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We consider molecular dynamics simulations of the electrophoretic motion of charged polymers
in straight cylinders and cylinders with a periodic variation (or modulation) of the diameter. The
electric field is always orientated along the axis of the cylinders, and it does not change direction.
The fluid is modeled explicitly, also the co-ions, counterions, and the charged polymer monomers.
In straight geometries, we observe no separation effect for a wide range of applied electric fields.
In modulated geometries, the charged polymer chains can be separated only at low fields. At large
fields, we observe separation effects in modulated geometries only if the applied field is a dc pulse
electric field. A simple scaling theory to explain the observed behavior is presented. © 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4794195]

I. INTRODUCTION

The migration of charged polymer chains under the in-
fluence of electric fields in solution is a complex transport
problem of high interest in the field of biotechnology, and
separation science technology. The history of the subject
spans several decades, starting with capillary zone elec-
trophoresis experiments, and subsequent improvements by
using alternating fields,1, 2 to more recent advances us-
ing nanoscale devices.3–12 As repeatedly observed in elec-
trophoresis experiments in free solution, charged polymer
chains driven by external constant fields move with elec-
trophoretic velocities independent of the chain length.13 This
is a consequence of the balance between forces of electric
origin, which are long-range Coulomb interactions between
the charged chains and the co-ions and counterions present
in solution, and hydrodynamic forces (also long range) due
to the solvent.14 In particular, for distances larger than De-
bye length, the hydrodynamic forces are generally assumed
to be screened, while inside the Debye layer, the electric driv-
ing force is almost balanced by the electroosmotic flow of
the counterions.15 The full analytical solution of the elec-
trophoretic transport has been obtained before for charged
colloidal particles in laminar flow, but electrokinetic solutions
for flexible charged chains, in arbitrary environments, still re-
main challenging and can be obtained only numerically.16

In the present molecular dynamics simulations, we con-
sider the electrophoresis of charged chains in free solution
in confining straight cylinder geometries and cylinders with
a periodic modulation of the diameter (Fig. 1). The applied
electric field is always along the cylinder axis and can be con-
stant, or square pulse field. Pressure-driven flow experiments
reporting length- and topology-dependent separation but for

a)Electronic mail: nedelcu@ipfdd.de.
b)Electronic mail: sommer@ipfdd.de.

a slit-well geometry (or nanogroove arrays) are reported for
example by Mikkelsen et al.17

As it is known from electrophoresis in free solution,
charged chains are able to change shape by folding, extend-
ing, contracting, tying themselves into knots, etc. Since the
hydrodynamic friction depends on the chain shape and the
electro-osmotic flow within the Debye layer,18, 19 the modu-
lated geometries allow us to control these factors and ulti-
mately to separate the chains by size. Specifically, we con-
sider two chain lengths N = 70 and N = 150. We choose
the size and shape of the cavities such that at equilibrium, the
N = 70 chain can be entirely contained in one single cavity,
while the chain with N = 150 monomers spans two cavities
(Fig. 2). The constrictions between cavities act as potential
barriers (see, for example, Slater’s work in Ref. 20). When the
applied field is turned on, and maintained constant, the short
chain moves forward by successive jumps, from one cavity to
the next. In contrast, the longer chain has a smoother motion
since it always extends on two cavities, which makes the po-
tential barriers appear lower. As a result of different heights
of the barriers, the chains move with different velocities, and
therefore can be separated. In these type of experiments, the
diffusion processes, which are chain length dependent, play
no role. It is thus not surprising that at high fields, when
the potential barriers become next to negligible, both chains
move with equal velocities. When the constant applied field
is changed from a constant field into a pulse field, the diffu-
sion effects become important and charged chains can again
be separated, as we shall discuss below. The full process is
therefore a combination of forces due to polymer elasticity,
diffusion, and barrier potentials.

We note here that our final aim is to obtain the passage
of the chains through constrictions dependent on chain length
even at high electrophoretic velocities. This process may de-
pend on the particular shape of the constriction and also on the

0021-9606/2013/138(10)/104905/8/$30.00 © 2013 American Institute of Physics138, 104905-1
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FIG. 1. (Top) Schematic cross-section of (dashed) constant, and (black) pe-
riodically modulated diameter cylinders. (Middle) The corresponding sur-
face gradient R′(z) as a function of z-coordinate. (Bottom) The driving pulse
electric field of maximum amplitude E‖ as a function of time. The off-time
window takes 70% of a time period T = 578τ . δ notes the diameter of the
constriction.

length of the on-off time windows of the applied electric field.
These, however are very complex issues, and for the case of
applied pulse fields, we investigate only a restricted, proof-of-
concept setup, where the off-time window of the field takes
70% of a time period. For the case of constant applied electric
fields, we fit our simulation results to a proposed scaling the-
ory. When the applied fields are of pulse type (mixed biased
diffusion and free diffusion), the scaling theory is augmented
to account for the relaxation of the chains during the off-time
window of the applied electric field.

II. METHOD

The polymers in the simulations are bead-spring mod-
els where each monomer interacts with its connected neigh-
bors though a finite-extensibility-nonlinear-elastic (FENE)
potential

UFENE = −kR2
0 log(1 − (r/R0)2), (1)

where k = 30, R0 = 3σ is the maximum extension of the bond,
r is the distance between beads, plus a short-range Lennard-
Jonnes potential

ULJ = ε

((
σ

r

)12

−
(

σ

r

)6)
, (2)

where ε and σ are the unit energy and unit length, respec-
tively. We use a cutoff for the LJ potential at

√
2σ and a shift

to retain only the repulsive part of the potential. Additionally,

FIG. 2. Illustration of a sample configuration from molecular dynamics sim-
ulations of (black) charged polymer chain of length N = 150, (green) coions
and (red) counterions in confining cylinder of variable diameter. The chain
extends on two neighboring cavities and passes through constrictions by
forming loops. (The direction of motion is from right to left.) For clarity,
the solvent molecules are not represented here.

we add an angle harmonic potential K(θ − θ0)2 between ad-
jacent bonds, where K = 100 and θ0 = 145◦. The stiffness of
the chain is introduced with the intent to make one chain span
two cavities. If the polymer chains are less stiffer, then the
size of the cavities is to be adjusted accordingly, in the sense
that these must be made smaller. Each chain monomer car-
ries a negative electric charge and interacts with co-ions and
counterions through long-ranged Coulomb potential

UC = 1

4πεε0

qiqj

r2
, (3)

where qