST NOT appear as normal atom
in molecules. This can be accomplished by putting it the last position when using blend and
specifying N[LASTINDEX]=0 or blend option -n0, e.g.

blend MOLECULE(s) -n0 au

where au.che is just

gold atom

MAU ! for charmm21.par

AU ! for charmm22.par or GROMOS (to be implemented)

WARNING: this requires that the correct data for gold are present in the parameter set
(charmm21.par)! The current value is

! alpha EMIN Rmin

! [A^3] (kcal/mol) (A)

MAU 1 -0.039 3.293 ! UFF -- JK
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based on UFF [J. Am. Chem. Soc. 114,10024 (1992)]. The value for alpha (used in the
combining rule) is just guess. We need better data from literature, and/or adjust this for given
task. This value affects the energy of adsorption.

NOT TESTED: interaction with blend -n-1

15.11.4 Wall versions and integrals of motion

Minor versions:

FREEBC free b.c. in x, y, and z > 0

NIBC nearest image periodic b.c. in x, y, free in z > 0 (NOT TESTED)

Cutoff electrostatics periodic b.c. in x, y, free in z > 0

Ewald Ewald summation not supported

Integrals of motion:

x,y periodic and FREEBC: momentum in x and y is conserved and is periodically reset to
zero, z-momentum is unchanged; center-of-mass is adjusted to (x, y) = (0, 0)

FREEBC: angular momentum in z-direction is conserved and is periodically reset to zero, x, y
are unchanged

Degrees of freedom to subtract for conserving quantities (see siminit.c):

• GOLD + FREEBC, no central force (option -o0): 3

• GOLD + FREEBC, central force (option -o#): 1

• GOLD + periodic: 2

• Fixed atoms (option -k) shrinks this to 0 (NOT GENERALLY CORRECT).

15.11.5 Initial configuration

Initializer:

• only init=3 available, both with and without config option

• config (= option -n-1 in blend): the configuration is shifted in the z-direction so that the
atom with minimum z coordinate is wall.minz from the surface (wall.minz is available in
the data, default=3). wall.minz<=0 turns off this function. Suitable for a ‘configuration’
prepared by blend.

• standard (-n-1 not used): when initializing by ‘random shooting’ condition, min z >

wall.minz is satisfied

• CAVEAT: MC not implemented
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15.11.6 Wall visualization and more

Option -\number was added to show to show the surface as number*number mesh. Version
-\number\ shows a slit pore, negative argument uses wall made of atoms. Note that \ should
be protected from the shell by doubling. The size is derived from the size of the system (if no
box size is specified either in the plb-file or by option -l). Example:

molcfg MOLNAME1 [MOLNAME2 ...] SIMNAME

show -\\5 -I% SIMNAME

Full example (OPTIONS ARE OBSOLETE):

blend -o test -p ala -h hoh au

molcfg ala hoh test

goldcut test -y-1 -q-100 -x

Bugs/Plans:

• Unify interpot.c and gold.c into one module???

• POLAR version in some cases unnecessarily repeats calculation of sqrt()

WARNING: LJcutoff<0 means that the effective LJ cutoff is —LJcutoff—*van der Waals
diameter (not LJ sigma)

BUG to fix: some extra terms proportional to the shift of the cut-smoothed-and-shifted
electrostatic potential are present (in functions XQQ, XQQM, and *QQ14). This affects internal
energy and pressure, but not trajectory. Not fixed (yet) for gold!!!

15.12 Anchor sites and axes and measure forces

The ANCHOR version allows selected atoms or the center-of-mass to be fixed and at the same
time to measure forces and torques acting on them. Run time option -k-# defining the output
(bits of #: 1=statistics, 2=convergence profile, 4=ASCII file simname.anc), must be used. Cf.
version with harmonic springs, see Sect. 15.1, using positive option -k#. The input data are in
file simname.fix:

site MOLECULE SITE X Y Z # keep site SITE of MOLECULE at (X,Y,Z)

# max 1 site per molecule allowed

# SITE must not be a dependant

cm MOLECULE X Y Z * # keep center-of-mass of MOLECULE at (X,Y,Z)

CM X Y Z * # keep center-of-mass of all not-anchored molecules

inert MOLECULE X Y Z # keep principal axis parallel to direction (X,Y,Z)

axis MOLECULE SITE X Y Z # keep vector (center-of-mass,SITE)

# parallel to (X,Y,Z)

pair MOLECULE SITE1 SITE2 X Y Z

# keep vector SITE1-->SITE2 parallel to (X,Y,Z)

triple MOLECULE SITE1 SITE2 SITE3 X Y Z

# keep plane given by (SITE1,SITE2,SITE3)
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# perpendicular to (X,Y,Z)

group MOLECULE NS SITE_1 ... SITE_NS X Y Z

# keep center-of-mass of given group

# groups may repeat and even overlap, but no

# check of mechanical inconsistency is made

# measurements only (no constraining), of center-of-mass:

r MOLECULE # print position of MOLECULE

v MOLECULE # print velocity of MOLECULE

x MOLECULE # print acceleration of MOLECULE

force MOLECULE # measure force to (center-of-mass of) MOLECULE

moment MOLECULE # measure torque to MOLECULE (center-of-mass based)

where MOLECULE is the molecule number (1st molecule has n=0), SITE is the site number. X Y

Z is the position or unnormalized direction to be fixed; if * is given, negative positions are not
anchored. The keywords can be abbreviated to 1 letter. Line beginning with non-letter (e.g.,
space) is treated as comment and ignored, i.e., the keywords must start from column 0.

The last two commands, force and moment, measure the force and the moment of force (torque),
respectively, acting to the given molecule. Nothing is constrained. Both quantities are related
to the center-of-mass. These measurements are based on atom forces. All other commands
constrain some quantity. At the some time, the constraint force is measured. All these forces
are (in SI units) printed in file simname.anc with a self-explaining header.

Commands site and cm cause the constraint for position to be satisfied. cm is implemented
after the Shake iteration because the whole molecule is is shifted to satisfy the constraint; at the
same time, the constraint force is measured. site is implemented within the Shake iteration.

Commands inert, axis, pair, triple, cause the molecule to rotated around the center-of-
mass to satisfy the constraint; this is exclusive with site option, but can be combined with
cm. It is implemented after Shake because the center-of-mass is preserved.

If both force and cm are given, both the force on the center-of-mass and the constraint force
(on the center-of-mass) are printed. The constraint equals minus the force.

If both moment and either of inert, axis, pair, triple are specified for a rigid molecule,
the moment with subtracted projection to the given axis equals minus the constraint force
with precision proportional to h^2. If the molecule is not rigid, both quantities differ, but in
mechanically well-defined systems (plane defined by atoms far from each other, the principle
moments of inertia differing sufficiently) the difference consists of small and fast oscillations.

Example:

s 0 1 1 1 1

c 1 5 5 5

t 1 0 1 2 1 1 0

Site 1 of molecule 0 is (1,1,1). Center of mass of molecule 1 is (5,5,5). Plane given by sites
0,1,2 of molecule 1 is perpendicular to (1,1,0).

In the input data, drift=0 must be specified and omegac<1 is recommended. After these
coordinates have changed, drmax should be set to a small negative value. Suggested value is
drmax=-0.03, but the final temperature will be too low and equilibration with larger |drmax| or
none must follow. If init=3 and option -k-KEY are combined, the initial configuration satisfies
these constraints and setting drmax is not needed (does not apply for group constraints).
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Caveats:

• Dependants are not allowed as SITEs.

• Variable conserved and drift must be specified by user – the automatic setup is not
implemented.

• Some combinations of constraints are illegal even if there is no apparent reason for it.

• Implemented for one version of Shake (SHAKE=1) only – check simopt.h

• Constraining axes for flexible molecules is not a well-defined task. Use with caution.

• Note also that rigid molecules generated by blend with the dep-files species.dep do not
preserve the inertia tensor.

• If init=3 is used, the generated configuration satisfies the positional constraints, but not
the axes. Equilibrating with drmax must follow.

• The above point, or if the constraints are changed (with drmax), flexible molecules may
adopt fast internal vibrations which (see see Sect. 12.2) are only weakly coupled to the
rest. Using the Andersen thermostat may help; in case of molecules with rigid bonds,
this is incorrect and can only be used temporarily.

• Inconsistent group constraints may lead to integrator crash or infinite SHAKE loop.

15.13 Analyze pair energies

Special cook version MARK:

• calculates pair energies between groups of atoms

• one group is the zeroth-group, there are NG (NG<254) other groups

• energy (in vacuum) of n-th group vs. zeroth-group is calculated and recorded in CP-file
(note:1st 2 columns have bad heading)

Source of data:

• if option -r: files simname.1, simname.2, ..., simname.no

• if not option -r: playback file simname.plb, frames 1..no

Compiling:

• #define MARK needed in simopt.h

• link with module mark (mark.h, mark.c)

Bug: inefficient, calculates also pairs that are not needed

Usage:
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• prepare file simname.mkr (option -r > 0) or simname.mkp (option -r ≤ 0) in the
following format (ID is group ID derived from 1st atom ID):

NG

0 ID GROUP

1 ID GROUP

2 ID GROUP

...

For example (abridged):

10

0 ASN64aC 0

1 ASN64aCA 0

2 ASN64aCB 0

...

633 PRO10cCG 10

634 PRO10cN 10

635 PRO10cOC1 10

636 PRO10cOC2 10

NOTE: in the playback version (no option -r), only those atoms actually stored in the
playback may be listed.

Option -r summary:

-r0 reads playback simname.plb, uses simname.mkp

-r1 reads configs simname.1 ..., uses simname.mkr

-r-1 reads configs simname.1 ..., uses simname.mkp

NOTES (added 3/2000):

• IDs in the mkp,mkr files are used as info only, they do not select anything nor are checked

• The N[] in the def-file used must conform the original def-file.

• Atom not to be included in any group simply have the group field blank (e.g., “636
PRO10cOC2 ”)

• simname.mkp and simname.mkr files may be shorter (i.e., not listing all atoms). Not listed
atoms are simply ignored. Only if the actual plb file is shorter, a warning is printed.

• Typical usage is for protein in water. For energies without water (not solvated), mkr and
mkp files can be created from the protein mol-files (water is ignored). To include water,
use a mol-file generated by molcfg.
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15.14 Viscosity by shear stress

Two methods for viscosity determination are supported. The equilibrium method is based on
the Green–Kubo, See Sect. 14.5. It is generally more accurate.

The NEMD simulation requires compile-time switch #define SHEAR (or selecting it in
configure.sh). It is performed in a rectangular box of sizes Lx × Ly × Lz, where Lx = Ly.
The recommended Lz = 3Lx. The external acceleration acting on particles in the direction
perpendicular to the z-axis is cos-modulated

→̈
r i = Cf

→
n cos

2πzi
Lz

. (15.40)

Where unit vector
→
n is perpendicular to ẑ; we use

→
n = (1, 1, 0)/

√
2. Then

fa,i = namiCf cos
2πzi
Lz

, a ∈ {x, y}. (15.41)

We also add a small z-force to all atoms so that the sum of forces over all atoms is exactly
zero—normally it slightly deviates because particles are not distributed ideally uniformly.

The Navier-Stokes equation for a steady Newtonian flow of an incompressible fluid reads as

η∇2→v +
→

f = 0, (15.42)

where
→

f is the (smoothed) external force per unit volume,

→

f =
→
nρCf cos

2πz

Lz

(15.43)

and ρ =
∑

imi/V is the mass density. The solution is a steady flow proportional to the applied
force,

→
v = −→

n
CfρL

2
z

4π2η
cos

2πz

Lz

. (15.44)

To calculate
→
v and its amplitude, we have to go from the continuum description back to the

atoms. Let us define

Sf =
∑
i

→

f i

→
n cos

2πzi
Lz

, Sp =
∑
i

→
v i

→
nmi cos

2πzi
Lz

, (15.45)

The final formula for viscosity then adopts the form

η = ρ
L2
z

4π2

⟨Sf⟩
⟨Sp⟩

. (15.46)

During simulation, also the velocity amplitude

Cv =
Sf

Sp

Cf (15.47)

is monitored (name Cvel) in the convergence profile to check for the steady state.
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NOTE: The code (Shear() in simmeas.c) uses
→
n = (1, 1, 0) and the following

equivalent particular formulas: In order to calculate Cv and consequently η, we
define sums

Sf =
∑
i

fx,i cos
2πzi
Lz

, Sp =
∑
i

(vx,i + vy,i)mi cos
2πzi
Lz

, (15.48)

The final formula for viscosity then adopts the form

η = ρ
L2
z

2π2

⟨Sf⟩
⟨Sp⟩

. (15.49)

During simulation, also the velocity amplitude

Cv =
Sf

Sp

Cf

2
(15.50)

is monitored (name Cvel) in the convergence profile to check for the steady state.

Heating rate is an important control quantity in the simulation. In the steady state flow it is

Ė =
dE

dt
=

1

2

∫
η(∇v)2dV =

V

η

(
CfρLz

4π

)2

. (15.51)

It is useful to express it via expected increase in temperature because it will help us to set up
the thermostat used to remove the heat. The crudest estimate of the isochoric heat capacity
is that of the ideal gas, CV = Nfk/2, where Nf is the number of degrees of freedom of the
simulation box. Then

Cf =

√√√√8π2Ṫ ηNfk

V L2
zρ

2
(15.52)

and we use product shear = Ṫ η as the parameter of the simulation. If the Berendsen (friction)
thermostat is used to remove the friction heat, the following quantity

∆T = Tkin − T = Ṫ τT (15.53)

a rough but still useful measure of the deviation of the system from equilibrium. Namely, the
Berendsen thermostat also uses the ideal gas approximation to relate the correlation time tau.T
to the friction term.

For larger systems it takes some time until a steady velocity profile develops. Relaxation to
this steady state is exponential with the correlation time given by

τv =
ρ

η

(
Lz

2π

)2

. (15.54)

As soon as an estimate of viscosity is know, the recommended strategy to fast finding the
stationary state is to simulate time t = τv ln 2 with doubled parameter χ and half τT .

The shear stress method is activated by the compile-time option #define SHEAR and by data
shear. The value of shear = Ṫ η is given in SI units kgm s−2K = PaK. Typical values are on
the order of 1e9–1e10.

The viscosity value is a ratio of two variables denoted as shear:num and shear:den, see (15.46)
and (15.49) (the factor are already embedded in these variables).

To obtain reliable viscosity estimates, a series of measurements with different values of shear
should be conducted and extrapolated to shear=0. The theoretical dependence at the limit of
shear=0 is a linear dependence of η to shear.
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15.15 Widom and scaled insertion particle method

Required: #define WIDOM in simopt.h or Widom requested in cook/configure.sh.

BUG: The Widom method cannot be used with Ewald (k-sum is ignored).

15.15.1 Pure liquid

The Widom method gives the residual chemical potential, i.e., the absolute chemical potential
per a molecule is

µres = µ− µid, µid = kT ln

(
Λ3N

qinV

)
,

where Λ is the de Broglie wavelength, N the number of molecules, qin the internal partition
function (incl. rotations) at temperature T , and V the box volume. In the Widom method, one
calculates

w = exp(−µres/kBT ) =
1

V

QN+1

QN

(15.55)

either in one step, or as product w = w0w1 . . . wk of the Boltzmann factors of inserting a small
particle (w0) and subsequent stepwise scalings of this particle. The corresponding variable
names in sta- and prt-files are Widom for insertion and XWidom for the particle growth step.

In (15.55), QN is the configurational integral of N indentical particles. Therefore, quantities w
and µres correspond best to number density N = (N + 1/2)/V .

The chemical potential µ∗ of the simulated fluid with repect to ideal gas at standard pressure
p◦ is then

µ∗ = µ− µ◦ = µres + kBT ln

(
NkBT

p◦V

)
, (15.56)

where µ◦ is the chemical potential of ideal gas at T, p◦ (common standard state for gases).

The Widom method (with gradual insertion, see below) can be used to calculate the saturated
vapor pressure, ps, at low temperatures for which the direct vapor/liquid slab method is
inaccurate. To do this, the density ρ0 at an unknown (but low, in practice 0) pressure must
be determined first; e.g., in an NPT simulation or in a series of NV T simulations. Remember
that the the number density for the Widom insertion step (to determine w in one step or w0) is
then rho = ρ0N/(N + 1/2). The number of particles in the grow-steps to determine w1, w2 . . .
is now N1 = N + 1 and then rho = ρ0N/(N + 1/2) = ρ0N1/(N1 − 1/2).

The fugacity in the gas phase is

exp(µ∗/kBT )p
◦ = φsps

where µ is the chemical potential of both phases (the same because of the vapor/liquid
equilibrium) and φs is the fugacity coefficient of the vapor. On comparing with (15.56)

ps =
NkBT

V wφs
,

where for low enough pressures it holds φs = 1.

The methods for truncated argon are compared in Table 15.2. It is seen that small systems
(box 300 particles, slab 1000 particles) are not sufficient because the difference between Pzz is
about 5σ from the Widom value. The results using large N are better 1.5σ (and the difference
is of opposite sign).
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Table 15.2: Test simulations of vapor pressure for truncated argon (ϵ/kB = 119.8K, σ =
3.405 Å, LJcutoff=12) at 75K. Pzz is the directly measured zz-component of the pressure
tensor in the slab geometry, “from N (z)” is calculated from the gas density in the slab geometry
using the virial EOS (with B2), The Widom method (6 steps) is based on the density calculated
in a series of NV T simulations at the approximated target pressure, and ∆p is the estimated
pressure difference due to the difference between the above density and the liquid density at the
slab center. Both the gas and liquid densities were obtained by fitting, see script splitfitz.sh.
The small system results are averaged from h = 2 fs and 4 fs, the large system results are for
h = 4 fs.

system → small large

method ↓ N psat [Pa] N psat [Pa]

slab Pzz 1000 25299(250) 8000 25402(139)

from N (z) 1000 25742(>100) 8000 25600(>33)

Widom 300 26558(80) 2500 25112(142)

∆p 250 20

15.15.2 Henry constant

The Henry constant is defined by

KH = lim
x2→0

(p2/x2),

where p2 is the partial pressure of solute (2) above the solution and x2 its molar fraction in the
solution. In simulation, we virtually insert one particle (N2 = 1) into N1 molecules of solvent;
thus, x2 = 1/(N1 + 1) ≈ 1/N1. We will assume that the solvent has a low vapor pressure so
that it does not change the fugacity of solute and we may use the ideal gas approximation. The
residual chemical potential of solute is

µres,2 = µ2(x2)− µid
2 (V )

In equilibrium:

µ2(x2)
eq.
= µid(V2) = kBT ln

Λ3
2

q2V2

Hence

µres,2 = kBT ln
N2Λ

3
2

q2V2
− kBT ln

N2Λ
3
2

q2V2
= kBT ln

V

V2

where V2 is the volume corresponding to N2 = 1 particle of ideal gas at pressure p2. Further

w = e−βµres,2 =
V2
V

=
N2kBT

p2V
=

kBT

KHx2V
=
kBTN1

KHV
=
kBTN1

KH

where N1 = N1/V is liquid number density. Finally

KH =
N1kBT

w
.

Once again, w may be a product of the initial insertion and Boltzmann factor of particle growth.
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This should be equal the gas abs. chem. pot. of gas at pressure p (assumed to be ideal gas,
Ng and Vg refer to the gas phase)

µ = kBT ln(Λ3Ng/Vg) = kBT ln(Λ3p/kBT )

15.15.3 WALL/SLAB version

WARNING: this version has not been tested recently and may be out of order.

#define WALL or (?) #define SLAB required. In case of gradual insertion. also #define

ANCHOR.

The insertions are performed for a series of z from widom.z0 to widom.z1 by widom.dz and a
histogram of the Boltzmann factors is prinded. See more in the data below.

• The Widom method inserts a molecule to a place with defined z-coordinate with respect
to the reference point as defined in the ble-file (with random rotation added). It is the
CM (center-of-mass) by default if blend has been used (with the default option -y).

• Consequently, in the grow-molecule stages, the partial (scaled) molecule(s) should be
placed at CM, too. To do this, cook* must be compiled with ”anchoring” and run with
option -k0. File SIMNAME.fix must contain the molecule(s) being fixed with keyword
cm, like

cm NUMBER X Y Z

• Equivalently, if the molecule in the blend stage has a selected site as the reference point
(e.g., O for water), use either cook -k0 with SIMNAME.fix containing:

site MOL_NUMBER SITE_NUMBER X Y X

This fixes the site exactly (as a constraint). For fixing the site by a harmonic spring, use
cook -kK (K=force constant) with SIMNAME.fix containing:

SITE X Y Z

CAVEATs: SIMNAME.fix has a different format with -k-KEY and -kK, K > 0. The
former requires -DANCHOR, the latter does not.

• The slab should be centered. For -kK, K > 0, flag drift&4 is OK. For -k-#, either use
whole-slab harmonic force defined by (in input data)

center.cmK[2]=100 ! tau=0.7755*\(M/cmK) [M=tot.mass in g/mol]

drift=0

or use centering of all not anchored molecules (keyword CM).

(If appropriate, use center.cmn for # of molecules; default=all)

• For scaled water, -x must be used to suppress true water detection
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• If the anchored (fixed) atoms are not in place (coordinates in SIMNAME.fix have changed
or -k-# is turned on suddenly), drmax=<negative value> should be used in input data
and then released. The recommended value is drmax=-0.1 In case of problems, use lower
(in abs. value) value, e.g., drmax=-0.03. However, too low drmax may cause too low a
temperature and after drmax=0 is reset, the system must be equilibrated. Never use
drmax in productive runs!

The data are internally recorded by the statistical (statics.c) module (extension .sta) in
variables of names “Widommode z=z” The output is printed to file SIMNAME.wid.

NOTE: The Widom method inserts a virtual molecule into the configuration AFTER the
last step in standard versions. However, in the linked-cell list version BEFORE the last step
(previous linked-list is re-used). Therefore the results of non-linked-cell and linked-cell are not
exactly the same even with the same random seed (option -z) specified. But if you advance the
linked-cell output by 1 timestep, then the Widom results with noint=1 are exactly synchronized
with the non-linked-cell ones.)

BUG: Cutoff corrections are not calculated if SLAB (slab, wall, ..) is active. Final correction
can be added.

WARNING: with slab-centering (drift&4 set), it is generally illegal to have a molecule close to
z=L[2]. The LINKCELL method may then detect coordinates out of range [0,L[2]]. Although
(in the interactive run) it may be sometimes possible to continue, this is not recommended. A
protective potential (see slab.Kz etc.) should be used.

15.15.4 Input data

widom.sp (default=0) Species to be (virtually) inserted (for the number, see the ble file,
keyword species).

widom.n (0) Number of insertions per cycle (WALL version: and per slab)

widom.spreal Species to change in the gradual (scaled-particle-like) insertion. Instead of
virtual insertion of species widom.sp, all molecules of species widom.spreal are changed
into widom.sp. Since all the coordinates are unchanged, the molecules should differ in
partial charges and Lennard-Jones terms only. Note that widom.n does not apply. The
recommended strategy to calculate the chemical potential is to place the species into
a ble-file several times with the extra instances edited by hand to describe the partial
molecules during gradual insertions. If LJ terms are changed, it requires to create copies
of atom types.
See also TEMPLATE.sh and widomres.sh.

widom.mode WALL version switch, use a sum of:

1 also record symmetrized functions (makes sense for wall.rep=0 or wall.rep=3)

2 record ⟨exp(−[Upair + Uwall]/kBT )⟩, leading to real mu

4 record ⟨exp(−Upair/kBT )⟩; useful for monoatomic molecules where the wall potential
is simply added

8 record ⟨exp(−Uwall)/kBT )⟩ – the angle averaged Boltzmann factor of the molecule-
wall potential
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widom.z0

widom.z1 Minimum and maximum z for which (in the wall/slab geometry) the insertion will
be performed.

widom.dz The step.

15.16 Metals

15.16.1 Tight-binding potential

The interatomic potential [36] is decomposed to a sum over all pairs,
∑

i<j, and a nonadditive
term,

∑
i:

U =
∑
i<j

2Aep(rij/r0−1) −
∑
i

ρ
1/2
i , (15.57)

where
ρi =

∑
j ̸=i

ρij =
∑
j ̸=i

ξ2e−2q(rij/r0−1) (15.58)

mimics the electron density. The algorithm to calculate the forces and energy proceeds in
two passes. In the first one the density components ρij are calculated and in the second one,
which is again a loop over all pairs, the calculations of the additive and nonadditive forces are
finished. From these pair and pair-like forces the pressure tensor is calculated. (Another way
to calculate the pressure tensor is via the virtual volume and shape change method [37]. We
used this method to test the algorithm.)

Forces

Let is write (15.57) as

U = Upair + Umulti ≡
∑
i<j

upairij −
∑
i

ρ
1/2
i , upairij = 2Aep(rij/r0−1) (15.59)

The k-gradient of ρij is
→

∂kρij =

→
r ij
rij

(δkj − δki) (15.60)

where
→
r ij =

→
r j −

→
r i. The pair part is standard,

fpair
ij =

p

r0
2Aep(rij/r0−1)

→
r ij
rij

(15.61)

The multi-body part:

fmulti
k = −(−

→

∂
∑
i

ρ
1/2
i ) (15.62)

=
∑
i

1

2ρ
1/2
i

∑
j ̸=i

ξ2e−2q(rij/r0−1)−2q

r0

→
r ij
rij

(δkj − δki) (15.63)

Let’s denote
ρij = ξ2e−2q(rij/r0−1)), qii = 0 (15.64)
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After summing up and replacing k → j we get

→

f
multi

k =
∑
i

→

f
multi

ij ,
→

f ij = − q

r0
(ρ

−1/2
i + ρ

−1/2
j )ρij

→
r ij
rij

(15.65)

The algorithm:

1. pair loop, ρij are calculated

2. sum, ρi =
∑

j ρij

3. second pair sum where Upair and contributions fij are calculated

4. Umulti = −∑i ρ
1/2
i can be now finished



Chapter 16

File formats

This section is incomplete and occasionally obsolete...

16.1 Configuration

Files simname.1, simname.2, ..., and simname.cfg are binary files of variable record length.
They consist of records of the following form

field length/B interpretation

header 4 length of data n as 4-byte integer

data n data in binary format

checksum 4 19019 +
∑
bi cast to 4-byte integer, where bi are

bytes of data cast to unsigned char

The end-of-file is marked by a zero integer (because no record may have zero length) and by
the system time (long integer, time in s since the standard time/date).

A list of record data follows. It applies to cook version > 2.7a; to read an old version, use
cfgconv to convert. ’int’ means 4-byte integer.

int cfgkey File version. Bits 0 and 1 mean:
1 = cook version ≥ 2.7a
2 = POLAR version

int optionlist[32] The values of options, -@, -a, ...; run cook without a parameter for a
list of them.

int nspec Number of species

int spec[nspec] Array [nspec] of species data:
{ int N; int ns; }
where N = number of molecules and ns = number of sites in this molecule. The order of
species is the same as in the ble-file.

245



16: File formats [Contents] – [Index] 246

rec[*] Records of form
{ int key; int intval; vector vecval; }
in any order, where the vector is
typedef double vector[3].
The following keys are recognized:

1 intval=N (total number of molecules)
vecval={t,h,Etot} (running simulation time [ps], time step [ps], total energy [K] )

2 intval=No.s=total number of sites
vecval=L[3] (box sizes, vector in [Å])

3 (reserved for cell shape)

4 intval = thermostat

vecval[0]=RvdW (for van der Waals radius setup, see variable tau.sig)
vecval[1]=tau.T

vecval[2]=tau.P

5 intval = number of cleaving planes
vecval[0],vecval[1] = positions of cleaving planes

17 vecval[0]=tau.dip (POLAR only)

Note that these values are mostly for checks and most of them are set while reading the
simulation data.

ToInt cfg[GearOrder+1] The configuration, see ToInt in simglob.h. cfg[0] contains the
size in bytes as integer first, then possible void bytes to satisfy alignment requirements,
then the Nose variable log(s) as double, vector lambda for the barostat, vector aux

reserved, and then No.s double vectors corresponding to all sites; for the POLAR version,
the Drude positions (another No.s double vectors) follow. cfg[1] contains the first
derivative of cfg[0], multiplied by h (differences for Verlet/SHAKE), and so on as in
Taylor expansion. For the Verlet/SHAKE simulation, GearOrder=2.

16.2 Convergence profile

For the main cp-file written by cook, see Sect. 14.2.

File simname.cp is a fixed record length file composed of n 4-byte words; n is also known as
NCP. It must hold 1 < n < 65536 (was smaller in old versions).

1st record {CPmark,NCP,COL3,COL4,..} defines the header:

CPmark (float)-1.76398512e+37

NCP integer n

COL3 (max 4 chars) name of field 3

COL4 (max 4 chars) name of field 4, etc.
Note that COL1,COL2 are assumed to be COL1=Etot, COL2=T

In old versions, NCP was used to determine sex (byte order), this is no longer
supported. A very old version without this header assumed n = 5 with quantites
{Etot,T,Epot,Ein,P}.
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control record is recognized by the first 4 bytes interpreted as float; see sim/cpmark.h for
the definitions:

CPmark=(float)-1.755645e+37 24 bytes follow with the ASCII write time (when the
record was written); if n < 7, this string is truncated.

CPmarkT=(float)-1.76398512e+37 For n = 2, 4 following bytes are interpreted as int;
for n > 2, 8 following bytes are interpreted as long int = time t. The number is the
write time in s since 1970-01-01 00:00:00 +0000 (UTC). Use system function ctime()
to convert to ASCII.

CPmarkU=(float)-1.77232525e+37 For n = 2, 4 following bytes are interpreted as
float; for n > 2, 8 following bytes are interpreted as double. The number is the
simulation time of the previous record (or simulation start) in ps.

CPmarkV=(float)-1.78066538e+37 For n = 2, 4 following bytes are interpreted as
float; for n > 2, 8 following bytes are interpreted as double. The number is the
time lag (simulation cycle DT=h*noint) in ps separating the following data (until
another control record).

CPmarkW(float)-1.7890055e+37 For n > 4, 16 following bytes are interpreted as two
doubles, containing t and DT (see above). This is the preferred format.

data record is interpreted as n float numbers. Their meaning is defined in the header (except
COL1=Etot, COL2=T). See Sect. 14.2.

16.3 Playback file

The playback file is a file of single precision floating point numbers (4 bytes long). It contains
a header of two floats, the 1st one being the number of sites ns (in the float format) of the
molecule/configuration, the 2nd contains

L=0 free boundary conditions (old format)

L>0 periodic b.c. - the box size L (fixed, old format)

L=-3 New format enabling variable vector L. One frame consists of float vector L[*] first,
then the configuration (ns float vectors) follows.

The body of the file consists of configurations recorded at regular time intervals. Each
configuration contains ns records of vectors of 3 floats (x,y,z).

The extension of playback files is .plb.



Chapter 17

Examples

17.1 Crystals

Crystals must match to a rectangular box. Thus, monoclinic and triclinic crystals are not
supported.

naclcryst Prepare rotated rock-salt crystals.

ice Prepare ice and clathrate crystals.

plbreplicate To replicate a crystal (not for mixtures)

cook Using init=5 or init="cryst" with optional pins set can create basic crystal
structures.

A more robust procedure will be explained using the wurtzite-type crystal (assuming that LiI
crystallizes as wurtzite, which is the case in some force fields). A basic wurtzite cell must be
replicated twice to fit into a rectangular box, see fig. 17.1. In the ATM-format, with ideal
tetrahedral angle and atom-atom distance of 1 Å we have (file wurtzite.atm

8

1.6329932 2.8284271 2.6666667 ! \(8/3) \8 8/3

I 0 0 0

I 0.81649658 0.47140452 1.3333333 ! \(2/3) \2/3 4/3

I 0.81649658 1.4142136 0 ! \(2/3) \2 0

Figure 17.1: Wurtzite structure viewed along the c-axix. Red: basic cell, blue: doubled cell
matching a rectangular box

248
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I 0 1.8856181 1.3333333 ! 0 \32/3 4/3

LI 0.81649658 0.47140452 0.3333333 ! \(2/3) \2/3 1/3

LI 0 0 1.6666667 ! 0 0 5/3

LI 0 1.8856181 0.3333333 ! 0 \32/3 1/3

LI 0.81649658 1.4142136 1.6666667 ! \(2/3) \2 5/3

You need also I.che and LI.che:

------- LI.che ------

ion Li+

parameter_set=JC+SPCE

LIp1

------- I.che -------

ion I-

parameter_set=JC+SPCE

Im1

---------------------

Possible script to make a crystal of Li180I180:

bonds wurtzite.atm # make wurtzite.plb (and .mol,.gol)

plbscale wurtzite.plb li180i180.plb "*2.8" # scale close to real Li-I distance

plb2cfg li180i180.plb li180i180.cfg # convert to .cfg (accept WARNING)

blend -o LiI LI I # make force field

# sample def-file

cat > li180i180.def <<EOF

N[0]=180 ! Li

N[1]=180 ! I

rho=3280 ! approx. crystal density

tau.rho=2 ! density relaxation time [ps]

cutoff=11.2 ! approx. half box size

LJcutoff=cutoff

L[0]=5*\(8/3) ! box shape (not in scale)

L[1]=3*\8 ! box shape (not in scale)

L[2]=8/3*3 ! box shape (not in scale)

load.n[0]=5 ! cell will be 5x replicated in x

load.n[1]=3 ! cell will be 3x replicated in y

load.n[2]=3 ! cell will be 3x replicated in z

load.N=3 ! tell cookew to ignore N=0 in the input file

init=2 ! will read li180i180.cfg

thermostat="Andersen" tau.T=0.1

dt.plb=1

;

EOF
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# run as

cookewslcP1 -s LiI li180i180

# enter

no=100;

then Ctrl-D

# NB: cannot be repeated because li180i180.cfg has been rewritten

After this step, all load.* should be deleted from li180i180.def. Suggested li180i180.get

follows:

! cookewslcP1 LiI li180i180

no=10000

LJcutoff=10.95

cutoff=LJcutoff

init=2

thermostat="Berendsen" tau.T=1

bulkmodulus=2e10

tau.P=5

tau.rho=0

rescale="XYZCM"

rdf.grid=25

rdf.cutoff=cutoff

;

To run:

cookewslcP1 LiI li180i180

Watch RDF and coordination numbers by one of

• rdfg -g -c -p li180i180

• click li180i180.rdf from the Midnight Commander

• start li180i180.rdf

Hint: right click to show color codes of curves.

After equilibrating, productive runs should use Nosé-Hoover thermostat or MTK thermostat
and barostat for better quality.

17.2 Protein in water

This is a continuation of the example from the blend manual, see Sect. 7.2.

Let us choose a serial version with cheap electrostatics, cookceslc.
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We have prepared (see Sect. 17.2) crambinw.ble containing one molecule of protein crambin
and 999 water molecules. The protein has bond lengths constrained, water molecule is TIP3P
treated as rigid body. Now we want to simulate this protein.

First, we must prepare the initial configuration. We will run cook interactively so that we
need a default (.def) file only. We name our project crambin so that the default file will be
crambin.def. A commented example of file crambinw.def follows:

T=310 ! temperature in K

thermostat="friction" ! Berendsen thermostat

tau.T=0.1 ! time constant (start only)

rho=1050 ! final density in kg/m^3 (this is the default)

initrho=900 ! initial density

tau.rho=1 ! typical time for initrho->rho condensing

cutoff=15 ! electrostatic cutoff

LJcutoff=12 ! Lennard-Jones cutoff

equalize.cfg=0.8 ! equalize masses

h=0.002 ! [ps] timestep (use 0.001 without equalization)

noint=5 ! steps/cycle

; ! end of data set

Now, let us run cook* interactively:

cookceslc -s crambinw # serial

or

NSLOTS=4 cookceslcP1 -s crambinw # parallel

You will be prompted for data. Enter:

init="random" ! random initial configuration of molecules

;

You may see some warnings “dr in 1 timestep reduced” as a consequence of large initial
temperature. They will disappear as soon as the system equilibrates. Ignore WARNINGS
(type c Enter).

Time evolution of temperature (incl. graph), potential energy, total energy, density, pressure,
and accuracy of constrained dynamics is printed. After several ps, interrupt the calculations
by pressing Ctrl-C; in the serial version, select . eneter = stop, in the parallek version, type
Ctrl-D when new data are requested, or key=’’quit’’.

To generate a longer trajectory, create file crambinw.get:

init="start" ! start simulation (from .cfg)

dt.plb=1 ! write playback every 1 ps

dt.prt=1 ! write line to prt every 1 ps

tau.T=1 ! thermostat time constant

tau.rho=0 ! turn off fixed box

bulkmodulus=2e9 ! [Pa] for Berendsen barostat

tau.P=5 ! barostat constant

no=1000 ! number of cycles (by h*noint=0.01 ps)
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; ! end of data set

init="append" ! restart measurements but append playback and .cp

no=1000 ! another 10 ps

; ! end

Start simulation by command:

cookceslc crambinw

or

cookceslcP1 crambinw

The output protocol is crambinw.prt. The simulation can be interrupted (with everything
saved) either by signalling -2 (-SIGINT) to the process, or by creating file crambinw.stp.

To watch the convergence profiles, run

showcp -p crambinw

if plot is installed properly, you should see the time development of quantities during 30 ps.

To watch the trajectory, check that files crambinw.mol and crambinw.gol have been created;
if not, use command like

molcfg crambin TIP3P crambinw

To show, use (may be used also while cook is running)

show crambinw

Useful variants include

show crambinw -Ob

show crambinw -o396 -I%@ -l -x10 -y2 -z2

The first form omits all waters, in the second 396 is the number of atoms in crambin, the values
of shift -x -y -z should be set according to the actual position.

Use mouse GUI or hot keys: g G to cycle the viewing mode, 1 to start playback, 0 to stop

it, i to start again.



Part III

Utilities
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This manual page describes various utilities and supporting software. Some information may
be incomplete. A brief but up-to-date help on most utilities can be obtained by running the
utility without any parameter. In some cases (ray, filters), option -h may be needed. Most
utilities also print names of related utilities as See also:.

Utilities marked by * in front of the *Source field need a make file (see Sect. 18.1), which
is generated from metamake.mmk by utility makemake, otherwise they can be compiled by a
command written in the first line of the source file.



Chapter 18

General utilities

18.1 makemake: Makefile and project interface

Projects are in MACSIMUS written in files called metamake.mmk. Utility makemake then
finds dependencies and converts these files to standard makefiles (historically, also to Turbo C
projects). See the source c/makemake.c for more info.

Normally, installing MACSIMUS starts by running ./install.sh. For installing cook*

versions, run ./configure.sh from the cook directory. For customizing blend, see
blend/metamake.mmk.

Without the above scripts, installing MACSIMUS software typically requires the following
steps:

1. Edit the project metamake.mmk. The sample metamake.mmk files contain enough
comments...

2. Running makemake may be as simple as

makemake gcc

or in case of project- and system-dependent switches something like

makemake colorgcc polarlj

3. If there are no errors, run make on the requested target(s), e.g.

make blend pdb

See comments in the source file for details!

Source: c/makemake.c

18.2 plot: Plot a graph (with formulas and mouse-

rescaling)

Plots graphs of tabular ASCII data. This utility allows to plot formulas as well us use a mouse
to rescale – it did so several years before gnuplot supported these features. It has developed

255
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from the viewer of the NSK project and I consider it as the most useful general program I have
written.

plot accepts input files in similar format as gnuplot: of white (SPACE, tab) separated
numbers. Comment lines are marked by # or ! in the 1st column. When plotting by lines, the
comments as well as blank lines break the plotted curves.

Get help by running plot without parameters.

More features (run plot without parameters for help):

• Fitting (max 10 parameters) with error estimates and the variance-covariance matrix.
Error estimates of integrals, derivatives, solutions of equations. High-precision arithmetics
if needed.

• EPS and PS output – simple, but usable and editable.

• Re-read changed files after a script is called.

Examples:

Simple examples:

plot sim.g # plots file sim.g: column 2 (y-axis) vs. col. 1 (x)

plot sim.g:2:3 # plots column 3 vs. column 2

plot sim.g:0:3 # plots column 3 vs. consecutive numbers 0,1,2,...

plot sim.g:0:3:p # as above, using points

plot sim.g:0:3:p:4 # as above, using points w. error bars in col. 4

plot sim.g:A:B^2 # plots col. 2 squared vs. col. 1

plot :1:3 *.g # plot all *.g files using cols. 2 and 3

plot "[0:10]" "[1000]:A:sin(A)" # plot function y=sin(x)

plot "[0:1]" FILE:A:B:o:C "[111]:A:(a+b*A^(1./4))/(1+c*A)":-:" # fitting

plot "[0:]" ":1/A:B+a/A:-o:C" data1.dat # use slider or aA to change a

To export PostScript file (plot.ps or plot.eps), use control data in ps.def (or defined by
-nNAME); see a sample file man/ps.def. This file may contain the following commands. The
command key letter must start from column 1. All sizes are in pt (only for command w, negative
values denote cm).

! anything

# anything comment

s SIZE [NAME ] Set font size (default=14) and name (default=Helvetica)

m l Set landscape mode

m p Set portrait mode

m e Set eps mode (encapsulated postscript, default)

x LEFTMARGIN RIGHTMARGIN TEXT [TEXT ] Set margins (of the graph without axes labelling)
of axis x and its label.
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y BOTTOMMARGIN TOPMARGIN TEXT [TEXT ] Set margins (of the graph without axes labelling)
of axis y and its label.

w XSIZE YSIZE Set window size. Negative values denote sizes are in cm. Note that command
m p used after w swaps XSIZE and YSIZE. Default is w 576 432, i.e., 8x6 inches.

t LINETHICKNESS FRAMETHICKNESS Set the default line thickness and the thickness of the
frame and tics. The default is t 1 0.5.

f NOXTICKS NOYTICKS Sets the approximate number of ticks and corresponding labelling on
axes. The default is f 5 5. The program determines the tick distance to be a round
number of a power of 10 time 1, 2, or 5, and thus the actual number of ticks may differ.

# R G B[,DASH,LINEWIDTH] Set the color (in RGB) of line number # (1st file=0, 2nd file=1,

if not changed by hot keys c , C ). DASH is a space-separated even number of numbers
denoting DASH PAUSE DASH PAUSE... Example: 1 1 0 0,5 3 1 3,0.5

r ANGLE Rotation angle for subsequent l and y, in degrees.

l X Y STRING

l X +[DY STRING] Print string at given position. The second form advances from the
previous position down by DY (default DY=line feed).

STRING for commands l, x, y may contain the following characters:

\ Next character is symbol (Greek letter): \a is alpha, etc.

Next character is subscript

^ Next character is superscript

Examples: t c o r r/ps, r^\a

*Source: show/plot.c

18.3 tabproc: Command-prompt spreadsheet

Some people like excel, I like command prompt and pipes... Input data are processed using
given formulas and formats and.

tabproc EXPR1[:FMT1] [EXPR2[:FMT2]] ... < INPUT > OUTPUT

EXPR Expression made of letters A B C... for columns 1,2,3..., and usual mathematical
operators and functions. Instead of A B C..., #1 #2 #3... can be used. Consecutive
numbers are coded by @ or n and are reset to zero on a blank line. Examples of expressions:
A/2+sin(B), #1/2+sin(#2), @*pi^2.

FMT Format in the C-style; the initial % may be omitted. Examples: 7.4f, %7.4f, err=%.2e.
The default format is that of the previous argument or %g if no format is given.
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Lines beginning by # or ! are copied as comments. Max 26 columns are allowed. Environment
variable NOLF suppresses line feeds (may be useful in scripts, see Sect. 18.13).

Use tabproc for more options.

*Source: c/tabproc.c

18.4 field: Select white-separated field(s)

Example:

SEP=",;" field 3 < FILE

Source: util/field.c

18.5 filttab: Select range from a table

Example:

cat DATA | filttab -1:-3:5 | filttab 2:0

Source: util/filttab

18.6 avfiles: Average files by coumns

Example:

avfiles -05%.9f sys[0-9].cpa > avsys.cpa

Source: util/avfiles

18.7 blocktab: Calculate subaverages over blocks

Example:

blocktab 10 2 < DATA # 2-column table by 10 lines

Source: util/blocktab

18.8 sumetc: Calculate sums, errors, variances...

Example:

sumetc -m -M -a -e < DATA # min max average stderr

Source: util/sumetc
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18.9 sumerr: Average of data with standard errors

Example:

sumerr 1 <<EOF

1.34 0.15 100

1.42 0.21 50

EOF

Source: util/sumerr

18.10 latextab: Format a table for LATEX

Example:

latextab 1:s 2:\\Chem\{%s\} 3:.5f 4:.2f 5 < antoine.txt > antoine.tex

Source: util/latextab

18.11 mergetab: Merge columns of data

This utility merges columns (white-separated) of data. Lines beginning with # are ignored.

Call by:

mergetab [FILE1]:[-OMIT:][/STRIDE:]COL:COL...

[FILE2]:[-OMIT:][/[-]STRIDE:]{COL|COL=COL1}:{COL|COL=COL1}...

...

FILEi File name, or - for stdin (max once allowed). Missing FILEi repeats previous, missing
FILE1=stdin.

OMIT # of noncomment lines omitted from the top of file

STRIDE Consider only every STRIDE-th noncomment line

-STRIDE As above, starting with (STRIDE-1)-th line OMIT and -STRIDE may be combined,
e.g., :-2:/-10 is the same as :-11:/10

COL Column to extract (print)

COL=COL1 Synchronizes with column COL1 of FILE1 but does not print. The data in columns
to synchronize should be in increasing order.

Example:

mergetab st2.g:1:2 tip4p.g:1=1:2 | plot -:A:C-B
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will pipe columns 1 and 2 of st2.g and column 2 of tip4p.g shifted so that it matches column
1. If tip4p.g has finer grid, extra data are omitted, if st2 finer grid, missing data in tip4p.g

are marked as n.a. The piped stream has thus three columns. Finally, the difference of tip4p
and st2 is plotted.

Source: c/mergetab.c

18.12 tab: Column table of consecutive numbers

Call by:

tab FROM TO [BY [FORMAT]]

TO is included. If no BY is given, 1 is the default. If no FORMAT is given, ”%g” is the default.

Example (Fourier transform of a saw-like function, 20.11)

tab 0 100 0.01 | \

tabproc "A-int(A)" | \

spectrum 10000 | \

plot -:0:1

Source: c/tab.c

18.13 ev and evu: Calculators

Bash or prompt simple calculators, run ev = without units, evu = with units. Run without
parameters for details.

Features:

• Variables, formulas, common functions in the usual syntax

• Embedded plot, sum, iteration, loop, continuous fraction

• Numerical integration, 1st derivative, solve 1 equation, min/max in 1D

• Macros

• Units (except units for light and radioactivity)

• Conversion from/to MACSIMUS internal units

• Predefined constants

• LaTeX output

Features/caveats/bugs:

• -2*3 (with - as the 1st character) subtracts 6 from the previous result, this feature
can be turned off by:
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– option ---

– leading space: -2*3

– parentheses: (-2*3)

• octal numbers: 047 = 39

• power is left-associated: 2^3^4 = (23)4

• unary +,- have the same precedence as binary: -2^2’ = −(22)

• multiple unary +,- are allowed: --2 = 4

• leading space prevents commands to be recognized: try deg=1;deg; deg

• macros cannot be used with ;-separated statements (except the last one)

• cannot add/subtract different units: 0+1[m] is error, 0[m]+1[m] is correct

• M(CuSO4.5H2O) = M(Cu)+M(S)+4.5*M(O)+M(H2O); for blue vitriol use: M(CuSO4H10O5)

Examples (from bash):

ev "pi^3*exp(2)"

evu "R*25 oC/1[bar]"

Example (prompt interface), note that solve must start the line:

$ evu --c

DH=-98[kJ.mol-1]

Cw=75[J/mol K]

Co=29 [J/mol K]

DT=35[K]

solve n=10 DH+DT*(n+1)*Cw+0.5*Co*DT

w=M(H2O2)/(M(H2O2)+n*M(H2O))

DvypH=42.5[kJ/mol]

solve n=10 DH+DT*(n+1)*Cw+0.5*Co*DT+0.25*DvypH

w=M(H2O2)/(M(H2O2)+n*M(H2O))

Source: c/ev.C

18.14 start: Start application according to file extension

This is a command-prompt analogue of the GUI mechanism of starting application according
to the type of the associated file. On some versions of Windows there is command ‘start’ of
the same function. Such a style of work may be considered strange by Windows folk. But my
brain is not able to find a file of interest among more than ten icons in a graphical folder (or
Norton Commander list) and I consider typing the file name much faster (especially with file
completion and wildcards).

Simple examples:



18: General utilities [Contents] – [Index] 262

start pig.jpg --> display pig.jpg

start archive.zip --> unzip -v archive.zip | less

Extended examples:

start -expand 2.5 pig.jpg --> xv -expand 2.5 pig.jpg

start pig.jpg -expand 2.5 ERROR unknown ext

start pig.jpg "-expand 2.5" --> xv pig.jpg -expand 2.5

start mol cfg.plb -I% --> show mol cfg -I%

Details:

1. Scans arguments given and determines the extension of the last file argument. (File
argument is an argument not starting with - nor + and with an extension and not
containing a space. The extension is the suffix after the last . in the file name provided
that the name before this . is not empty.)

2. Looks up the associated application

3. Starts this application with arguments, using system()

File registration:

Edit the array of structures reg[] in start.c and recompile. The last line must be NULL,NULL.

Source: c/start.c

18.15 sortcite: Sort LaTeX citations

This utility sorts all \bibitem{ } statements in the thebibliography environment so that they
appear in the order in which they are referenced using statements \cite{ }, \Cite{ }, and
\Hide{ } (see cite.sty for the latter two).

Usage:

sortcite FILE [-]

FILE.tex is input, FILE.ren output. Optional - means that not referenced bibitems will be
removed from output.

Source: c/sortcite.c

18.16 lemon Extension of grep

Example:

lemon NEEDLE -REPLACE FILE FILE.. # replace string

lemon NEEDLE +5 FILE # find and show +5 lines

lemon # help and a list of useful utitlities (not all them in MACSIMUS)

Source: c/lemon.c
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18.17 line Extension of head tail

Example:

line 4-7 < FILE

Source: c/line.c



Chapter 19

Program ‘pdb’ version 1.5a

pdb reads protein in the PDB format and converts it to mol-format understood by program
blend. See also pdb2pdb, see Sect. 23.1 (rearranges the lines of pdb-files to a ‘more standard’
order).

19.1 Running

19.1.1 Environment

Environment variable BLENDPATH can be set to point to the path that contains the needed
residue-filed (*.rsd by default). If it is empty, the files are looked for in the working directory.
A subdirectory of this directory, i.e., the used set of the residue files, may be specified by option
-r.

Example for UNIX (csh, tcsh):

setenv BLENDPATH /home/jiri/macsimus/blend/data

Example for UNIX (sh, bash):

export BLENDPATH=/home/jiri/macsimus/blend/data

19.1.2 Synopsis

The command line to run pdb is:

pdb [options] pdbname [molname]

If molname is missing then it is assumed that molname=pdbname.

Run pdb without options to get a brief help.

19.1.3 Files

pdbname.pdb Source PDB-file

264
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molname.pdb Output PDB-file (only if option -p)

molname.####.pdb Output PDB-file (only if option -p with range)

molname.rep

pdbname.rep Optional pattern replacement file. If molname.rep is not found, pdbname.rep
is tried, if this file does not exist either, no patter replacement occurs. Example (to fix
wrong OT type for C-O-C oxygens in sugar-sugar bond; pdb has been run with -d2

option).

CH1E OT-0.65 CH1E CH1E OE-0.5 CH1E

CH2E OT-0.65 CH1E CH2E OE-0.5 CH1E

CH1E OE HO CH1E OE DEL

CH2E OE HO CH2E OE DEL

It means that all structures CH1E-OT-CH1E with partial charge on OT -0.65 will be replaced
by CH1E-OE-CH1E with partial charge on OT -0.5, etc. DEL means deletion of the atom.
The file is executed by lines so that all changes caused by one line are available when
executing the following line. Currently only replacement in groups by 3 atoms defined
by atom types is available. No wildcards available for atom types. If necessary, will be
extended in future.

molname.sel Residue selection file. Example:

option -n0 ! should match with runtime option -n

! neutral versions of all negatively charged residue

!RSD # chain replacement

ASP * * asph

GLU 11 A gluh

The format is free, - in the chain field means no chain, * in the chain field means any
chain, * or -1 as # matches any residue irrespective of its # in the PDB file. RSD MUST
be uppercase, replacement refers to .rsd files and for UNIX is case sensitive, however,
lowercase is recommended.

molname.mol Output mol-file (see blend) Default output from pdb.

molname.3db Molecular configuration in binary format float[][3], deprecated (use .plb),
see option -b.

molname.plb Molecular configuration in the playback format, the default since V1.4a (see
the manuals for cook and blend and option -b).

molname.3dt Molecular configuration in text 3 column (x y z) format.

molname.plt Molecular configuration in text 3 column format with playback-like header line
(one line of 2 numbers, 1st=number of sites, 2nd=0).

*.rsd Extension of the residue files, see also BLENDPATH and option -r.
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19.1.4 Options

-a Some atoms in the pdb-file may be given alternative locations, i.e., different coordinates.
They are numbered by letters A,B,...

-a0 Use location A (default)

-a1 Use average of all location weighted by occupancies

-a2 Use location with maximum occupancy number.

-b Write (if not -p) or read (if -p) binary file with the molecular configuration.

-b0 -b- Don’t read/write any binary coordinate file.

-b -b1 Binary coordinate file is molname.3db.

-b2 Use playback file molname.plb as the molecular coordinate file (default).

-b3 Both -b1 and -b2 (not for input).

-b-1 As -b1 with reversed endian.

-b-2 As -b2 with reversed endian.

-b-3 Both -b-1 and -b-2 (not for input).

-cnumber Calculate S-S (CYS-CYS) bonds from the configuration. number is the distance
limit in Å, missing number means distance limit 3A (equilibrium bond length is 2.04A).
Use if SSBOND and/or CONECT commands are missing.

-dkey Delete (do not include) the atoms which are in the residue files but are not present in
the pdb-file. Note that typically hydrogens are NOT present in the pdb-file and should
be included but sometimes a missing heavy atom should be removed because a chemical
bond is present (hopefully described by CONECT statement). E.g., sugars are given with
all -OH groups in the residue files but if they are chemically bonded then two -OH groups
create one -O- bond and one O and two H should be removed. (See also molname.rep).
The values of key are as follows:

key>0 Deletions apply only to MOLECULES (1st keyword in the residue file must be
molecule

key<0 Deletions apply to all residues

1,-1 Deletions apply to hydrogens only

2,-2 Deletions apply to heavy atoms only; free hydrogens after removing these heavy
atoms are also removed.

3,-3 Deletions apply to any atoms

-eRSD Use RSD.rsd as end (C-terminal patch) for ending peptide chains. The default is
cter.rsd (COO−). Extension .rsd can be changed by option -f.

-fPARSET PARSET.par will be the used force field (parameter set). Information on
the parameter set is written to the mol-file created so that blend can make use of
it. In addition, file PARSET.par contains line rsddir rsddir with the name of the
directory in which the residue files (extension *.rsd) are looked for. If no -f is specified,
PARSET=RSDDIR is assumed (see option -r).



19: Program ‘pdb’ version 1.5a [Contents] – [Index] 267

-g Gap in residue numbering terminates chain. If the difference of numbers of two consecutive
residues is not 1 than the protein chain is terminated (normally by CTER) and started
again (normally by NTER), as if there was a TER statement between them.

-hRSD Use RSD.rsd as head (N-terminal patch) for starting peptide chains. The default is
nter.rsd (NH+

3 ). Extension .rsd can be changed by option -f.

-ikey Ignore atoms which are present in the pdb-file but are not supported by the residue-
files. Typical case is when all hydrogens are in the pdb-file (incl. aliphatic H) but the
aliphatic H are not supported in the united atom representation. Typical key is 1 (ignore
H in molecules) or -1 (ignore all H, in molecules and aminoacid residues). See option -d

for details of key.

-m- -m0 Don’t write .mol file

-n Use neutral residues:

-n0 Charged residue are used for acids (ASP and GLU) and bases (ARG, LYS, and
HIS). This is the default. In V1.3c and older, HIS was neutral by default, now HIS
is charged (protonated) by default and -n (see below) specifies its uncharged state.

-n Use neutral residues instead of ‘standard’ charged ones:

ARG -> ARGN

ASP -> ASPH

GLU -> GLUH

LYS -> LYSN

HIS -> HISN

NTER -> NTERN

CTERH -> CTER

(In versions V1.3h and older did not work for the termini.)

-n-1 Use charged residues and compensate charges by counterions Na+ or Cl-. Also
charges of NTER and CTER are compensated. NOTE: Positions of ions are
calculated from known atoms of the side-chain (for ARG, ASP, GLU, LYS, HIS)
or backbone (for terminals) so that the ion is placed in the direction of the chain
off the molecule. E.g., for N-ter the formula is 2*r[N]-1*r[CA]. When counterions
are used, blend should be called for the first time with option -k-3 to allow energy
minimization with the molecule skeleton fixed and free ions and hydrogens.

-n-% As above where the distance of the counterion from the ion being compensated is
-% percent of the previous bond., e.g.: (q/100+1)*r[N]-q/100*r[CA]

-oRSD Omit residue RSD. Typical use is such as -oHOH (or -oWAT—check the PDB file!) to
remove all water molecules.

-pnumber[:FROM:TO] Paste a configuration from input file (typically the playback file
molname.plb to a PDB-file. Both pdbname and molname must be specified on
the command line (and must differ). File pdbname.pdb is the input PDB-file and
molname.pdb the output. The source and format of input configuration is given by
options -b and -t (only one of them may be active; since -b is default, it must be
turned off if -t is to be used). -pnumber with a positive argument selects number-th
configuration on the playback file (supported only for binary format), -p is the same as
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-p1 (the 1st configuration), -p-1 means the last configuration in the playback file, -p-2
the 2nd last, etc. The version with range processes a range of frames. Option -b2meaning
playback file molname.plb as input is forced (also -t2?). The output files are numbered
molname.####.pdb, where #### is the frame number. In this case, molname=pdbname
is allowed. Cf. options -r4:FROM:TO:BY -w10 | -w20 of blend.

-qnumber Charge multiplication factor in %. Default is 100%.

-rRSDDIR The directory of residue files, relative to BLENDPATH (see Sect. 19.1.1). If also
option -fPARSET is given, option -rRSDDIR overrides the value of rsddir stored in file
PARSET.par. Slash or backslash after directory name is not allowed.

-snumber Scrolling enabled with number kB buffer, see blend for details.

-t Write (if not -p) or read (if -p) text file with the molecular configuration.

-t -t1 Coordinate file is molname.3dt.

-t2 Coordinate file is molname.plt with playback-like header line.

-t3 Both -t1 and -t2.

-u Enable more relaxed atom matching algorithm when assigning PDB atoms to atom names
in the residue files; for instance, with -u, HE3 in PDB-file matches HE1 in the residue
file if there is only one (Unique) HE atom in the residue file. Without -u, they do not
match. If the PDB-file contains aliphatic hydrogens (but no charged or hydrogen bonded
hydrogen), the default -u0 must be used. Some PDB formats, however, may use different
numbering and then option -u may help.

-v Verbosity level.

-v -v1 Verbose (default).

-v- -v0 Most of the info messages and warnings are suppressed.

-v-1 Partly verbose. Only connection and re-connection reports are suppressed.

-x Wildcard A in atom names in the PDB file is enabled. This occurs when a group like
-CNH2O in GLN may rotate by 180 degrees so that it is not possible to distinguish both
heavy atoms.

-z (new in V1.3n)

-z0 Patched residue keeps name of the residue even for atoms added (i.e., the added
atoms are treated as part of the residue).

-z2 The patched part has always the name of the patch (i.e., the added atoms are
treated as new ‘residue’ under the patch name). If the patch is specified by -h/-e
options, first three letters of the patch name (in uppercase) are used.

-z1 (default) Option -z0 applies for patches specified in the PDB file while -z2 for
patches specified by -h and -e options.
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19.2 Residues

The topology (chemical structure) along with partial charges are defined in the residue files.
The name of a residue file is usually the same as the residue name (but is lowercase) and the
extension is defined by the parameter set used (see option -f).

19.2.1 Format of residues

The format of residue files is almost the same as .mol format described in the manual for blend.

Differences are:

1. First line must start by one of the following keywords:

aminoacid Aminoacid residue, to be connected by a peptide bond

patch A part of molecule that modifies another molecule, for C/N-termini deprecated

nter Chain head (N-terminus). A peptide bond to the next residue is added. This
residue keeps its name in the PDB file.

nterp Patch for chain head (N-terminus), merged with the following residue. A peptide
bond to the next residue is added even if not specified in the patch.

cter Chain end (C-terminus). A peptide bond to the previous residue is added. This
residue keeps its name in the PDB file.

cterp Patch for chain end (C-terminus), merged with the following residue. A peptide
bond to the previous residue is added.

water Water model

molecule Any other molecule

2. If the type is patch, nter, or cter, atomid field may be divided by a colon into 2 parts.
The second part is atomid to be replaced in the residue and the first part is the new
name. Example:

patch NH3+ (N-terminal patch for all aminoacids but GLY and PRO)

number_of_atoms = 5

! charge=1

atoms

! i id type charge chir nb bonded_atoms

0 N:N NT -0.30 0 4 1 2 3 4

1 NH1:H HC 0.35 0 1 0

2 NH2 HC 0.35 0 1 0

3 NH3 HC 0.35 0 1 0

4 CA:CA CH1E 0.25 1 1 0

Since Nothing is compatible, the same atom can be coded in different PDB files by different
id’s. These aliases can be listed in a residue-file as a comma-separated list.

4 C,CY C 0.51 0 0 2 0 5

Only the first one is printed in info/error messages.
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19.2.2 Termini

The residue files for aminoacids contain residues as they enter the peptide chain (-N-Cα-CO-).

The first aminoacid (N-terminus) must be modified as follows:

• +charged (=protonated): there is NH+
3 instead of N, patch=NTER

• neutral (pdb -n) : there is NH2 instead of N, patch=NTERN

• counterion (pdb -n-1) : there is NH+
3 Cl

− instead of N, patch=NTERCL

This is accomplished by applying given patch (a patch is represented by a residue file with
keyword patch, nter, or cter in the 1st line, e.g., file nter.rsd is the patch NTER for
charmm21).

Residues PRO and GLY are exceptional and different patches must be used:

PRO: • +charged (=protonated): there is NH+
2 instead of N, patch=PROP

• neutral (pdb -n): there is NH instead of N, patch=PROPN

• counterion (pdb -n-1): there is NH+
2 Cl

− instead of N, patch=PROPCL

GLY: • +charged (=protonated): there is NH+
3 instead of N, patch=GLYP

• neutral (pdb -n) : there is NH2 instead of N, patch=GLYPN

• counterion (pdb -n-1) : there is NH+
3 Cl

− instead of N, patch=GLYPCL

(The reason for a special treatment of GLY is because of CH2E instead of CH1E
as Cα)

pdb since V1.3i selects the appropriate patch automatically according to the value of option
-n. However, if the patch is specified by -hpatch, no check is made and the requested patch is
used.
WARNING: names of hydrogens vary in different versions of pdb files and they need not be
recognized. In PROPN the hydrogen is called HNC while in PROP the two hydrogens are
called NH1 and NH2. This is not logical, but corresponds to the pdb files I have seen. Edit the
files if you meet another names. Unrecognized hydrogens may be usually safely ignored—they
are calculated in the blend stage.

19.2.3 List of residues

The most common residues follow. The corresponding file name is in lowercase and has the
residue extension appended. One-letter code for aminoacids is in parentheses.

nter ACE acetylated N-terminus, CH3-CO-

aminoacid ALA alanine (A)

cter AMI amidated C-terminus, -CO-NH2, also called CT2

aminoacid ARG arginine (R)

aminoacid ASN asparagine (N)
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aminoacid ASP aspartic acid (D), anion

aminoacid ASPH aspartic acid, protonated

cter CT1 methylated C-terminus -CO-O-CH3

cter CT2 amidated C-terminus, -CO-NH2, also called AMI

cter CT3 n-methylamide C-terminus -CO-NH-CH3, also called CMAM

cter CTER C-terminal patch for aminoacids, anion -COO−

cter CTERH C-terminal patch for aminoacids, protonated -COOH

aminoacid CYS cysteine (C)

aminoacid CYSS cysteine (to bind to another CYS)

aminoacid GLN glutamine (Q)

aminoacid GLU glutamic acid (E), anion

aminoacid GLUH glutamic acid, protonated

aminoacid GLY glycine (G)

nter GLYP terminal patch for GLY instead of NTER

molecule HEM heme BUGS: in some force fields, planarity is accomplished by different force
fields terms than original. It may affect vibrational frequencies and similar. Binding of
the heme with the protein can accomplished by files .sel and .rep files which are only
partly available. Since there are 6 bonds of Fe, blend must be compiled with #define

MAXVAL 4 in blend/blendpar.h

aminoacid HIS histidine (H), cation (protonated)

aminoacid HISN histidine (neutral with proton on ND1)

aminoacid HISNE histidine (neutral isomer with proton on NE2)

water HOH TIP3P water model

aminoacid ILE isoleucine (I)

aminoacid LEU leucine (L)

aminoacid LYS lysine (K), positively charged

aminoacid LYSN lysine (K), neutral (not in all force fields)

aminoacid MET methionine (K)

nter NTER N-terminal patch, -NH+
3 , for all aminoacids but PRO and GLY

nter NTERN neutral N-terminal patch for all aminoacids but PRO and GLY

aminoacid PHE phenylalanine (F)
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aminoacid PRO proline (P)

nter PROP N-terminal patch for PRO instead of NTER. prop.che is the whole residue

aminoacid SER serine (S)

aminoacid THR threonine (T)

aminoacid TRP tryptophan (W) BUG: In some force fields, planarity is accomplished by
different force fields terms than original. It may affect vibrational frequencies and similar.

aminoacid TYR tyrosine (Y)

aminoacid VAL valine (V)

molecule ZN Zn++

19.3 Bugs and caveats

1. In spite of its name, MACSIMUS is now being developed towards simulations of
fluids, ionic systems, systems with polarizability and not biochemistry applications.
MACSIMUS’ basic support of protein modeling and simulation will not be extended
in future.

2. Only aminoacids are supported and a few other compounds.

3. There are several variants of the PDB format and therefore there is no guarantee that
pdb will always work. See comments in the program (pdb.c) for details.

4. Information in PDB commands SSBOND and CONECT is duplicated. pdb writes a
notice ‘reconnected’ if the same bond is connected again The same holds for option -c.

5. Cannot use different N- and C-terminal patches for different chains.

6. Some residues (esp. in alternate charge states) may be missing for some force fields.



Chapter 20

Data analysis

WARNING: This is obsolete, run the respective utilities without any argument for up-to-date
help.

20.1 showcp: Show and analyze convergence profiles

cook (and in special cases also blend) records time-development of selected quantities (see the
manual for cook, file extension .cpi). showcp enables viewing and analyzing these ‘convergence
profiles’. showcp recognizes the endian so that analyzing the cp-files on a different computer is
transparent.

IMPORTANT NOTE: Always the time development of quantities is shown and never a
cumulative average (sometimes also called ‘convergence profile’) from start of simulation
because this quantity hides important information like sudden jumps, oscillations, etc! (To
show a cumulative average, use runsum).

Usage:

showcp [OPTIONS] {SIMNAME | SIMNAME.cp | SIMNAME.cpz} [OPTIONS] [NAME ..]

Files:

SIMNAME.cp convergence profile file

SIMNAME.cpz packed convergence profile file (see Sect. 20.9)

SIMNAME try SIMNAME.cp, if it does not exist then SIMNAME.cpz

Options:

Select columns. The default (if no such option is given) is all columns selected.

-# Select column number # (integer from 1). This option can repeat and can be combined
with NAME.

273
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NAME Select column of given name.

-o#[,#...] To be used with option -p: merge given columns to One plot. Several -o’s can
be repeated. The default (if no option -o is given) is -o2,6,7, i.e., T, Tin, and Ttr
are merged in one plot. If at least one -o is given, this default is overridden, further
-o’s define variables for another plot. The first column must be also selected (by -# or
NAME), the remaining are added. Columns in the cp-file (cpa-file) not listed are plotted
separately. Example: to plot 512.cp, blocked by 10, with columns 4 and 5 merged, 2, 6,
7 merged, and all other columns separate, use:

showcp -b10 -p 512.cp -o4,5 -o2,6,7

Range/lag options:

-f# (1) Analyze or show from record #

-t# (0) Analyze or show to record # (incl.). The default is -t0 (= the last record)

-b# (0) Block (sub-average) size for showing and additional analysis. The default is -b0,
which will adjust the block size to a power of 10 (for plotting) or according to screen
width.

-h# Set the timestep (noint*h from cook run), applies to -x,-c1,-c2.

-l# (29) Set lag for statistics (up to which autocorrelation analysis is performed). -l0 =
no statistics

-n# (12) Number of consecutive blockings by 2 (not for -c1,2). Blocked data enable better
error estimate.

Actions:

-a Write ASCII file SIMNAME.cpa in format compatible with gnuplot or plot (see Sect. 18.2)

-a-1 As above and add column Etot-Etot0

- Output is stdout instead of a cpa-file and any other information but the resulting ASCII
convergence profile is prepended by #. To be used with option -a to pipe the results to
other programs. Example:

showcp - -a test.cp | plot -:0:4 :5

will show a merged graph of columns 4 and 5.

-c# (0) Sum of:

1 write files SIMNAME.NAME.tcf with time correlation functions

2 write files SIMNAME.NAME.cov with covariances

4 detailed autocorrelation analysis (not just summary)

8 autocorrelation analysis of data blocked by option -b
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16 autocorrelation analysis with removed linear T-dependence

Option -l must be set, too. The default is -c0 which means that only a brief summary
of errors is printed.

-g print pseudoGraphs [default if columns selected and no other action]

-m print Merged y-x pseudograph (1 line = 1 block, variables are shown by letters)

-p Plot blocked selected columns with not-constant data (forces -a)

-x write blocked x-y files SIMNAME.NAME.xy

-e statistical analysis and regression of the first two selected columns

Options:

-k# pseudograph info line (blow the graph) contains:

1 column info, min, max, range, blocking

2 column info, first, last, difference, blocking

3 both 1+2

-d# (1) Set delay # s between plots, to be used with option -p. Increase when showcp is
run on a distant computer and the connection is slow

-r Reverse endian (obsolete)

-s# Scroll (buffer #kB, -s=-s30) (obsolete)

-u Character set for pseudograph (option -g) is

-u Braille UTF-8

-u- ASCII

The default is guessed from LOCALE.

Example:

showcp mysimul -p Etot Tkin -5

Will show three graphs, total energy (column 1), temperatures (white=Tkin=total, yel-
low=translational, cyan=rotational and intramolecular), and column 5=pressure or density.
The data will be averaged in appropriately selected blocks

*Source: util/showcp.c



20: Data analysis [Contents] – [Index] 276

20.2 cp2cp: Manipulate convergence profile files

Usage:

cp2cp [OPTIONS] INPUT.cp OUTPUT.cp [OPTIONS]

Files:

INPUT.cp input convergence profile file

OUTPUT.cp output convergence profile file

Options:

-b# input data are blocked (sub-averages are made) by # lines of data

-s# stride by #: every #-th value of input is taken, the first one considered is the #-th

-s# -b## strided data are blocked

-rKEY Rearrange columns. KEY=string of {1,2,..,9,A,..,0}, where 1=1st column, A=10th
column, 0=empty column (filled by 0)

-hNAMENAME.. headers of empty columns (added by using key 0 in -k), every 4 chars
correspond to one 0

-f# read the input file from record # (records are numbered from 0)

-n# max. # of records read (must appear after -f)

-t# read the input to record # (record # is not included; equivalent to the sum of -f -n)

BUGS: does not accept old 5-column format, opposite endian, packed (.cpz) files

Examples:
Omit first 1000 records, delete columns 6+7 (of 12), and block by 10:

cp2cp in.cp out.cp -f1000 -r1234589ABC -b10

Replace column 4 by 0 (header ZERO) and swap columns 6 and 7:

cp2cp in.cp out.cp -r1230576 -hZERO

Split a.cp (100000 records long) into chunks by 10000 records

tab 10000 100000 10000 "cp2cp a.cp b0.cp -f0 -n10000" | sh

Source: util/cp2cp.c
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20.3 rdfg: Analyze and show radial distribution func-

tions

rdfg prints and/or plots the radial distribution functions from binary data stored in the rdf-file.
The running coordination numbers are provided, too (as column 4 of the g-files).

Usage:

rdfg SIMNAME[.rdf] [KEY [FMT]]

KEY is a string of:

u Unix version only: Create separate files SIMNAME.SITE1.SITE2.g for each site–site pair
in the rdf-file

d DOS style: Create separate files SITE1SITE2.g for each site–site pair in the rdf-file

none of d u Create one merged file SIMNAME.g of all site–site RDFs

p Start plot of the of generated g-file(s). See Sect. 18.2.

r Reverse endian on input. To be used for rdf-files obtained on a computer with the opposite
sex (endian)

FMT is the C-format for printing g(r), default=”%8.4f” (four dec. digits).

Example (generate files with DOS-like names, accuracy=5 dec.digits, plot them):

rdfg mysim dp %9.5f

*Source: util/rdfg.c

20.4 smoothg: Smooth histogram-based RDF

Smoothing of g(r) [obtained by histogram]. Call by:

smoothg WINDOW ORDER DR DATA[:COLR:COLG] FROMR[:TOR[:DR]] [FORMAT]

WINDOW RECT[+TRIANG] rectangular width+triangular half-width

-WIDTH Gaussian half-width: exp[−(x/WIDTH)2/2]

ORDER order of the polynomial (1=linear)

DR grid of R in DATAFILE (must match file!)

DATA file of r,g data

COLR:COLG columns of r,g (default=1,2), COLR=0 means 0,1,..

FROMR:TOR:DR output range and grid of R

FORMAT output format for double x,y (default=”%.12g %.12g”)

*Source: util/smoothg.c
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20.5 staprt: Print a sta-file

Prints the contents of a sta-file generated e.g. by cook. Usage:

staprt FILE.sta [mode]

where MODE is

+ More decimal digits of the output

- Print merged time correlation to stdout

anything else Print time correlation files to files FILE.NAME.tcf, where NAME is derived
from the variable name (problematic characters are edited)

*Source: util/staprt.c

20.6 sfourier: Structure factor from RDF

Using the fast Fourier transform, RDF (from a g-file) is converted to a structure factor (SF).
Cf. structure factors obtained directly from configurations (see cook, option -f).

To get a partial SF from site–site RDF:

sfourier GRID CUTOFF NS < FILE.X.X.g > FILE.gsf

where FILE.X.X.g is one of g-files obtained by rdfg FILE u

The total SF for a mixture from a set of RDFs

sfourier GRID CUTOFF NS SITE1:b1 SITE2:b2 ... < FILE.g > FILE.gsf

where FILE.g is obtained by rdfg FILE (or cat FILE.*.*.g) Note that sfourier reads also
information printed in the header of the g-files.

GRID Number of grid points/Å, must match the grid of the RDF files

CUTOFF Should be rdf.cutoff (see cook input data). If CUTOFF<rdf.cutoff, then then the
data are truncated; if CUTOFF>rdf.cutoff then the data are padded by g(r) = 1.

NS total number of sites (atoms, not types of sites)

SITE1, SITE2 name of site of given number. Sites may be listed in any order

b# scattering length of site #

*Source: util/sfourier.c
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20.7 coordn: Coordination number

Calculates the coordination number from a (r g(r)) file. Normally not needed because rdfg

prints the coordination number as well. Call by:

coordn COLUMN_OF_G DR [RHO G0 CONST] < INFILE > OUTFILE

Calculates CONST + RHO * integral 0^R [g(r)-G0] dV. Default RHO=1, CONST=0. The
integral is over dV = 4 PI r^2 dr and is replaced by the sum over dV = 4 PI/3*[(r+DR/2)3-
(r-DR/2)3

Source: util/coordn.c

20.8 hbonds: H-bonds for liquid water

Hydrogen bonds are generated for water based on intermolecular O-H distance. The default
version is for TIP4P, this can be changed in the source file.

Call by:

hbonds PLBFILE [O-H distance]

where PLBFILE is the input playback file and the second parameter is the threshold O-H
distance to define an H-bond; the default is 2.44. A series of files hb####.mol, hb####.gol,
hb####.plb is generated where #### are consecutive frames.

Source: util/hbonds.c

20.9 cppak: Loss (de)compression of convergence profile

files

This compressor samples the min–max interval of variables using integers of given number of
bits and stores the differences. Typical compression rates are to 25–50%, depending on the
number of bits and possible columns of zeros only.

Call by:

cppak FILE.EXT [NBITS]

where the action is determined by the extension .EXT:

.cp compresses FILE.cp to FILE.cpz

.cpz decompresses FILE.plz to FILE.cp

NBIT is the number of bits to store the min–max interval; default=12 (accuracy 3-4 dec. digits).

Packed cp-files are transparently recorded by cook (see variable CPnbit) and shown or analyzed
by showcp (see Sect. 20.1).

Source: util/cppak
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20.10 autocorr: Statistical analysis using autocorrela-

tion function

Prints autocorrelation and error analysis of time-dependent data. Call by:

autocorr {FILE|-} [OPTIONS]

Options:

-l# The lag (# of autocorrelation coefficients) for statistics [default=29]

-b# The lag for calculations with data blocked by 2, 4, 8, ... items [default=2]

-n# Number of blocked calculations: the maximum block size is 2^# [default=8]

-h Higher precision (more digits) on output [default=off]

-m-1 Input data are angles in radians (mod 2PI) and they are reconstructed to be continuous.
To be used for the time correlation function of, e.g., dihedral angles.

-m# As above, modulo # (must be positive integer). E.g., for angles in degrees use -m360 (as
for output of ramachan)

-c# Column of data [default=1]

-t Write time correlation functions (column 1 = 0,1,2,...; column 2 = autocorrelation
coefficients) in separate files NAME#.tcf Number # is used only if given by option -c#.
[default=off]

- Instead of FILE means stdin

The output contains first the name, number of data and their range. In the second line there is
the Mean and Variance. Then, the autocorrelation coefficients and other statistics are printed:

c[t] = Cov(c[0],c[t])/Var(c)

tau = SUM_t’=1^t c[t’] (partial sum)

StDev^2 = <(1+2tau) Var(c)>/n

where Cov(X,Y)=<(X-<X>).(Y-<Y>)> is the covariance and Var(X)=Cov(X,X) is the variance;
both are estimated from the data. tau is the correlation length and StDev is estimated standard
deviation of the mean (arithmetic average).

*-lines contain the same information calculated from blocks of averages (sub-averages) by 2, 4,
8... data. Example (realistic):

> autocorr logfile.anc -c3 -n12

logfile.anc.3 No=320688 range=[-1.40727e-09,2.12488e-09]=3.53215e-09

Mean = 1.30584217e-10 Var = 5.16207293e-20

_t__c[t]__1+2tau__StDev_ _t__c[t]__1+2tau__StDev_ _t__c[t]__1+2tau__StDev_

0 1.0000 1.000 4.0e-13 1 0.9960 2.992 6.9e-13 2 0.9844 4.961 8.9e-13

3 0.9667 6.894 1.1e-12 4 0.9450 8.784 1.2e-12 5 0.9214 10.627 1.3e-12

6 0.8978 12.423 1.4e-12 7 0.8754 14.173 1.5e-12 8 0.8552 15.884 1.6e-12
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9 0.8374 17.559 1.7e-12 10 0.8220 19.202 1.8e-12 11 0.8084 20.819 1.8e-12

12 0.7958 22.411 1.9e-12 13 0.7834 23.978 2.0e-12 14 0.7702 25.518 2.0e-12

15 0.7556 27.029 2.1e-12 16 0.7389 28.507 2.1e-12 17 0.7201 29.947 2.2e-12

18 0.6994 31.346 2.2e-12 19 0.6771 32.700 2.3e-12 20 0.6539 34.008 2.3e-12

21 0.6304 35.269 2.4e-12 22 0.6074 36.484 2.4e-12 23 0.5853 37.654 2.5e-12

24 0.5645 38.783 2.5e-12 25 0.5452 39.874 2.5e-12 26 0.5274 40.928 2.6e-12

27 0.5110 41.950 2.6e-12 28 0.4957 42.942 2.6e-12 29 0.4812 43.904 2.7e-12

* 0 1.0000 1.000 5.7e-13 1 0.9848 2.970 9.8e-13 2 0.9465 4.863 1.2e-12

* 0 1.0000 1.000 8.0e-13 1 0.9516 2.903 1.4e-12 2 0.8663 4.636 1.7e-12

* 0 1.0000 1.000 1.1e-12 1 0.8936 2.787 1.9e-12 2 0.7559 4.299 2.3e-12

* 0 1.0000 1.000 1.5e-12 1 0.7907 2.581 2.5e-12 2 0.4804 3.542 2.9e-12

* 0 1.0000 1.000 2.1e-12 1 0.5645 2.129 3.0e-12 2 0.1880 2.505 3.2e-12

* 0 1.0000 1.000 2.6e-12 1 0.3299 1.660 3.3e-12 2 0.0953 1.850 3.5e-12

* 0 1.0000 1.000 2.9e-12 1 0.2409 1.482 3.6e-12 2 0.0838 1.649 3.8e-12

* 0 1.0000 1.000 3.3e-12 1 0.1694 1.339 3.8e-12 2 0.0917 1.522 4.1e-12

* 0 1.0000 1.000 3.6e-12 1 0.1880 1.376 4.2e-12 2 0.1144 1.605 4.5e-12

* 0 1.0000 1.000 3.9e-12 1 0.2105 1.421 4.7e-12 2 0.0248 1.471 4.8e-12

* 0 1.0000 1.000 4.2e-12 1 0.1515 1.303 4.8e-12 2-0.0060 1.291 4.7e-12

* 0 1.0000 1.000 4.4e-12 1 0.0376 1.075 4.5e-12 2 0.0331 1.141 4.7e-12

# 1.30584217191e-10 4.76e-12 9.53e-12 320688 (av std 2*std no)

Analysis: These are highly correlated data. The average is 1.3058e-10. The autocorrelation
coefficient with lag of 29 timesteps is 0.4812 so that the error estimate of 2.7e-12 is severely
underestimated. In lines beginning with * are error estimated with blocking 2,4,8,... The higher
blocking, the less influence of correlations, but fewer data so that less reliable estimate. The best
results are from the t=1 column, i.e., in addition to blocking the first autocorrelation coefficient
is taken into account. Watch the c[1] column and find the line with c[1] small enough, let us say,
c[1]< 0.2, or c[2]< 0.1. It gives stdev=4.8e-12. The last #-line contains the maximum which
is usually reasonable error estimate obtained automatically. Therefore the result is 1.306e-10
+- 4.8e-12 (or perhaps more optimistic 1.306e-10 +- 3.6e-12; it is difficult to say which value
is more reliable. This is general problem in simulations with slowly decaying correlations.),
i.e., with probability about 68% the value is within 1.306e-10 +- 4.8e-12, with probability 95%
within twice this margin.

If there are enough data and the error estimates are reliable, then

Note: the autocorrelation analysis is embedded also in cook and showcp

Bug: some non-alphanumeric characters are removed from FILE.

*Source: util/autocorr.c

20.11 spectrum: Spectrum (Fourier transform)

Calculates a spectrum (Fourier transform) of data. Call by:

spectrum [-]NDATA [KDATA [DT]] < FILE

FILE should contain NDATA numbers (SPACE, tab, or EOL separated) and KDATA is the number
of output frequencies (if not given, KDATA=NDATA/2. If time resolution DT is given, the output
has two columns (1st column = frequency, 2nd column = squared amplitude) and peaks are
also calculated. If DT is omitted, the output has only one column (squared amplitude). With
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-NDATA, the input data will be multiplied by bell-like window sin2(π ∗ i/NDATA). The peaks
are then ‘more peaky’ (delta-function like), but the resolution actually somehow worsens.

May be used for determining vibrational frequencies from MD data. For instance, let sim.cp
be a 1000-records-long convergence profile obtained by running cookfree at low temperature
for one molecule with h=0.001 and noint=1. Then the following ‘pipe’:

showcp - -a sim | \

mergetab -:2 | \

spectrum 1000 2000 0.002 | \

plot -

will plot a graph with peaks corresponding to vibrational frequencies. These should match the
results of blend -N sim. Note that parameter DT has been set to TWICE the sampling rate
h*noint because the kinetic temperature is a quadratic quantity and gives doubled frequencies.

Note: the algorithm uses FFT optimized for factors 2 and 3. The calculation is slowest for
NDATA=prime number.

*Source: util/spectrum.c



Chapter 21

Working with playback files

WARNING: This may be incomplete, use plbinfo +u to get a rich list of plb-utilities (not all
them in MACSIMUS).

The calculated configurations or trajectories are usually stored in files with extensions .plb

(whole configuration) or .p00 (one molecule). In some cases the can be analyzed again by
blend or cook that have generated them. Here are utilities to manipulate with the plb files.

21.1 Format of plb-files

The plb-file is a binary file consisting of 4-byte floats:

header 2 floats The header consists of 2 float (4 byte) numbers:
The first float = the number of sites (often denoted ns)
NB: in the float format; the maximum ns=16777216

The second float =

0e0 Free (3D Cartesian, vacuum) boundary conditions

L with L > 0: periodic b.c., the box is a cube and L is constant

-3e0 variable box size, all atom positions are positive

-6e0 NOT FULLY IMPLEMENTED, see cook -n4: half box size subtracted from all
coordinates, otherwise the same as -3e0

frame 1 One frame is:

L[] 12 bytes For variable box size format only: the actual box size

r[0][] 12 bytes Position of the first atom (site) in the configuration
...

r[ns-1][] 12 bytes Position of the last atom (site) in the configuration
...

frame 2 In the same format
...

last frame In the same format

283
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21.2 plbinfo: Get information on plb-files

Get information on binary playback files. Examples:

plbinfo FILE FILE... # print info

plbinfo +u # print list of plb utilities

plbinfo +t # print technical info on plb files

plbinfo # print help

Returns # of errors encountered (0 on success)

Source: util/plbinfo.c

21.3 plbconv: Converts old and new plb formats

The format of plb files changed from a version supporting only fixed box size to a version with
variable 3D box. plbconv converts these two formats.

Call without arguments to get help.

Source: util/plbconv.c

21.4 plb2plb: Extract selected sites

Call without arguments to get help.

Source: util/plb2plb.c

21.5 plbsites: ASCII export of selected sites

Call without arguments to get help.

Source: util/plbsites.c

21.6 plb2asc: Conversion of plb-files to ASCII

Call without arguments to get help.

Source: util/plb2asc.c

21.7 asc2plb: plb-files from ASCII

Call without arguments to get help.

Source: util/asc2plb.c
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21.8 plbframe: Extract/interpolate a frame

Call by:

plbframe {INPUT.plb|-} {OUTPUT.plb|-} [FRAME]

Source: util/plbframe.c

21.9 plbcut: extracts parts of a playback file

Call without arguments to get help.

Source: util/plbcut.c

21.10 plbbox: Change box size of a plb-file

Call without arguments to get help.

Source: util/plbbox.c

21.11 densprof: Selected density profile angular correla-

tions.

Call without arguments to get help.

Source: util/densprof.c

21.12 plb2cryst: Sort sites to files according to crystal-

like structure.

Call without arguments to get help.

Source: util/plb2cryst.c

21.13 plb2nbr: Sort sites to files according to the number

of neighbors.

Call without arguments to get help.

Source: util/plb2nbr.c
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21.14 plbmerge: Merge several plb files

Merge several plb files into another plb file, frames synchronously. Call without arguments to
get help.

Source: util/plbmerge.c

21.15 atomdist: Atom-atom distances

Prints atom-atom distances from playback files Call by:

atomdist FILE INDEX1 INDEX2 [NS]

FILE The playback file (with extension .plb, p00, ...) or a 3db-file

INDEX1 INDEX2 Atom indices (see the mol-file)

NS Number of sites (iff FILE a 3db file)

Source: util/atomdist.c

21.16 plbmsd: Mean square displacement of atoms

Calculates the (mean) square displacement of selected sites. Call by:

plbmsd [-]FILE[:FROM] L SITE [SITE ...]

where

FILE.p00 or FILE.plb input playback file

FROM start for linear regression, default=2=first datum (1=zero)

FILE.msd output file

-FILE reverse endian of input playback file

L box size (L=0: take from FILE.EXT, L < 0: force FREE boundary conditions)

SITE site # to process (can enter more sites)

*Source: util/plbmsd.c
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21.17 density: Calculate local density

Call by:

density FILE.plb[:FROMFRAME] X Y Z R

Calculates # of atoms in a sphere of center (X,Y,Z) and radius R. Reads the whole file starting
with frame FROMFRAME (default=1).

Source: util/density.c

21.18 mergeplb: Merge several plb files into one

Merge several plb files into another plb file, frames synchronously. Stops when any plb-file
reaches EOF.

mergeplb PLB-FILE [PLB-FILE ...] > MERGED-PLB-FILE

The box size L is set to the maximum L Hint: use molcfg to prepare mol (and gol) files for
showing.

Source: util/mergeplb.c

21.19 plbpak: Loss (de)compression of playback files

This compressor rounds the coordinates to the nearest grid point and stores differences in
coordinates. Typical compression rates are to 25–30% for resolution 10/Å and 30–40% for
resolution 100/Å. Best lossless compressors (bzip2, rar) give about 90%.

Examples:

plbpak sim.plb 64 # compress, resolution 64/AA

plbpak sim.plz # decompress

*Source: util/plbpak.c

21.20 plb2diff: Diffusion and conductivity

This utility helps calculate the diffusion, conductivity (both partial and bulk) from plb files.
plb2diff calls cook* several times for different blocks of configurations and makes averages.
Run plb2diff without argument to get help.

*Source: util/plb2diff.c
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21.21 shownear: re-color atoms according to their dis-

tance

shownear FILE.plb[:FRAME] FILE.gol \

FROM TO [-]DIST COLORNEAR [COLORMARK] > OUTFILE.gol

Creates a gol-file that, when used with show, will mark atoms closer than —DIST— to atoms
[FROM..TO) by COLORNEAR and optionally atoms [FROM..TO) by COLORMARK. -DIST
means that atoms [FROM..TO) are not included in tests. Configuration (frame) FRAME is
analyzed from file FILE.plb. TO<=0 means TO=number of sites.

Source: util/shownear.c



Chapter 22

Molecule visualization

WARNING: This is obsolete, run the respective utilities without any argument for up-to-date
help.

22.1 molcfg: Create configuration mol- and gol-files

This is a supporting utility to be used with show to show a configuration recorded by cook*.
It generates a configuration mol-file SIMNAME.mol and optionally a gol-file SIMNAME.gol from
mol-files FILE1.mol, FILE2.mol ... and optionally gol-files FILE1.gol, FILE2.gol ...

Usage 0:

blend -o SYSNAME MOL1 MOL2

...

cook* SYSNAME SIMNAME

In the above “standard” way to call cook with a force field generated by blend, molcfg is called
transparently from cook*. Problems may occur with “optimized water models” recognized by
cook, which may change the name. Then see below

Usage 1:

molcfg FILE1 FILE2 ... SIMNAME

Repeats FILE1.mol and FILE1.gol (if exists) N[0] times, FILE1.mol N[1] times, etc., where
N[0], N[1], etc., are read from SIMNAME.def used in the simulation. Note: only variable init,
no, noint are accepted as temporary variables in SIMNAME.def if you wish to use formulas to
calculate N[]: init=20 N[0]=init3 is correct, eps=20 N[0]=eps3 is incorrect.

Example 1:

molcfg Li Al Cl I salt

show salt

Usage 2:

289
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molcfg -COUNT1[PREFIX1:SUFFIX1:FROM1] FILE1 \

[-COUNT2][PREFIX2:SUFFIX2:FROM2] FILE2 ... SIMNAME

Repeats FILE1.mol COUNT1 times, etc.; SIMNAME.def is ignored. PREFIX and SUFFIX are
added to atom ID and may contain format (as %d) to hold file number, starting from FROM

(default=1)

Example 2:

molcfg -1 cyto -10w hoh -3:p%d proton -1 etoh config

show config -Yp1 -Yp2 -Yp3

*Source: util/molcfg.c

22.2 show V2.2j: Viewing playback (trajectory) files

show shows playback files (trajectories), .plb. In addition, description of molecules (mol-file
and optional gol-file) is needed; details are explained in the manual of blend. See also molcfg

(see Sect. 22.1) and other utilities working with the playback files (see Sect. 21).

Run it without parameters to get list of options. Letter ‘s’ in shell variable GUI indicates start
with menu.

Usage:

show [OPTIONS] MOLNAME[.mol|.gol|.plb] [ PLBNAME.EXT ]

22.3 ray: The raytracer

A Reasonably Intelligent Raytracer by Mark VandeWettering, modified by J. Kolafa. The
recommended raytracer for MACSIMUS. I found it more suitable for rendering molecules than
PovRay (unless you want to see wooden atoms in fog..) because (1) it is simple, (2) can better
handle the ambient light, and (3) uses the normal right-handed coordinate system. Nevertheless,
if you prefer PovRay, you will find info on how to use it in show/show.c.

The scene file for this raytracer has extension .nff (for Neutral File Format) and can be
generated by show. The output file is PPM (see Sect. 22.2).

To get help on options, run

ray -h

Simple example (render sim-0000.nff dumped by show):

ray -n sim-0000

Another example (as above, 1/2 size, no antilaliasing (faster), watch progress, view the final
picture by ‘xv’)

ray -n sim-0000 -S.5 -j1 -t -vxv
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Usage details:

ray { -Option Argument | -OptionArgument } ...

-h Help

-i FILE Input scene file (Neutral File Format), recommended extension .nff

-o FILE Output file (P6 Portable Pixel Map), recommended extension .ppm

-n FILE Input=FILE.nff, output=FILE.ppm

-t Show progress indicator in %

-u Cheap and fast antialiasing by 2x2 blur (formerly -f)

-v VIEW Show picture using viewer VIEW. For linux, ImageMagick viewer display is
recommended.

-j # Antialiasing and jittering. The default is -j-9

#=0 No antialiasing nor jittering (fastest)

#>0, #!=N^2 Random jittering with # samples/pixel

#>0, #=N^2 Antialiasing by N*N supersamples/pixel in a square

#<0, #=-N^2 As above but supersample only if contrast > c.

#<0, #=-N^2 -d# With option -d#: if error > c, enlarge supersample N →2N+1 (N
even) or N →3N (N odd)

-d # Diffuse light. # is the light size for Gaussian jittering (for each light source). Use -j

with a large argument (at least 100). Will create soft shadows.

-c # Threshold for smart supersampling (-j-#), default=0.02

-x # x size in pixels, default=command ‘resolution’ in NFF file

-y # y size in pixels, default=command ‘resolution’ in NFF file

-r # The same as -x# -y#

-s # Scale view angle (zoom) by # [default=1]. Use # < 1 if you do not see the whole
molecule, # > 1 if you wish to look closer

-S # Scale x and y size by # [default=1]. Will create smaller image but does not change
proportions.

-a # Pixel aspect ratio (y/x) [default=1]

-f # Fog from z-coordinate (no fog in front of this z) [0]

-F # Fog thickness for exponential attenuation to 1/e (to background color), 0=off [0] Note:
the fog algorithm is simple and works OK only with uniform background, best light cyan
or blue
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-b FILE Use given background image (must be P6 PPM file), instead of color (command b

in the NFF file)

-X # Scale background image # times horizontally [1]

-Y # Scale background image # times vertically [1]

-U # Move background image up by #*height [0]

-R # Move background image right by #*width [0]

-B # How the background image is treated [default=+2]

#>0: tile background image

#<0: chessboard mirror tile (make nonperiodic images continuous)

+1 -1 Use the color of command b in the NFF file front background (this is not directly
visible, but may reflect in the rendered spheres)

+2 -2 Calculate background color for front as background image average [default]

-l # Light scaling factor [1] (effective brightness adjusted to -I -N). Use # > 1 if the
image is too dark and vice versa.

-I # Ambient isotropic light [0.1]. This is the light shining on the scene from all sides
isotropically and reflecting isotropically.

-N # Ambient light proportional to cos angle(normal,ray) [0.2]. This is the light shining on
the scene from all sides isotropically but reflecting more to the normal. Both -I -N

improve the appearance of spheres.

NFF: Detailed explanation is in ray/NFF.desc. Note that ray uses the normal right-handed
coordinate system.

# Comment

v 1st command to start scene description

from X Y Z The viewpoint (eye)

at X Y Z Look at point (center of the ‘screen’ or ‘paper’)

up X Y Z Direction up vector on the ‘screen’ or ‘paper’

angle ANGLE Viewing angle of the width of the

‘screen’ or ‘paper’, in degrees

hither 1 ?

resolution 533 400 Size of the image in pixels

l X Y Z Position of a point light source. There may be several light sources. All have the
same intensity

b R G B Background, in RGB (Red Green Blue in interval [0,1]).
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f R G B diffuse specular Phong transmittance index Set the material. diffuse is the
amount in [0,1] of the light reflected diffusely, specular is the amount in [0,1] of the light
reflected in the same angle (this makes the ‘mirror’ effect), Phong is the power determining
the size and brightness of the highlights. For molecules, the transmittance and the index
of refraction will never be used.

s X Y Z RADIUS A sphere

c X1 Y1 Z1 RADIUS1 X2 Y2 Z2 RADIUS2 A cone of the axis defined by (X1,Y1,Z1)-
(X2,Y2,Z2). If both radii are the same, this is a cylinder.

p # Polygon of # vertices. # lines of X Y Z should follow.

pp # Polygonal patch primitive (one-sided). # lines of X Y Z Xnormal Ynormal Znormal

should follow. Not used by show

*Source: ray/main.c

22.4 ppm2ps: PPM, PBM, PGM to PostScript

Both ray and show generate pictures in the PPM format. Since I was not satisfied with the
quality of printing these files using available utilities in 90s, I wrote my own. All six versions
(P1–P6) are supported.

Call by:

ppm2ps [OPTIONS] [INFILE [OUTFILE]] [OPTIONS]

Source: ray/ppm2ps.c

22.5 ppminfo: Get information on ppm, pbm, pgm-files

Call by (verbose info):

ppminfo FILE

Call by (brief info):

ppminfo FILE FILE [FILE ...]

Source: ray/ppminfo.c

22.6 stereo: Stereogram

This program calculates stereograms normally with the eye cross point behind the paper, i.e.,
your eyes should watch an imaginary point lying behind the paper in approximately the same
distance as the eye-paper distance (this is for the recommended default of the x-pattern size one
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half of the eye’s distance). Different people may prefer different distances or even stereograms
with the cross point above the paper.

Two input files are needed:

1. The ZB-file with a z-buffer data. It is a PGM (raw Portable GrayMap, P5). It can be
generated by show.

2. Optional pattern file. Its x-size should correspond to about 5 cm. If not given, a random
pattern is generated.

Run without options to get more info.

*Source: show/stereo.c, upgraded 2016
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Miscellaneous utilities

WARNING: This is obsolete, run the respective utilities without any argument for up-to-date
help.

23.1 pdb2pdb: Rearrange pdb-files

Rearranges a pdb-file so that the order of the backbone atoms is N-CA-C-O[-sidechain]. This
is ‘standard’, though most programs (incl. pdb) do not care. Call by:

pdb2pdb [MAXLINES] < INPUTPDB > OUTPUTPDB

Source: blend/pdb2pdb.c

23.2 ramachan: Ramachandran plot from blend and

playback files

Call by:

ramachan [OPTIONS] SYSNAME [SIMNAME.plb|SIMNAME.p00] [OPTIONS]

Options:

-a Angles in interval [0,360) [default=[-180,180]]

-r Write results to separate files SIMNAME.r#, where #=frame number. [default=all frames
concatenated to one file SYSNAME.ram]

-s Write summary phi,psi file (1line=1frame; for columns see SYSNAME.mar) This file can
be used, e.g, by autocorr to obtain time correlation functions. Example:

autocorr -t -c2 -m360 test.sum

where see test.sum which dihedral is column 2 (of -c2) In addition, this file can be used
as SIMNAME.ddf for the DIHHIST=-1 version of cook as selection of phi,psi angles.
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-f# From frame (first frame to process) [default=1]

-t# To frame (last frame processed) [default=-1=until eof]

-b# By frame (stride) [default=1=every frame]

-p# The calculated Ramachandran plot is plotted (using plot, see Sect. 18.2)).

-n# Number of molecules. It should be the same as N[0] specified in the simulation def-file.
[default=1]BUG: Only simulations of identical molecules are supported (N[1]=N[2]=..=0
in the simulation def-file). WARNING: if no option -n# is specified, only the 1st molecule
from the plb-file is processed. Similarly if -n# is less than the actual number of molecules
(N[0]).

-PPARSET Parameter set (prepends environment variable BLENDPATH) The default
parameter set is that defined in file SYSNAME.ble.

Files:

SYSNAME.ble Input ble-file

SIMNAME.plb,SIMNAME.p00 Input playback file

SYSNAME.mar Output dihedral angle info extracted from SYSNAME.ble

SYSNAME.ram Output Ramachandran plot(s) omega,phi,psi,omega: The first table from
SYSNAME.ble with site info, tables calculated from playback files follow (if not option
-r).

SYSNAME.sum Output Ramachandran summary of phi,psi by columns, 1 line= 1 frame of
plb-file

SIMNAME.r1,... Tables calculated from playback files (if -r)

${BLENDPATH}/PARSET.par Parameter file (if given by option -p). Only table ‘backbone’ is
used from this file.

Undefined angles/sites are denoted 999/-1

Source: blend/ramachan.c

23.3 makepept: Makes a peptide in che-format

Makes a peptide of given residues in a che-format. The environment is the same as for pdb and
blend.

Print one letter aminoacid codes:

makepept ANYPARM

Make a peptide:

makepept RSDDIR {rsd | RRR} [rsd | RRR ...]
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RSDDIR Subdirectory of BLENDPATH with residues in che-format.

rsd Residue or terminus name in lowercase

RRR Chain of one-letter aminoacid codes (uppercase)

Example (make peptide Acetyl-ALA-PRO-THR-HIS(neutral)-Methyl)

makepept charmm22 ace APT hisn ct1 > pept.che

BUG: For termini, the output file has to be edited (ct1 above)

Recommended blend commands:

blend -e40 pept.che # no pept.mol,pept.3db

blend -e40 -r2 pept.che # to try again (overwrite pept.mol,pept.3db)

Source: blend/makepept.c

23.4 blefilt: Blend-file filter.

Extracts some information ‘hidden’ in ble-files. Call by:

blefilt TABLE [COL [COL2 ...]] [TABLE2 ... ] < INPUT.ble > OUTPUT

where TABLE is one of { sites bonds angles dihedrals impropers aromatics } and
optional list of columns follows. The default column is the column with the value of bond
length or angle, or x y z for sites. The output is in the order of the blend-file. Examples:

blefilt angles dihedrals < cyto.ble > cyto.int

blefilt sites < cyto.ble > cyto.xyz

blefilt bonds 2 4 7 < cyto.ble > cyto.int

Source: blend/blefilt.c

23.5 bonds: Make (show-able) mol-file from coordinates

Call by:

bonds { FILE.3dt | FILE.atm | FILE.pdb } [DIST]

FILE.3dt Data are in 3 columns x,y,z. DIST is the bond threshold [default=1.5]

FILE.atm Data are in 4 columns, ATOM,x,y,z, where ATOMS is atom symbol. The bond
threshold = r0*DIST, where r0 is maximum bond length for given atom-atom bond. Only
atoms H C O N S P are explicitly considered, other atoms use certain general values that
may be OK in many cases. [default DIST=1.2, values less than 1 do not have too much
sense]
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FILE.pdb As above, PDB format.

FILE.mol output mol-file

FILE.plb output plb-file

The output mol and plb files can be used by show, but are not suitable for blend.

Hint: combination of bonds FILE.pdb; show FILE can serve as a simple PDB viewer.

Source: blend/bonds.c

23.6 cutprt: Shorten a prt-file

Shortens prt-files (generated by cook) leaving the first header and the final statistics. Call by:

cutprt [-]FILE.prt [[-]FILE.prt ...]

FILE.prt rewrites file FILE.prt by the shortened one, the old one is renamed to FILE.prt

-FILE.prt output to stdout

Source: util/cutprt.c

23.7 lattice: Make a cubic lattice

Call by

lattice N L LATTICE

N Number of vertices

L Box size

LATTICE=1 Simple cubic lattice

LATTICE=2 Body centered lattice=1

LATTICE=3 Face centered lattice

Source: c/lattice.c

23.8 ice: Make ices and clathrates

Example

ice Ih 5y 3z 3x -sHOMH -T0

show Ih533HOMH.plb

Source: c/ice.c



23: Miscellaneous utilities [Contents] – [Index] 299

23.9 naclcryst: Make rotated NaCl crystals

Example

naclcryst 3 4 5 -x1.5 -m600

show nacl-0000.plb

Source: c/naclcryst.c
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Chapter 24

Ewald summation

24.1 Point charges

To simplify notation, let us first define function

e(y) =
erfc(y)

y
=

1

y

2√
π

∫ ∞

y
exp(−t2)dt. (24.1)

The basic formula for the Ewald electrostatic energy in periodic boundary conditions
surrounded by a dielectric continuum (dielectric constant ϵ′r) in infinity in SI units is

4πϵ0U =
∑

j<l, rjl<rc

qjql αe(αrjl) (24.2)

+
∑

→

k ̸=
→

0, κ<κc

exp[−(π/α)2κ2]

2πV κ2
Q(

→
κ)2 (24.3)

+
2π

2ϵ′r + 1

M2

V
(24.4)

− α√
π

∑
j

q2j (24.5)

≡ 4πϵ0(Ur + Uk + UM + Us) (24.6)

where

Q(
→
κ) =

∑
j

qj exp[2πi
→
κ · →

r j], (24.7)

→
κ =

→

k/
→

L ≡ (kx/Lx, ky/Ly, kz/Lz), κ = |→κ|, (24.8)
→

M =
∑
j

qj
→
r j, M = |

→

M |, (24.9)

and κc is the k-space cutoff. The first sum, (24.2) (the r-space or pair sum), assumes that the
cutoff rc is less than half the minimum box size; if not, a sum over periodic images should be

added. α is the separation parameter.
→

M is the dipole moment of the simulation cell. It is
well-defined only for configurations of neutral molecules which are never split by a periodic cell
boundary.
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The implementation of e(y) in MACSIMUS is based on the following two functions,

eru(x) = αe(α
√
x), (24.10)

erd(x) = −α3 e
′(α

√
x)

α
√
x

, (24.11)

erud(x) = eru(x), byerd = erd(x) (24.12)

where e′(x) = de(x)/dx. Note that the term appearing in the r-space sum is αe(αrlj) = eru(r2lj),
where r2lj is directly available. These functions are implemented by splines, See Sect. 11.6.

The forces are

4πϵ0
→

f j = −4πϵ0
∂U

∂
→
r j

=
∑

l, rlj<rc

qjql α
3 e

′(αrlj)

αrlj

→
r lj NB: α3 e

′(αrlj)

αrlj
= erd(r2lj)

+ qj
∑

→

k ̸=
→

0, κ<κc

exp[−(π/α)2κ2]

V κ2
2
→
κ Im

{
Q(k)∗ exp[2πi

→
κ · →r j]

}

+
4π

2ϵ′r + 1
qj

→

M

V
.

The electrostatic potential is

4πϵ0Φ(rj) = 4πϵ0
∂U

∂qj
(24.13)

=
∑

l, rlj<rc

qlαe(αrlj) (24.14)

+
∑

k ̸=0, κ<κc

exp[−(π/α)2κ2]

πV κ2
Re

{
Q(κ) exp[2πi

→
κ · →r j]

}
(24.15)

+
4π

2ϵ′r + 1

→
r j ·

→

M

V
(24.16)

− 2α√
π
qj. (24.17)

Note that contributions of
→

k and −
→

k are the same in the k-space sums, which is (along with

treating null components of
→

k separately) used in the code.

For ready-to-code formulas including the pressure tensor, see [33]. Differences from our notation
are:

• h = 2π
→
κ (vector)

• the r-space parameter is called κ (here: α, while κ means k-space)

• dielectric response ϵ′r
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24.2 Gaussian charges

Gaussian charge i of width σi at
→
r i has the charge density

ρi(
→
r) =

qi
(2πσ2

i )
3/2

exp

[
−(

→
r − →

r i)
2

2σ2
i

]
. (24.18)

The interaction energy of a pair i, j of these charges r apart is

4πϵ0u =
qiqj
r

erf(αr), α = 1/
√
2σ2

i + 2σ2
j (24.19)

Replacing point charges by Gaussian charge distribution[38] leads to more complicated formulas,
and from the implementation point of view to a necessity to have a separate spline for r-space
contributions for every charge-charge pair. In addition, hyperbolic splines cannot be used and
have to be replaced by (slightly slower) cubic splines (#define SPLINE 3).

Let us again split the energy (and other quantities) into four parts

U = Ur + Uk + UM + Us. (24.20)

24.2.1 r-space part

The r-space energy is

4πϵ0Ur =
∑

j<l, rjl<rc

qjql
rjl

[
erf(αg

jlrjl)− erf(αs
jrjl)/2− erf(αs

lrjl)/2
]
, (24.21)

where
αg
ij = 1/

√
2σ2

i + 2σ2
j , αs

i = 1/
√
2σ2

i + 1/α2. (24.22)

The corresponding forces are

4πϵ0
→

f j = −4πϵ0
∂U

∂
→
r j

=
∑

l, rjl<rc

qjql
r2jl

{
1

rjl

[
erf(αg

jlrjl)− erf(αs
jrjl)/2− erf(αs

lrjl)/2
]

+
1√
π

[
2αg

jle
−αg

jl
2
r2jl − αs

je
−αs

l
2r2jl − αs

le
−αs

j
2r2jl

]}
.

Since the underlined terms above correspond to the interactins of the original Gaussian charges,
by omitting them we get the Ewald corrections for 1–2 and 1–3 interactions; the extension to
1–4 forces is straightforward.

The r-space contribution to the electrostatic potential is

4πϵ0Φr(rj) = 4πϵ0
∂Ur

∂qj
(24.23)

=
∑

l, rlj<rc

ql
rjl

[
erf(αg

jlrjl)− erf(αs
jrjl)/2− erf(αs

lrjl)/2
]
. (24.24)
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24.2.2 k-space part

To calculate the k-space contributions, we define

Q(
→
κ) =

∑
j

qj exp[2πi
→
κ · →

r j],

T (
→
κ) =

∑
j

qj exp[2πi
→
κ · →

r j] exp[−2π2σ2
jκ

2],

S(
→
κ) =

∑
j

qj exp[2πi
→
κ · →

r j] exp[−2π2σ2
jκ

2]σ2
j .

The k-space energy is

4πϵ0Uk =
1

2πV

∑
k ̸=0, κ<κc

p(κ2)
[
ReQ(

→
κ)ReT (

→
κ) + ImQ(

→
κ)ImT (

→
κ)
]
, (24.25)

where

p(x) =
exp(−π2x/α2)

x
. (24.26)

The k-space forces are

4πϵ0
→

f j =
qj
V

∑
k ̸=0, κ<κc

→
κp(κ2)

[
sjReT (

→
κ)− cjImT (

→
κ) + exp(−2π2κ2σ2

j )(sjReQ(
→
κ)− cjImQ(

→
κ))

]
,

(24.27)
where real numbers cj, sj are defined by

cj + isj = exp(2πiκ · →
r j). (24.28)

The k-space virial components (to calculate the pressure tensor) are

4πϵ0Wab =
1

2πV

[
− 4πϵ0Ukδab

+2
∑ →

ka
→

La

→

kb
→

Lb

p(κ2)

(
1

κ2
+
π2

α2

)
p(κ2)

{
[ReQ(

→
κ)ReT (

→
κ) + ImQ(

→
κ)ImT (

→
κ)]

+(2π2)[ReQ(
→
κ)ReS(

→
κ) + ImQ(

→
κ)ImS(

→
κ)]
}]
.

The k-space part of the potential at position
→
r j is

4πϵ0Φk(rj) = 4πϵ0
∂Uk

∂qj

=
1

2πV

∑
k ̸=0, κ<κc

p(κ2)

×
[
cjReT (

→
κ) + sjImT (

→
κ) + exp(−2π2κ2σ2

j )(cjReQ(
→
κ) + sjImQ(

→
κ))

]
.

24.2.3 Dipolar terms

are the same as for point charges. E.g., for ΦM(rj), see (24.16).



24: Ewald summation [Contents] – [Index] 305

0 1 2 3 4 5

t [ps]

0

1

2

3

4
P

d
V
 −

 P
re

f 
[M

P
a
]

0.0010.0020.0040.0080.016

dV =

h=10/6 fs 2 iterations ω=1

h=10/12 fs ω=0.7

h=10/6 fs ω=0.7

Figure 24.1: Verification of the pressure calculation for the system of 200 Li+, 200 Na+, 400
Cl−, and 800 H2O (Kiss–Baranyai model). Pref denotes the standard pressure calculated from
the pressure tensor, PdV denotes the virtual volume change (molecule-based) value.

24.2.4 Self-energy

The self-energy is

Us = − 1√
π

∑
i

αs
iq

2
i . (24.29)

The “self-forces” are zero. The self-energy contribution to the potential is

Φs(rj) = − 2√
π
αs
jqj. (24.30)

24.2.5 Pressure test

A robust test of MACSIMUS Gaussian charges and pressure code is shown in Fig. 24.1. Note
that the dV→ 0 limit can be (for the sake of this test) considered as exact value. It is seen
that the most accurate trajectory (with 2 iterations of the SCF + ASPC(k = 2), ω = 1) gives
pressure with precision about 40 kPa. The standard integration is 350 kPa off (opposite sign),
leading to a small density error of < 0.2%. Half-timestep-based value is of the same speed as
the double-iterated value, but less accurate with respect to pressure (80 kPa, about 1/4 of the
standard timestep result.)

The calculations used el.grid=64 and the default Ewald accuracy. Changes to el.grid=32 or
el.grid=128 or higher Ewald accuracy did not change the results for given trajectory lengths.
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Figure 24.2: Verification of the Yeh–Berkowitz correction. Left: 600 SPC/E waters + 1 NaCl
in the slab geometry calculated for several box sizes Lz and several z-positions of the slab in
the box (lines of the same color). Right: 600 SPC/E water molecules + one ion Na+, with the
additional Ballenegger–Arnold–Cerdà correction. Note the different scales of both figures.

24.3 Yeh–Berkowitz correction and charged systems

The Yeh–Berkowitz correction removes the influence of the slab dipole moment in the periodic
boundary conditions, mimicking thys a 2D-periodic system. For the slab perpendicular to the
z-coordinate, it is [9]

Fz,i = −4πqi
V

Mz CGS

= − qi
V ϵ0

Mz SI

MACSIMUS allows to select the coordinate(s) for which this correction is applied by variable
el.corr.

If the system is charged, either charges are redistributed (el.bg=2) or a background is added
(el.bg=1). In the latter case, the above correction is modified [10] as follows

Fz,i = −4πqi
V

(Mz −Qtotzi) CGS

= − qi
V ϵ0

(Mz −Qtotzi) SI

where Qtot = charges.sum = sum of charges = − background charge.



Chapter 25

MD of Polarizable Force Fields

Jǐŕı Kolafa, 1999

25.1 Notation

Vector from i to j:
→
r ij =

→
r j −

→
r i, rij = |→r ij|

Gradient:
→

∇i = ∂/∂
→
r i,

→

∇i rij = −→
r ij/rij,

→

∇j rij =
→
r ij/rij

Direct (tensor) product:
↔

A =
→
a
→

b

Dot (scalar) product of two vectors: A =
→
a ·

→

b

Dot (matrix) product of two tensors:
↔

C =
↔

A ·
↔

B

Inverse tensor:
↔

A ·
↔

A
−1

=
↔

A
−1

·
↔

A = 1

25.2 Polarizability

Induced dipole on particle i is generally a function of field
→

Ei at position
→
r i:

→
µi =

→
µi(

→

Ei) (25.1)

where we assume that
→
µi = 0 for

→

Ei = 0. As we shall see later, field
→

Ei is rather an “effective”
field which may contain certain terms behaving as electrostatic field. We shall consider two
cases, the linear polarizability

→
µi(

→

Ei) =
↔
αi ·

→

Ei (25.2)

where
↔
αi is the polarizability tensor, and a simple model of hyperpolarizability exhibiting

saturation given implicitly by

→
µi(

→

Ei) =
↔
αi ·

→

Ei

1 +
→

Ei ·
→
µi/Esat

(25.3)

which can be solved for
→

Ei:
→

Ei =

↔
α
−1
i · →

µi

1− →
µi ·

↔
α
−1
i · →

µi/Esat

(25.4)
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The “saturation energy” Esat has a physical meaning of the energy of significant deviation from
the linear law. For the denominators in the above formulas it holds

(1 +
→

Ei ·
→
µi/Esat)(1−

→
µi ·

↔
α
−1
i · →µi/Esat) = 1 (25.5)

Finally, for
↔
αi = αi (scalar):

→
µi(

→

Ei) =
αi

→

Ei

1
2
+
√

1
4
+ αiE2

i /Esat

(25.6)

25.3 Pair operators of electrostatic interaction

Tij =
1

rij
(25.7)

→

T ij =
→

∇iTij =

→
r ij
r3ij

= −
→

∇j Tij = −
→

T ji (25.8)

↔

T ij =
→

∇i

→

∇j Tij =
→

∇j

→

T ij = −
→

∇i

→

T ij =
1

r3ij
− 3

→
r ij

→
r ij

r5ij
(25.9)

↔
T ij =

→

∇i

↔

T ij = −
→

∇j

↔

T ij = 3

↔

1
→
r ij
r5ij

+ 3
(
→
r ij)

r5ij
+ 3

→
r ij

↔

1

r5ij
− 15

→
r ij

→
r ij

→
r ij

r7ij
(25.10)

where
↔

1 is a unit isotropic tensor,
↔

1αβ = δαβ, and (
→
r)αβγ = δαγ

→
rβ so that

→
a · (→r) ·

→

b = (
→
a ·

→

b)
→
r .

25.4 Electrostatic energies

Charge-charge: UCC(i, j) = qiTijqj

Dipole-charge: UDC(i, j) =
→
µi ·

→

T ijqj

Dipole-dipole: UDD(i, j) =
→
µi ·

↔

T ij ·
→
µj

Polarization self-energy of dipole
→
µi is

Uself(
→
µi) =

∫
d
→
µi ·

→

Ei(
→
µi) (25.11)

where the integration is along any path from zero induced dipole to
→
µi and

→

Ei is the total
effective electrostatic field acting on the dipole (what “effective” means becomes clear later).
For the linear and saturated models, respectively:

Ulin(
→
µi) =

1

2

→
µi ·

↔
α
−1
i · →

µi =
1

2

→

Ei ·
→
µi (25.12)

Usat(
→
µi) = −Esat

2
ln

1− →
µi ·

↔
α
−1
i · →µi

Esat

 =
Esat

2
ln

1 + →

Ei ·
→
µi

Esat

 (25.13)

Note that limEsat→∞ Usat(
→
µi) = Ulin(

→
µi).
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Repulsive antipolarization (shell-core model, deformable dipole model—how shall we call it?)
is based on an idea that close contact of two atoms pushes the electron shell around atom
(normally anion) out of center giving rise to a dipole in the opposite direction that is the
polarized dipole:

Urep = −κi
→
µi ·

→

f ij (25.14)

where i is a polarizable atom, j any other atom, and

→

f ij = −
→

∇iuij(rij) =

→
r ij
rij
u′ij(rij) = −

→

f ji (25.15)

is the repulsive pair force acting on atom i due to atom j and uij is the repulsive pair potential.
This potential does not include electrostatic interaction1. In the typical case i is an anion, j a
cation, and then κi is positive.

25.5 Electrostatic field

Field at
→
r i caused by charge qj at

→
r j:

→

Ei = −qj
→

T ij

Field at
→
r i caused by dipole

→
µj at

→
r j:

→

Ei = −→
µj ·

↔

T ij

Fictitious field caused by repulsive antipolarization:
→

Ei = κi
→

f ij

This is not real electrostatic field but as regards its interaction with dipoles, (25.14) and (25.1),
can be treated in the same way.

25.6 Total energy

The total electrostatic energy of a set of n polarizable atoms is

U =
∑

i,j,i<j

qiTijqj +
∑

i,j,i̸=j

→
µi ·

→

T ijqj +
∑

i,j,i<j

→
µi ·

↔

T ij ·
→
µj −

∑
i,j,i̸=j

κi
→
µi ·

→

f ij +
∑
i

Uself(
→
µi) (25.16)

This U({→µi}) as a functional of {
→
µi} reaches a minimum for {→

µi} satisfying (25.1) for all i where

→

Ei ≡
dU(

→
µi)

d
→
µi

=
∑
j,j ̸=i

(
−qj

→

T ij −
→
µj ·

↔

T ij + κi
→

f ij

)
(25.17)

is the total (real electrostatic and fictitious) field at
→
r i.

For κi = 0 (term (25.14) is missing), we can get a somehow simpler expression not containing
the dipole-dipole energy by inserting (25.1) and (25.17) into (25.16):

U =
∑

i,j,i<j

qiTijqj +
1

2

∑
i,j,i̸=j

→
µi ·

→

T ijqj (25.18)

+


0 for linear polarizability∑
i

1

2

[
Esat ln(1 +

→

Ei ·
→
µi/Esat)−

→

Ei ·
→
µi

]
for saturated polarizability

which is especially simple if the polarizability is linear.

1There is a question whether it should generally include dispersion forces; the Tosi et al. potential does not
include cation-anion dispersion forces at all.
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25.7 Forces

Let us take a minus gradient of (25.16). Since
→
µj depend on

→
r i, several terms containing

→

∇i
→
µj

appear, however, they all cancel out as a consequence of (25.1) with (25.17)2. The resulting
force ready for implementing is

→

f i = −
→

∇iU =
∑
j,j ̸=i

(
−qi

→

T ijqj +
→
µi ·

↔

T ijqj − qi
↔

T ij ·
→
µj −

→
µi ·

↔
T ij ·

→
µj − κi

→
µi ·

→

∇i

→

f ij

)

−


→
µi ·

→

∇i
↔
α
−1
i · →

µi for linear polarizability
→
µi ·

→

∇i
↔
α
−1
i · →

µi(1 +
→

Ei ·
→
µi/Esat) for saturated polarizability

25.7.1 Gradient of the repulsive antipolarization

The force caused by the repulsive antipolarization term is

→

f rep,i = −κi
→
µi ·

→

∇i

→

f ij = κi

[
u′ij
rij

→
µi +

→
µi ·

→
r ij

rij

(
u′ij
rij

)′
→
r ij

]
, (25.19)

to be completed by
→

f rep,j = −
→

f rep,i.

25.7.2 Gradient of the polarizability tensor

For isotropic and constant (=not depending on configuration) polarizability,
↔
αi =

↔

1αi,
→

∇j αi = 0, the last term in (25.19) is zero. Let us consider the simplest case of axial polarizability
of atom i where the polarizability in the direction of a chemical bond (towards certain atom
with position

→
r t) is αzz and in the perpendicular directions it is αxx = αyy. The polarization

tensor is
↔
αi = αxx

↔

1 + (αzz − αxx)

→
r it

→
r it
r2

(25.20)

The inverse tensor is
↔
α
−1
i = α−1

xx

↔

1 − αzz − αxx

αzzαxx

→
r it

→
r it
r2

(25.21)

by taking the gradient we obtain the corresponding ‘axial polarization’ force term

→

f ax,i = −→
µi ·

→

∇i
↔
α
−1
i · →µi =

αzz − αxx

αzzαxx

[→
µi ·

→
r it

r2it

→
µi −

(
→
µi ·

→
r it)

2

r4it

→
r it

]
(25.22)

and finally
→

f ax,t = −
→

f ax,i.

25.7.3 Fluctuating charge

Currently, MACSIMUS implements the fluctuating charge model of water with four charges.
The method comes from the FQ models [39].

2That is why it is more convenient to take a gradient of (25.16) and not of the simpler form (25.18) which

would in fact lead to more complicated calculations to eliminate terms containing
→

∇j
→
µi
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Let us consider a neutral molecule with four interaction sites numbered i ∈ {0, 1, 2, 3} which
do not lie in a plane. Each site bears a permanent charge qi0, i ∈ {0, 1, 2, 3}, ∑i qi0 = 0. In
electric field with potential Φi at site i the charges change into qi = qi0 + δqi. We write the
electrostatic energy as

U = Uself +
∑
i

(qi0 + δqi)Φi, (25.23)

where the self energy is [39]

Uself =
∑
i

∑
j

Aij

2
δqiδqj. (25.24)

At fixed field Φi the configuration of charges minimizes energy U under constraint
∑

i δqi = 0.
By adding term λ

∑
i δqi to (25.23) (λ is the Lagrange multiplier) and taking derivatives over

δqi, we arrive at four equations ∑
j

Aijδqj + Φi + λ = 0. (25.25)

Given Aij and Φi, these linear equations (along with
∑

i δqi = 0) yield the unknown charges.

The polarizability tensor α can be calculated by applying homogeneous fields in three directions
and calculating the response dipole moment. However, in constructing the force field the
task is opposite: to determine ten independent components of symmetric matrix Aij given six
independent components of α. The task is overdetermined, but all solutions are equivalent
because the set of shifted constants

A′
ij = Aij + ai (25.26)

gives the same charges and thus the same energy (the Lagrange multiplier λ need not be the
same, though). The dimensionality of this space is four.

For the FQ4 model of water there are a number of symmetries. We have five independent
components of matrix A

A =


AHH AH′H AHL AHL

AH′H AHH AHL AHL

AHL AHL ALL AL′L

AHL AHL AL′L ALL

 (25.27)

where HH stands for the diagonal (quadratic) terms, HiHi, while H′H denotes the off-diagonal
terms, HiHj, i ̸= j. There are only two independent conditions (25.26). We therefore we will
impose AH′H = AL′L = 0. The solution is

δqH1 =
(4AHL − 2AHH − ALL)ΦH1 + (ALL − 4AHL)ΦH2 + AHH(ΦL1 + ΦL2)

2AHH(AHH + ALL − 4AHL)
(25.28)

and the remaining qi can be obtained by H1 ↔ H2 and H ↔ L symmetries.

For the FQ4 model of water in the standard orientation the polarizability tensor is diagonal
and thus the remaining three values, AHL, AH′H, AL′L, can be determined from the diagonal
components of the polarizability tensor.

Let the positions of charge sites are (with respect to Oxygen):

→
rH1 = (Hx, Hy, 0)

→
rH2 = (Hx,−Hy, 0) (25.29)

→
rL1 = (Lx, 0, Lz)

→
rL2 = (Lx, 0,−Lz) (25.30)
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The the polarizability tensor is

α = diag

(
2(Hx − Lx)

2

AHH + ALL − 4AHL

,
2H2

y

AHH

,
2L2

z

ALL

)
(25.31)

from which the unknown constants AHH, ALL, AHL can be readily calculated.

25.7.4 Implementation

Fluctuating charges are stored in the 2nd vector (rpol). ASPC is directly applicable.



Chapter 26

Time-reversible velocity predictor

Time-reversible predictors for Verlet+SHAKE with a velocity-dependent rhs have been
published [40]. For version with a barostat, see Sect. 12.3.2.

26.1 The task

Our task is to integrate numerically by the Verlet method (with optional SHAKE) the following
set of equations

ẍ = a(x, ẋ) (26.1)

where x stands for the set of
→
r i and the Nose variable ξ = ln s. The Verlet algorithm reads as

x(t+ h) = 2x(t)− x(t− h) + h2a(t) (26.2)

where ẋ(t) (needed to calculate a(t)) is not known. It may be expressed by

ẋ(t) =
x(t+ h)− x(t− h)

2h
+O(h2) (26.3)

but the resulting equations have to be calculated by iterations. If SHAKE is involved, the
SHAKE part must be repeated in this iteration. Another possibility is the velocity Verlet with
RATTLE.

26.2 MACSIMUS solution

MACSIMUS implements a set of predictors with a good time-reversibility. The velocity
predictor can be written in the form

ẋp(t) =
1

h

k+1∑
i=0

Aix(t− ih), (26.4)

The k + 2 Ai, i = 0, ..., k + 1 can be determined from the Taylor expansion of the right-hand
side

k+1∑
i=0

Aix(t− ih) =
∞∑
i=0

Xix
(i)hi (26.5)
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It must hold (k + 2 equations)

X0 =
k+1∑
i=0

Ai = 0

X1 = −
k+1∑
i=0

iAi = −1

X2 =
k+1∑
i=0

i2Ai = 0

X4 =
k+1∑
i=0

i4Ai = 0

...

X2k =
k+1∑
i=0

i2kAi = 0

The odd terms are not nullified because they are time-reversible.

The solution is

A0 =
2k + 1

k + 1

A1 = −2(2k + 1)
1

k + 2

A2 = +2(2k + 1)
k

(k + 2)(k + 3)

A3 = −2(2k + 1)
k(k − 1)

(k + 2)(k + 3)(k + 4)
...

MACSIMUS code uses expansion in the first differences

ẋp(t) =
k∑

i=0

Bi
x(t− ih)− x(t− (i+ 1)h)

h
(26.6)

with B0 = A0 and

Bj = (−1)j(2k + 1)
k(k − 1) · · · (k + 1− j)

(k + 1)(k + 2) · · · (k + 1 + j)
(26.7)

or recursively

B0 =
2k + 1

k + 1

Bj = −Bj−1 ·
k + 1− j

k + 1 + j
, j > 0

which is directly coded in MACSIMUS. The default is k = 2.

Several first predictors in the Verlet-style:

ẋp0(t) =
1

h
[x(t)− x(t− h)]
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ẋp1(t) =
1

h
[1.5x(t)− 2x(t− h) + 0.5x(t− 2h)]

ẋp2(t) =
1

h

[
5

3
x(t)− 2.5x(t− h) + x(t− 2h)− 1

6
x(t− 3h)

]
ẋp3(t) =

1

h
[1.75x(t)− 2.8x(t− h) + 1.4x(t− 2h)− 0.4x(t− 3h) + 0.05x(t− 4h)]

The same predictors in the leap-frog style, where v̇(t− h/2) = [x(t)− x(t− h)]/h, etc.

ẋp0(t) = v(t− h/2)

ẋp1(t) = 1.5v(t− h/2)− 0.5v(t− 3h)/2

ẋp2(t) =
5

3
v(t− h/2)− 5

6
v(t− 3h/2) +

1

6
v(t− 5h/2)

ẋp3(t) = 1.75v(t− h/2)− 1.05v(t− 3h/2) + 0.35v(t− 5h/2)− 0.05v(t− 7h/2)

26.3 Algorithm

One step of the combined Verlet+SHAKE method is

• calculate forces (accelerations) a(t) from known x(t)

• predict velocities ẋ from known x(t) − x(t − h), x(t − h) − x(t − 2h), . . . , x(t − kh) −
x(t− (k + 1)h)

• perform one step of the Verlet method (12.5) to get r(t+ h)

• run the SHAKE algorithm; x(t+ h) is modified and x(t+ h)− x(t) recalculated

• calculate the kinetic temperature (MACSIMUS supports several formulas, see the switch
VERLET; VERLET=9 uses the predicted value)

• perform one step of the Verlet method (12.5) to get ξ̇(t+ h) and ξ(t+ h)

• advance time, t := t+ h, and evaluate the Hamiltonian



Chapter 27

Always Stable Predictor-Corrector
(ASPC) instant

Based on papers [41, 42, 43, 44].

27.1 Task

To integrate numerically the Newton equations of motion

r̈i =
1

mi

f i(r1, . . . , rN ;µ1, . . . ,µm) (27.1)

where ri are positions of atoms (nuclei) and µi are any variables which are given by an implicit
equation of a self-consistent field type:

µi = M i(r1, . . . , rN ;µ1, . . . ,µm), i = 1, . . . ,m (27.2)

This equation must converge for all r1, . . . , rN from the trajectory and (a linearization of)
Mij = M i(µj) must be symmetric.

Example of µ: induced dipoles, µi = αiEi(r1, . . . , rN ;µ1, . . . ,µm), where Ei is the electric
field

27.2 ASPC

The recommended version with O(h7) time reversibility follows:

Predictor:

µp(t) = 2.8µ(t− h)− 2.8µ(t− 2h) + 1.2µ(t− 3h)− 0.2µ(t− 4h) (27.3)

where µ ≡ {µ1, . . . ,µm}, and similarly below.

Corrector:
µ(t) = ωM(r(t);µp(t)) + (1− ω)µp(t) (27.4)

where ω = 4
7
guarantees stability (for any converging SCF equation), but a certain ω > 4

7
may

give more accurate results.
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In the above equation, M(r(t);µp(t)) is calculated at time t and current r(t). Normally the
forces f(t) (along with E) are calculated at the same step. Then one step of Verlet gives r(t+h)
(which becomes r(t) in the next step) and the corrector gives µ(t) (which becomes µ(t− h) in
the next step, ready for the predictor).

The method may work also in certain cases of asymmetric Mij. It will probably work also for
complex µ.



Chapter 28

Specific heat CV in the molecular
dynamics microcanonical ensemble

In the canonical ensemble we have for the kinetic energy Ek and potential (configurational)
energy Ep:

VarEx = kT 2∂Ex

∂T
≡ kT 2E ′

x (28.1)

where x ∈ {k, p} and
Cov(Ep, Ek) = 0 (28.2)

E ′
k = fk/2 (28.3)

E ′
p + E ′

k = CV (28.4)

where f is the number of degrees of freedom and CV is the heat capacity (at constant volume)
of the whole system.

Thus the (unnormalized) probability distribution for given T and a state with given Ek and Ep

is:

w(T,Ep, Ek) ∼ exp

[
−
(δEp − E ′

pδT )
2

2VarEp

− (δEk − E ′
kδT )

2

2VarEk

]
(28.5)

where we linearize at certain point (T,Ep, Ek) = (T0, Ep,0, Ek,0), δX ≡ X − X0. In the MD
NVE ensemble there is Ep + Ek = const. We write Ep = −Ek ≡ E and express E ′

x via VarEx:

w(T,E) ∼ exp

[
−
(

1

2kBT 2E ′
p

+
1

2kBT 2E ′
k

)
δE2 −

(
E ′

p

2kBT 2
+

E ′
k

2kBT 2

)
δT 2

]
(28.6)

Note that there is no δEδT cross term! Thus, from the term at δT 2,

VarT =
kT 2

E ′
p + E ′

k

=
kT 2

CV

(28.7)

which is known formula for the fluctuation of temperature in the microcanonical ensemble –
useless for MD because we do not know T (the “kinetic temperature” derived from Ek is not
T ).

From the term at δE2 we have

VarE = VarEp = VarEk =
kBT

2

1/E ′
p + 1/E ′

k

=
kBT

2

1/(CV − E ′
k) + 1/E ′

k

(28.8)
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and because we know E ′
k finally

CV =
fk

2

( 2T 2

f VarTk
− 1

)−1

+ 1

 (28.9)

where Tk ≡ Ek/(fk/2) is the “kinetic temperature”.



Chapter 29

Dielectric constant in SI

The permittivity ϵ is defined via the electric field intensity
→

E and the electric displacement field
→

D. In SI it holds
→

D = ϵ
→

E = ϵ0ϵr
→

E (29.1)

where ϵ0 = 8.85418782e-12 F/m is the vacuum permittivity and ϵr is the relative permittivity
which equals the dielectric constant defined in the CGS units. The permittivity of an isotropic
medium is a scalar.

In CGS simply
→

D = ϵr
→

E (usually subscript r is not used, but we will keep it for clarity).
Note that MACSIMUS uses internally CGS-like (Gaussian electrostatic) units, however, it
transparently transforms the units mostly into SI; one notable exceptions is the dipole moment
where the internal units are used because it is not clear whether to prefer Debye or Cm.

The electric displacement is

→

D = ϵ0
→

E +
→

P SI
→

D =
→

E + 4π
→

P CGS

where
→

P =

→

M

V
(29.2)

is the electric polarization which equals the volume density of dipole moment
→

M ; this equation
in SI and CGS is formally identical, only the units differ.

For completeness, note the electric work per unit volume in both systems:

dW

V
=

→

E · d
→

D SI

dW

V
=

→

E · d
→

D

4π
CGS

29.1 Dielectric constant from external field

In simulations we apply an external (microscopic) field
→

E
ext

(entered as el.E[] in input data

in the SI units of V/m). The total intensity
→

E is a sum of the the external field and the
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field caused by charges in the system. It depends on the boundary conditions. In the Ewald
periodic boundary conditions we have a continuum (of relative permittivity1 ϵ′r = el.epsinf)
surrounding the infinite array of periodic boxes spherically in infinity; to be able to write

formulas, we will consider the radius R ≫ L. The polarization
→

P of the sphere is equivalent to
a point dipole 4

3
πR3P placed in the center. It induces charges at the surface of the R-cavity

and hence a field which damps the external field. It holds [45] (in SI):

→

E =
→

E
ext

− 1

ϵ0

→

P

2ϵ′r + 1
(29.3)

or equivalently
→

E =
3

2 + ϵ′r

→

E
ext

(29.4)

Let the external field acts in the direction of z (el.E[2]). During simulation we determine
quantity

χz =
⟨Mz⟩
ϵ0Eext

z V
(29.5)

or in the units used by MACSIMUS

χz =
4.4266218e+09× (Mz/prog.unit)

[Eext
z /(V/m)]× (V/Å

3
)

(29.6)

The dielectric constant is then

ϵr =
ϵ0Ez + Pz

ϵ0Ez

= 1 +
2ϵ′r + 1

2ϵ′r + 1− χz

χz = 1 +
1

1
χz

− 1
2ϵ′r+1

(29.7)

where we inserted Ez from (29.3). Some like the equivalent implicit formula,

χz =
(ϵr − 1)(2ϵ′r + 1)

2ϵ′r + ϵr
(29.8)

For the tin-foil boundary conditions (ϵ′r = el.epsinf = ∞) it holds ϵr = 1 + χz.

It is inefficient to use ϵ′r = 1 for models with large ϵr, because then χz is close to 3 and we
have 3 − χz in the denominator of (29.5). On the other hand, large ϵ′r increases correlation
length and may also lead to dipole moments close to saturation and systematic errors. Anyway,
stronger external field is needed to get the same response for small ϵ′r.

Formula (29.7) is exact for both polarizable and nonpolarizable systems provided that the
field is small enough. It is recommended to run several simulations with decreasing field (and
increasing length to compensate for decreased accuracy).

29.2 Fluctuation formulas

For the dipole moment of the simulation cell (one configuration of charges) under influence of
the external electric field in the z-direction it holds

→

M(
→

E
ext

) =
→

M(0) +
∂

→

M

∂
→

E
ext

→

E
ext

(29.9)

1For the short-range (cutoff) electrostatics el.epsinf = 1 (?)
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where ∂
→

M/∂
→

E
ext

stands for the induced dipole moment per unit electric field at constant
positions of atoms. (Generally, it is a tensor, however, the off-diagonal terms are small and
their average in isotropic systems is zero.) By repeating the derivation of the fluctuation formula
[45] we get a response caused by a small external field. We write it in the z-direction

⟨Mz(E
ext
z )⟩ =

(〈
∂M

∂Eext

〉
+

VarMz

kBT

)
Eext

z (29.10)

In isotropic systems VarM = 3VarMz. We will express the direct response by a dimensionless
number χhf (a sort of high-frequency susceptibility including boundary conditions2)

χhf =
1

ϵ0V

〈
∂Mz

∂Eext
z

〉
SI

χhf =
1

V

〈
∂Mz

∂Eext
z

〉
CGS

and the total response

χ = χhf +
VarM

3ϵ0V kBT
SI

χ = χhf +
VarM

3V kBT
CGS

Similarly as (29.7) and (29.8) one can derive

ϵr = 1 +
1

1
[4π]χ

− 1
2ϵ′r+1

(29.11)

or implicitly

[4π]χ =
(ϵr − 1)(2ϵ′r + 1)

2ϵ′r + ϵr
, (29.12)

where [4π] = 1 applies for SI and [4π] = 4π for CGS. Note that MACSIMUS calculates VarM
as ⟨M2⟩ unless an external field is applied; in the latter case ⟨Mz⟩2 is subtracted.

For polarizable models it remains to determine ⟨χhf⟩. MACSIMUS offers a direct numerical
method based on applying an external field (scf.E) and iterations until the dipoles are accurate
enough (scf.epsx, scf.omegax); the original and new dipole moment are subtracted and
divided by the field.

By the same arguments which lead from (29.3) to (29.7) one can relate the “susceptibility” χhf

to the high-frequency (instantaneous, optical) dielectric constant ϵhf ,

[4π]χhf = (ϵhfr − 1)
1 + 2ϵ′r
2ϵ′r + ϵhfr

(29.13)

It can be approximated by the the Clausius–Mossotti formula from the total polarizability
(assumed to be linear), see eq. (2.6) in [46] (with ϵhfr = ϵ∞)

ϵhfr − 1

ϵhfr + 2
=

1

3ϵ0V

∑
i

αSI
i =

4π

3V

∑
i

αi (29.14)

In the formula above, αSI
i is the SI polarizability of particle i and αi = αSI

i /4πϵ0 is its
polarizability volume (identical to “polarizability” in CGS and usually referred to as just

“polarizability”; in MACSIMUS measured in Å3). The induced dipole in SI is
→
µ = αSI

→

E =

4πϵ0α
→

E.

2Note that χSI = 4πχCGS
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29.2.1 Notes

Saturation

To be able to calculate saturation, the molecular dipole moments should be known. This
requires at least lag.M=1 even though with the Ewald summation the total dipole moment is
calculate in a different module.

Clausius–Mossotti

Eq. (29.14) is an approximation based on the assumption that a polarizable dipole is in a
spherical cavity surrounded by a continuum of the optical dielectric constant ϵhfr . An error in
determination of ϵhfr propagates to the final result more for ϵ′r = 1 and less for ϵ′r = ∞. E.g.,
for the DC97 water model, the error ϵhfr ± 0.01 causes the error ϵr ± 7 with ϵ′r = 1 while only
negligible ϵr ± 0.01 with ϵ′r = ∞.

Eq. (29.11) for ϵ′r = ∞ (tin-foil b.c.) reduces to

ϵr = ϵhfr + [4π]χ (29.15)

which is identical to the formula in [47].

Bug in cook V2.6e and older

In cook V2.6e and older, formula (SI):

χhf =
4π

V

∑
i

αi (29.16)

was incorrectly used. This formula neglects mutual interactions of induced dipoles. This
formula is identical to (29.14) for ϵ′r = 1 and also for small ϵhfr (a second-order term in
(ϵhfr − 1) ≈ 4π

V

∑
i α

2
i is neglected). E.g., for water at 25 ◦C there is 4π

V

∑
i αi = 0.616 and

ϵhfr = 1.775. The error caused by using equation (29.16) instead of (29.14) is 0.16, to be
compared to the bulk water value ϵr = 78.

CGS to SI conversion

quantity CGS → SI

c c→ 1/
√
ϵ0µ0

X =
→

E,U X →
√
4πϵ0X

D D →
√
4π/ϵ0D

X = Q, I,
→

P ,
→
µ X → X/

√
4πϵ0

ϵ ϵ→ ϵ/ϵ0

χ χ→ χ/4π

R R → 4πϵ0

Example: The CGS energy density (of linear material)

1

4π

→

E ·
→

D (29.17)



29: Dielectric constant in SI [Contents] – [Index] 324

transforms into
1

4π

√
4πϵ0

→

E ·
√
4π

ϵ0

→

D =
→

E ·
→

D (29.18)

29.3 Controlling saturation

The saturation of the dipole moment of the cell is for simulations with external electric
field in the z-direction defined by

S =
Mz∑
µ
, averaged: S =

⟨Mz⟩∑⟨µ⟩
(29.19)

where Mz is the z-component of the cell dipole moment and the sum is over molecule dipole
moments. Thus, the denominator is the maximum dipole moment of the cell with all molecules
aligned. (For nonpolarizable models µ are constants, for polarizable models the molecule dipole
moments depend on the field. In either case the maximum saturation is 100%.) Technical note:
with the Ewald summation, at least lag.M=1 is needed.

For zero-field simulations (fluctuation formula route) we define the saturation as

S =
|M |∑
µ
, averaged: S =

⟨M2⟩1/2∑⟨µ⟩
=

√
VarM∑⟨µ⟩

(29.20)

The systematic error of the dielectric constant depends quadratically on the saturation,
δϵr ∝ S2. In contrast, the statistical error is inversely proportional, δϵr ∝ S−1. Usually
S = 0.1 guarantees the systematic error about S2 ≈ 1% which is comparable to a statistical
error in moderately long runs.

It may be difficult to set the parameters (ϵ′r in the fluctuation route and Ez in the external
field route). MACSIMUS supports an automatic procedure for this setup. Variable el.sat is
the target saturation. The controlling parameter, xinf = 1/(2ϵ′r + 1)3 or Ez, is adjusted by
a procedure similar to the Berendsen thermostat or barostat with estimated correlation time
tau.sat (in ps). Recommended tau.sat are a few ps for setting the electrostatic field; the real
tau.sat is only slightly longer. For the fluctuation route much longer tau.sat is needed, in
addition, the real correlation time is shorter. The correlation time grows with system size. In
both cases the simulation time should be several correlation times.

The values of parameters el.epsinf and el.E are not stored in the .cfg file, however, they are
not reset between sweeps unless explicitly specified. If you wish to restart the simulation, you
should take the last average from the .prt file (section “saturation autoset”) and use it in the
input data. Alternatively, you may use a negative tau.sat which works as for |tau.sat| and
the following actions are performed:

• The calculated average4 is assigned to the respective variable, el.epsinf or el.E.

• init=1 is assigned to be used for the next sweep (you may override it, e.g., by init=2 at
next sweep start).

• tau.sat=0 is assigned.

3This is the M2 coupling constant, see (24.6)
41/(2ϵ′r + 1) for zero field
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This way a productive run may start. In case of restart you still MUST write the used
el.epsinf or el.E to the data! Examples:

• field route:
el.sat=0.1 tau.sat=1 el.E[2]=2e8 no=10/(h*noint);

init=1 tau.sat=-3 no=10/(h*noint);

no=1000/(h*noint);;;;;

It is useful to add Ez to the .cpi-file to monitor convergence; it is in the program units, 1
p.u. = 3.522592e8 V/m.

• fluctuation route:
el.sat=0.1 tau.sat=1000 el.epsinf=50 no=500/(h*noint);

init=1 tau.sat=-3000 no=500/(h*noint);

no=1000/(h*noint);;;;;

It is useful to add xinf = 1/(2 ∗ el.epsinf+ 1) = 1/(2ϵ′r+1) to the .cpi file to monitor
convergence; also available but less useful is einf = el.epsinf = ϵ′r. The obtained ϵ′r as
well as 1/(2ϵ′r+1) may be negative. There is no problem with the method and calculated
values of ϵr if ϵ

′
r is “unphysically” negative.

In the first approximation, the dielectric constant depends on the saturation by

ϵ(S) = ϵ(0) + aS2 (29.21)

where the typical values of a are between −ϵ and −ϵ/2. Thus, to obtain ϵ with a 1% precision,
the saturation should be S ≤ 0.1; smaller values increase the statistical error.

29.3.1 Extrapolation to zero saturation

Some efficiency is gained by extrapolation. We assume that the dependence of the dielectric
constant on S2 is linear, ϵ(S) = ϵ(0)+ aS2, where a is a constant. Our task is to determine S1,
S1 < S2, as well as the corresponding computer times, t1 and t2 (given the sum t = t1 + t2) so
that the resulting dielectric constant is as accurate as possible. From two equations

ϵ(S1) = ϵ(0) + aS2
1

ϵ(S2) = ϵ(0) + aS2
2

one can readily calculate

ϵ(0) =
S2
2ϵ(S1)− S2

1ϵ(S2)

S2
2 − S2

1

(29.22)

The standard error δϵ(0) of ϵ(0) is given by

δϵ(0)2 =

(
S2
2

S2
2 − S2

1

)2

δϵ(S1)
2 +

(
S2
1

S2
2 − S2

1

)2

δϵ(S2)
2. (29.23)

If the saturation is small, the error in determining ⟨Mz⟩ may be considered as independent on
the saturation. Hence from (29.5) and the saturation definition it follows that the error of χz

is inversely proportional to the saturation and if this error is small enough, the same holds
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true for the error in the dielectric constant. For long enough simulations, the error is inversely
proportional to the square root of the time. We may then write

δϵ(S) =
δ

t1/2S
. (29.24)

By inserting this approximation into (29.23) and denoting x = S2
1/S

2
2 , we arrive at

δϵ(0)2 =
δ2

S2
2

1

(1− x)2

(
1

xt1
+

x2

t− t1

)
(29.25)

which is to be minimized for x ∈ (0, 1) and t1 ∈ (0, t). The result is x = 1/4 (i.e., S1 = S2/2)
and t1 =

8
9
t.

We will therefore run two simulations, one with external field Ez,2 (chosen so that the
saturation does not exceed the linear region) and time (number of steps) t2, and the other
with Ez,1 = Ez,2/2 and time t1 = 8t2.

In order to assess the impact of nonlinearity of ϵ(S2), let us assume that the first nonlinear
term b in the expansion ϵ = ϵ(0) + aS2 + bS4 is at least very approximately known.

From (29.22) it follows that the systematic error of ϵ is then

δsysϵ = −S2
1S

2
2b = −bS

4
2

4
. (29.26)

Typical values of b are usually aroud a/2; for b ≈ a and target precision 1% we have S2 ≤ 0.45.
or, to be even more pessimistic, S2 ≈ 0.4.

The statistical error of the optimized (29.25) is

δstatϵ =
3δ

t1/2S2

. (29.27)

This error for S2 = 0.4 is 7.5/t1/2 while for the method without extrapolation (S = 0.1) it is
10/t1/2, i.e., the extrapolation method is almost twice as efficient (half CPU time is sufficient).

The algorithm may be:

1. Run a short simulation with el.sat = S2 = 0.4 or less (in dependence on the system)
using the autoset feature (el.sat) and determine the field Ez.

2. Run a productive simulation with this field Ez.

3. Run an 8-times longer simulation with field Ez/2.

4. Extrapolate using (29.22).

Similar optimization formula for the fluctuation method contains values of ϵr and χ∞, which
are unknown in advance. In addition, the saturation itself is determined with low precision
which makes reliable extrapolation (with error estimation) difficult.

Notes: cook does not print dielectric constant calculations if there are free ions in the system.



Chapter 30

Fourier transform

30.1 Basic formulas

The basic formula in 1D is
f̃(k) =

∫ ∞

−∞
f(x) exp(−ikx)dx (30.1)

and the inverse transform is

f(x) =
1

2π

∫ ∞

−∞
f̃(k) exp(ikx)dk. (30.2)

In 3D

f̃(
→

k) =
∫
f(

→
r) exp(−i

→

k · →
r)d

→
r, f(

→
r) =

1

(2π)3

∫
f̃(

→

k) exp(i
→

k · →
r)d

→

k. (30.3)

If f(
→
r) is spherically symmetric, then (30.3) becomes

f̃(k) =
∫ ∞

0
r2dr

∫ 1

−1
d cos θ

∫ 2π

0
f(r) exp(−i cos θkr). (30.4)

After performing the integration over angles

kf̃(k) = 4π
∫ ∞

0
sin(kr)rf(r)dr (30.5)

and back in the same way

rf(r) =
1

2π2

∫ ∞

0
sin(kr)kf̃(k)dk. (30.6)

30.2 Implementation

The Fourier transforms in MACSIMUS (see gen/fourier.c, gen/fft.c and gen/fft.h), are
implemented as generalized fast Fourier transform. The number of points n is factored and the
algorithm proceeds recursively by taking the prime factors. The cases 2 and 3 are optimized.
The efficiency deteriorates for large factors.

In addition to the basic complex Fourier transform, transforms of real, even and odd functions
as well as the 3D Fourier transform are available.

327
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30.3 Structure factor

To derive formula (14.24) for SIJ , let us start from the definitions of gIJ :

gIJ(r) = V ⟨δ(rij − r)⟩ ×
{
1− 1/NI for I = J
1 for I ̸= J

, (30.7)

where i(j) is any atom of type I(J), respectively, and δ is the Dirac delta-function. By taking
the Fourier transform of (30.7) (for I ̸= J):

∫
(gIJ(r) exp(−i

→

k · →
r)d

→
r = V ⟨exp(i

→

k · →
r i) exp(−i

→

k · →
r j)⟩ = V

⟨Q∗
I(

→

k)QJ(
→

k)⟩
NINJ

(30.8)

and using (30.11), one gets the partial structure factors

SIJ(k) = 1 +N

⟨Q∗
I(

→

k)QJ(
→

k)⟩
NINJ

− 1

 (30.9)

and finally (14.24).

30.3.1 Mixtures

Formula (14.24) comes from the following ‘combining rule’ for the ‘partial structure factors’
SIJ , where uppercase letters I, J index species:

S =
∑
I

∑
J

wIJSIJ , wIJ =
NIbINJbJ
(
∑

I NIbI)2
(30.10)

and NI is the number of atoms of species I. Note that
∑

I NIbI =
∑

j bj.

For the ‘partial structure factors’ SIJ it holds

SIJ = 1 +
N

V

∫
(gIJ − 1) exp[−2πi

→

k · →
r ]dr (30.11)



Chapter 31

Slab cutoff corrections

MACSIMUS supports two ways how to correct for cutting off the site–site (Lennard-Jones-like)
interaction in the slab geometry:

1. Post-processing – cheaper, easier, faster, less accurate: The correction is estimated from
the calculated Z-density profiles at the end of the simulation, see Sect. 31.2. The
simulation runs with the truncated potential; consequently, the structure (mainly liquid
density) of the slab is not corrected.

2. Fourier tranform slab cutoff correction – slower (by a few %), more difficult to set up, more
accurate: Integrated forces and energy in the z-direction are added during the simulation;
consequently, the structure of the slab is corrected as well and the liquid density is more
accurate, See Sect. 31.1.

Additional corrections should be in general taken into account:

1. The stacking correction caused by van der Waals attraction of the z-periodic array of
slabs, see Sect. 31.3 and variables slab.ext.*.

2. Dipole-dipole attraction of slabs (Yeh–Berkowitz correction), see variable el.corr, also
see Sect. 15.9.

3. Physical finite-size effects caused by capillary waves.

31.1 Fourier transform slab cutoff correction

This method is available since V2.9b, slab geometry in configure.sh or #define SLAB in
simopt.h is required. See also variables slab.K and slab.range.

31.1.1 Truncated site–site potential

Let u(r) be the interatomic potential at atom-atom separation r. In the simulation, we use a
truncated and smoothed (but not shifted) potential uMD(r),

u(r) = uMD(r) + ∆u(r), (31.1)

where the correction ∆u(r) = 0 for r < C1 and C1 is the inner cutoff, see Sect. 11.4.

The following formulas are implemented in sim/xforces.c and sim/slabmeas.c.

329
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31.1.2 One atom: energy correction

For estimating the correction we will approximate the discrete distribution of identical particles
by the z-density profile, N (z), where z ∈ [0, Lz] and Lx, Ly, Lz are the sides of the rectangular
periodic simulation box. The density profile is defined as the x, y-averaged number density
so that there are LxLy

∫ b
a N (z)dz particles in interval z ∈ [a, b]. Since we use the periodic

boundary conditions, we define N (z + nLz) = N (z) for integer n; i.e., we interpret the system
as composed of z-periodic layers. The correction to energy of a particle at point

→
r i = (xi, yi, zi)

interacting with the layers is given by the functional

S(N (z); zi) =
∫ ∞

0
2πrdr

∫ ∞

−∞
dzN (z)s(r2 + (z − zi)

2), (31.2)

where s(r2) = ∆u(r) and we chose x0 = y0 = 0 because of the x,y translational invariance. In
addition, the lower bound of the first integral can be replaced by [max{C2

1 − (z − zi)
2, 0}]1/2

because s(r2) = 0 for r < C1.

Let us approximate the z-density profile by the Fourier series up to certain number of waves
K. In the complex notation

N (z) =
K∑

k=−K

Nke
2πikz/Lz , (31.3)

where

Nk =
1

Lz

∫ Lz

0
dz e−2πikz/LzN (z). (31.4)

For a discrete set of N particles (one configuration)

Nk =
1

V

N∑
i=1

e−2πikzi/Lz , (31.5)

where V = LxLyLz is the volume.

Correction (31.2) with one density wave e2πikz/Lz instead of N (z) can be again approximated
by the Fourier series up to K,

S(e2πikz/Lz ; zi) =
K∑

m=−K

Skme
2πimzi/Lz , (31.6)

where

Skm =
1

Lz

∫ Lz

0
dzi e

−2πimzi/LzS(e2πikz/Lz ; zi)

=
1

Lz

∫ Lz

0
dzi e

−2πimzi/Lz

∫ ∞

0
2πrdr

∫ ∞

−∞
dz e2πikz/Lzs(r2 + (z − zi)

2).

Let us substitute z− zi → ∆z. The Jacobian of this transformation is unity. After rearranging

Skm =
2π

Lz

∫ ∞

−∞
d∆z

∫ ∞
√

max{C2
1−∆z2,0}

rdrs(r2 +∆z2)
∫ Lz

0
dzi e

2πi[k∆z+(k−m)zi]/Lz . (31.7)

The last integral equals Lz for k = m and zero otherwise; thus, only the diagonal terms Skk are
nonzero. By substitution r2 − (z− zi)

2 → 1/u (note that the London term 1/r6 is transformed
to u3 so that no singularity appears) we get

Skk = π
∫ ∞

−∞
d∆z e2πik∆z/Lz

∫ 1/max{C2
1 ,∆z2}

0
du

s(1/u)

u2
. (31.8)
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It follows from the ∆z → −∆z symmetry that Skk are real. Thus we can integrate over positive
∆z and take twice the real part of the result; in addition, non-negative wave numbers, k ≥ 0,
are enough (so they are for Nk; we do not assume a symmetry of the z-density profile and keep
the imaginary parts of Nk, though). Therefore

Skk = 2π
∫ ∞

0
d∆z cos(2πk∆z/Lz)

∫ 1/max{C2
1 ,∆z2}

0
du

s(1/u)

u2
. (31.9)

The range of the second integral gets narrower as ∆z increases and the correction decays fast
with the distance; thus, replacing

∫∞
0 ∆x by

∫ 8Lz
0 ∆x is accurate enough and still fast to evaluate.

In some cases even
∫ Lz/2
0 ∆x may be sufficient, but not for determining the zz component of

the pressure tensor for, e.g., vapor–liquid phase equilibria.

Coefficients Skk can be tabulated in advance. The integration over u is implemented via the
Gauss formula 4-th order formula, over ∆z and zi by the trapezoidal rule.

At every MD step, Nk are calculated first. We use the direct evaluation (the only optimization
is that e−2πimzi/Lz is calculated as powers [e−2πizi/Lz ]m), but “particle mesh” algorithms known
from the k-space sums of the Ewald summations are possible.

The final expression for the energy correction in the complex notation is

S(zi) =
K∑

k=−K

SkkNke
2πikzi/Lz (31.10)

which with the complex numbers expanded becomes

S(zi) = S00ReN0 + 2
K∑
k=1

Skk [ReNk cos(2πkzi/Lz)− ImNk sin(2πkzi/Lz)] . (31.11)

31.1.3 One atom: force correction

The correcting force is simply minus the gradient of S(zi),

f(zi) =
4π

Lz

K∑
k=1

kSkk [ReNk sin(2πkzi/Lz) + ImNk cos(2πkzi/Lz)] . (31.12)

This force also enters the virial of force needed to evaluate the pressure tensor.

31.1.4 Mixture of sites

The extension to mixtures is tedious, but straightforward. Let the number of site types be m.
For every correction, we have to calculate m density profiles, with K k-components for each,
N j

k , j = 1..m. The constants Skk must be precalculated for all pairs, Sjl
kk, j = 1..m, l = 1..m.

The correction for atom of type l is (in the complex notation)

Sl(zi) =
m∑
j=1

K∑
k=−K

Sjl
kkNke

2πikzi/Lz (31.13)

and analogously for forces.
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31.1.5 Total energy correction

The total energy correction is one half (to avoid counting the pair interactions twice) of the
sum of the corrections over all atoms,

1

2

∫ Lz

0
dzN (z)S(z). (31.14)

It can be approximated in the k-space by replacing both functions by their (truncated) Fourier
expansions. The result is

Ecorr =
V

2

K∑
k=−K

|Nk|2Skk. (31.15)

This result is identical to one half of the sum of (31.10) over all atoms are identical because both
formulas are based on the same truncated expansion and either can be used in the computer
code.

The extension to mixtures is straightforward,

Ecorr =
V

2

K∑
k=−K

m∑
j=1

m∑
l=1

N j
kN l∗

k S
jl
kk, (31.16)

31.1.6 Virial of force correction

The virial of force (its zz component) cannot be calculated in the periodic boundary conditions
by summing up the terms zifi. The contribution to the pressure tensor component can be
obtained by scaling the box in the z-direction:

Pzz,corr = − dEcorr

LxLydLz

=
1

V

Ecorr −
1

2

K∑
k=−K

|Nk|2S ′
kk

 (31.17)

where

S ′
kk = 2π

∫ ∞

0
d∆z sin(2πk∆z/Lz)(2πk∆z/Lz)

∫ 1/max{C2
1 ,∆z2}

0
du

s(1/u)

u2
. (31.18)

In the x, y directions, the contribution is related to the energy in the same way as for the
homogenerous corrections, namely

Pxx,corr = − dEcorr

dLxLyLz

=
1

V
Ecorr. (31.19)

The surface tension is (15.23)

γ = −3

4
LzPt = −1

4
Lz[Pxx + Pyy − 2Pzz]. (31.20)

Thus, the terms containing Ecorr cancel out in Pt. The correction is

γcorr =
Lz

4V

K∑
k=−K

|Nk|2S ′
kk. (31.21)

The extension to mixtures is straightforward.



31: Slab cutoff corrections [Contents] – [Index] 333

1 2 3

C2/nm

6

7

8

γ
/[

m
N

/m
]

uncorrected

post-corrected

Figure 31.1: Post-corrected surface tension, calculated from one configuration of liquid argon,
N = 8000, σLJ = 3.405 Å, ϵLJ = 119.8K kB, in dependence on the cutoff C2 = LJcutoff, see
(11.26).

31.2 Post-processed slab corrections

A less accurate (and a bit faster) slab cutoff correction method is bases on a simulation with
uncorrected forces. Cutoff corrections are calculated after the simulation from the final z-
density profiles by a 2D numerical integration over slabs. This was the only method available
prior V 2.9b. Since the structure of the slab (slab width, density at slab center) is affected by
the cutoff, this method captures only a part of the correction and does not correct the z-profiles.
The protocol is requested by slab.mode&1. Note that the correction is over periodically stacked
slabs in the z-direction (see the stacking correction below).

Generally, the Fourier transform slab cutoff correction method is preferred.

The homogeneous correction, corr&3 should be zero with this method; however, since the
trajectory is not affected, the correct (back-corrected) results are printed even if you forget to
turn off corr&3.

The algorithm has been described in [48]. We write the total interatomic potential as

uij = uij,MD +∆uij. (31.22)

Let Ni(z) denote the z-density profile of atom (site) i. The correction in the averaged potential
energy E (residual internal energy) can be approximated by integration over all (assuming
uncorrelated) positions of pairs ij and then by summing over all pairs

∆E =
∑
i<j

∫
Ni(zi)d

→
r i
∫
Nj(zj)d

→
r j ∆uij(rij)∫

Ni(zi)d
→
r i
∫
Nj(zj)d

→
r j

. (31.23)
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This can be partly integrated and rearranged to a 3-dimensional integral,

∆E =
∑
i<j

∫
Ni(zi)dzi

∫
Nj(zj)dzjIij(|zi − zj|)

LxLy

∫
Ni(zi)dzi

∫
Nj(zj)dzj

, (31.24)

where

Iij(z) =
∫ ∞

0
2πrdr∆uij(

√
r2 + z2) = 2π

∫ 1/max(c1,z)

0

dt

t3
∆uij(1/t). (31.25)

In practical evaluation we first calculate, for all atom type pairs ij, tables Iij(z) by a fourth-
order Gaussian integration over dt. The same grid given by slab.grid is used for both Iij(z)
and Ni(z). Then the integrals over dzi and dzj are numerically evaluated by the trapezoidal
rule with the same grid as Ni(z). For determining the surface tension correction, term ∆u in
the above formulas should be replaced by

∆u −→ Lz

4V

x2 + y2 − 2z2

r
∆u′(r) (31.26)

and then

Iij(z) =
Lz

4V
2π
∫ 1/max(c1,z)

0

dt

t2
[1/t2 − 3z2]∆u′ij(1/t) (31.27)

in (31.24) gives ∆γ instead of ∆E.

The performance of the algorithm is seen in fig. 31.1. The surface tension was calculated
from one configuration of liquid argon (thus, the influence of the cutoff on the structure is not
taken into account) in the slab geometry, N = 8000, box=(72, 72, 216)Å, vdW radius=3.822 Å
(σLJ = 3.405 Å), 512 histogram bins in the z-range. The correctness of the algorithm is proven.
The systematic error is better than 1% for the cutoff less than about 4 Lennard-Jones sigmas;
this value depends on the grid used, though.

31.3 Slab stacking corrected

The above corrections apply for an infinite array of z-stacked slabs. However, we are interested
in slabs of infinite thickness of both phases. The final correction for the stacking may be
estimated from the calculated z-density profiles (post-processing, see below) by comparing two
results:

1. The original calculation based on the calculated z-profiles (section in the protocol named
“surface tension”).

2. A calculation with density profiles extended in the z-direction (both slabs are thicker). See
variables slab.ext.center, slab.ext.span, slab.ext.zero and section of the protocol
called “EXTENDED SLABS”.

Numerical results indicate that the stacking correction is small; nevertheless, greater than the
correction explained above.

Fine enough z-histogram grid and long LJ cutoff are neeed for the calculation.

31.3.1 Stacking error for van der Waals forces

Since the stacking error is small, it may be useful to have a simple analytic formula.
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Surface tension in simulations

Let us consider N particles in a periodic box of dimensions (Lx, Ly, Lz) in the “slab geometry”,
i.e., with a liquid slab perpendicular to the z axis. Typically Lx = Ly and the ratio Lz/Lx is
about 2–3.

The surface tension is determined by formula (15.23),

γ = −3

4
PtLz, (31.28)

where the tangent stress is

Pt =
Pxx + Pyy − 2Pzz

3
(31.29)

and (Pxx, Pyy, Pzz) are the diagonal components of the pressure (stress) tensor. They are
calculated from the energy of the box by derivatives over volume, which are interpreted with
respect to the desired change of the volume and shape (see also 15.7 and 15.8.4)

Pxx =
NkBT

V
−
(
dE

dV

)
x-scaled

=
NkBT

V
− 1

LxLy

dE

dLz

. (31.30)

In the simulation, energy E is the averaged internal energy (or total energy if velocity-dependent
constrained forces are present). The ideal gas (kinetic) parts, NkBT/V , cancel out in Pt.

Stacking error

Surface tension should be calculated from one slab of liquid; however, in the slab geometry
there is an infinite sandwich of slabs stacked in the z-direction. These slabs attract each other
by the van der Waals forces causing the “stacking error”. Here we will estimate this error
assuming vacuum instead of the gas phase (zero vapor pressure) and homogeneous liquid slab.

Let us consider N identical particles in the box interacting at separations of the slabs only by
the van der Waals pair potential

u(r) = −Cr−6. (31.31)

One particle interacts with an xy-periodic infinite plane containing a smooth distribution of
particles of surface density one particle per area LxLy by potential

u2(z) = − C

LxLy

∫ ∞

0

2πrdr

(
√
z2 + r2)6

= − C

LxLy

π

2z4
, (31.32)

where z is the distance of the particle from the plane.

Thin slabs

As a reference, let us consider first thin slabs stacked Lz apart. The energy of the mutual
interaction of these slabs is (per one box)

E0 = −N2
∞∑
n=1

u2(nLz) = −N2C

LxLy

π5

180L4
z

. (31.33)

The sum is over positive subscripts only to avoid including the pair interactions twice.



31: Slab cutoff corrections [Contents] – [Index] 336

The corresponding pressure contribution in the z-direction is obtained by the virtual scaling of
the box,

Pz0 = −dE0

dV
= − 1

LxLy

dE0

dLz

=
π5CN2

45L5
zL

2
xL

2
y

, (31.34)

where the ideal gas (kinetic) part is omitted. Components in the x and y directions are obtained
in the same way. From (31.28) we get the correction (o be added)

∆γ0 = −π
5C

120

N2

L4
zL

2
xL

2
y

= − Aπ3

120L2
z

, (31.35)

where A is the Hamaker constant of the simulation box assumed to be homogeneous (all −C/r6
terms smeared out).

Thick slabs

We assume that the thickness of a liquid slab is s and that it contains N uniformly and smoothly
distributed particles. The interaction energy between slabs (excluding any interaction within a
single slab) is

E =
∞∑
i=1

∫ iLz+s

iLz

dz2

∫ s

0
dz1

N

s
u2(z2 − z1) = E0f(s/Lz), (31.36)

where function f is

f(x) =
15π2x2 cot2(πx) + 10π2x2 − 15

π4x4
. (31.37)

Note that limx→0 f(x) = 1 and f(0.5) = 1.589.

The corresponding surface tension is

∆γ = ∆γ0f(s/Lz) (31.38)

with the same function f because the derivatives in (31.30) are performed at x = s/Lz

constant (the whole configuration is scaled). The above correction is negative (the attraction
of slabs decreases the apparent surface tenson); −γ (positive number) should be added to the
simulation-based value to get the corrected result.

The correction to the vapor pressure is then

∆Pzz =
2∆γ

Lz

. (31.39)

Algorithm test

As a fool-proof test of the algorithm, we compared the above formulas with the corections
calculated using the post-processing calculation from extended z-profiles using a Lennard-Jones
crystal1. We used the Lennard-Jones argon (σLJ = 3.405 Å, ϵLJ = 119.8 K kB) and a slab of the
fcc crystal with 4 atoms in a unit cell of side 5.2488179 Å. The box was (10a, 10a, nza) with
the slab 20a thick. The cutoff was C2 = 20 Å (note that the slabs are farther away than C2).
The results are:

1Of course, the surface tension of a crystal cannot be calculated from the tangent stress; however, the
corrections can.
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nz x = s/Lz −E/Jmol−1 −γ/µNm−1

eq. (31.36) crystal eq. (31.38) crystal

43 0.465 139.7071 138.518 12.631 12.522

68 0.294 17.4346 17.247 1.5763 1.5584

136 0.147 0.9776 0.965 0.0884 0.0871



Chapter 32

Correcting the angular momentum

The linear momentum is exactly conserved (if the symmetry allows) with any finite-difference
integrator, it is thus subject to rounding errors only. In contrast, the angular momentum is
conserved (in the free boundary conditions) subject to numerical errors proportional to some
power of the timestep (h2 with Verlet). In further text we assime that the configuration is
centered to the center of mass (

→
rcenter of mass = 0).

If a body or a configuration rotates with angular velocity
→
ω, then the velocity of atom i is

→
v i =

→
ω × →

r i. (32.1)

The angular momentum is
→

M =
∑
i

→
r i ×mi

→
v i. (32.2)

By inserting for
→
v i from (32.1) we get

→

M =
∑
i

→
r i ×mi(

→
ω × →

r i) =
∑
i

mi

[
r2i

→
ω − ri(ri ·

→
ω)
]
=

↔

I · ω, (32.3)

where
↔

I is the inertia tensor (see also (2.2))

↔

I =
∑
i

mi(
→
r
2
i

↔

δ − →
r i

→
r i), (32.4)

↔

δ denotes the unit tensor and
→
r i

→
r i is the tensor (outer) product of both vectors.

To set the angular momentum to zero,
→

M is calculated first from (32.2), then the inertia tensor
↔

I from (32.4). The velocities are corrected by

→
v i :=

→
v i −

→
ω × →

r i, where
→
ω =

↔

I
−1

·
→

M. (32.5)

For the implementation, see variable drift.

Note: The kinetic energy of rotation is

Ekin rot =
1

2

→
ω ·

↔

I · →
ω =

1

2

→
ω ·

→

M =
1

2

→

M ·
↔

I
−1

·
→

M
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Chapter 33

Electronic continuum correction (ECC)

See [49] and notes.pdf, see also scripts U.sh and P.sh.

Applies if compiled with #define ECC. See quantities el.ecc and el.epsf.

The ECC potential energy and the corresponding pressure are divided into three parts:

U = U1 + U2 + U3, P = P1 + P2 + P3, (33.1)

U1, P1 includes all non-electrostatic forces (Lennard-Jones) and for pressure also the kinetic
contributions and with constraint dynamics (SHAKE) also the virial of constraint forces.

U2, P2 comes from ∂U2/∂V , where U2 are all pair interactions (including Ewald k-space
terms) of scaled charges including the dependence of epsf on volume.

P3 is the Born (for charge) or Lorentz (for dipole) solvation energy (in radius R calculated
from system density; again, ∂R/∂V is taken into account).

Since cook version V3.4a, the following quantities are printed:

ECC Epot The ECC potential energy U = U1 + U2 + U3

ECC Uscaled The conventional energy U1 + U2.

ECC PLJ P1

This includes the kinetic + Lennard-Jones (or similar) terms. The kinetic terms include
the ideal gas contribution, NkBT/V , whereN is the number of real sites (not dependants).
For models with constraints, the pressure caused by the virial of constraint forces, (15.12),
is included here, too.

ECC P2corr P2 − P 2, where P 2 = U2/3V .
This is the correction to the formula based on sites (therefore, the virial of constraint
forces should be included).

ECC P2full P2 calculated by the virial theorem.
It means that P2 = U2/3V based on ion-ion scaling r−1 and scaling P2 = U2/V based on
dipole–dipole r−3 scaling is included (cannot combine dipoles and ions). For atomic ions
and dipoles, this equals the true P2. For finite-size ions and dipoles with fixed bonds, this
term becomes inappropriate and the corresponding ECC approximation inconsistent, see
ECC P.

339
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ECC P3full P3

ECC P3corr P3 − P 3, where P 3 = U3/3V

ECC P3ref P 3 = U3/3V

ECC Pvir Pressure literally from the virial theorem, but without dependence of the terms on
volume: Pvir = P1 + P 2 + P 3.

1

ECC P The ECC pressure P = P1+P2+P3 with all corrections, calculated as Pvir + P2corr

+ P3corr. For point ions, this is the same as PLJ + P2full + P3full.

ECC Pscaled The conventional pressure with scaled charges, but no epsf-dependence taken
into account. The same as Pvir - P3ref.

Since cook V3.4a, the ECC pressure is used internally for pressure. However, variable box (as
in NPT ) is not fully supported because el.epsf is not recalculated when volume changes.
(This is likely easily doable, but I do not need it now).

In addition, other quantitites subject to the electronic continuum correction are not corrected.
Therefore, electric conductivity and dielectric constant have to be multiplied by el.epsf. This
applies to versions V3.4a or older.

1Prior V3.4a, this was called (misleadingly) P (the usual MACSIMUS pressure).
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[30] J. Kolafa, F. Moučka, I. Nezbeda: Handling Electrostatic Interactions in Molecular
Simulations: A Systematic Study Collect. Czech. Chem. Commun. 73, 481–506 (2008).

[31] Z. Akdeniz, G. Pastore, M.P. Tosi: Phys. Chem. Liq. 32, 191 (1996); Z. Akdeniz, G.
Pastore, M.P. Tosi: Nuovo Cimento, 20, 595 (1998).

[32] J. Applequist, J. R. Carl, K.-K. Fung: J. Am. Chem. Soc. 94, 2952 (1972).

[33] A. Aguado, P.A. Madden: J. Chem. Phys. 119, 7471 (2003).

[34] G.J. Gloor, G. Jackson, F.J. Blas, E. de Miguel: Test-area simulation method for the
direct determination of the interfacial tension of systems with continuous or discontinuous
potentials, J. Chem. Phys. 123, 134703 (2005).



33: References [Contents] – [Index] 343

[35] R. L. Davidchack, B. B. Laird: Direct calculation of the crystal–melt interfacial free energies
for continuous potentials: Application to the Lennard-Jones system, J. Chem. Phys. 118,
7651 (2003).

[36] F. Cleri, V. Rosato: Tight-binding potentials for transitional metals and alloys, Phys. Rev.
B 48, 48–33 (1883).

[37] M. P. Allen and D. J. Tildesley, The Computer Simulation of Liquids, 1987 (Clarendon).

[38] Baranyai A., Kiss P. T.: A transferable classical potential for the water molecule, J. Chem.
Phys. 133, 144109 (2010).

[39] S. W. Rick, S. J. Stuart, B. J. Berne: J. Chem. Phys. 101, 6141 (1994).
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che, 21
chemical file, 65
chemical potential, 239
chirality, 21, 61
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density profile, 136
densprof, 285
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dielectric constant, 115, 116, 320, 324
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evu, 260
Ewald parameters setting, 152
Ewald summation, 301
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field, 258
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fix atom, 211
force field, 16
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Fourier transform, 327
frame, 285
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get data, 37, 104
GPL, 1
graphics, 39
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hbonds, 279
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initial configuration, 121, 178
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integration method, 94
interface

Gibbs energy, 227
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interrupt, 39, 92, 147
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lattice, 298
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mar, 296
mark, 235
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mean square displacement, 29



33: Index [Contents] – [Index] 348
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molcfg, 289
molecular dynamics
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MSD, 29
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normal mode, 32
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NPT, 141, 171
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optimization, 44
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parameter set, 64
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write, 28
pdb, 264
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plbbox, 285
plbconv, 284
plbcut, 285
plbinfo, 284
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plot, 255
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pressure tensor, 160, 219
probe, 35
protein in water, 82, 250

quadrupole moment, 43

radial distribution function, 192, 277
radial distribution functions, 132
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ramachan, 295
Ramachandran plot, 295
ray, 290
raytracing, 290
RDF, 132, 192, 277
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reaction, 35
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saturation, 324
scrolling, 19, 95, 268
sfourier, 278
SHAKE, 130, 155
shear viscosity, 186
shift, 135
show, 290
show molecule, 39
showcp, 273
shownear, 288
slab, 137, 223
slit pore, 230
smoothg, 277
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spectrum, 281
spline, 163
stacking correction, 334
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statistical error, 182
statistics, 123
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stereo, 293
stress tensor, 160, 219
structure factor, 190, 328
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surface tension, 223
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temperature, 140
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timestep, 121, 162
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Verlet, 155
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virtual area change, 224
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viscosity, 186, 237
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vshift, 144

wall, 230
Widom method, 239

z-profile, 136
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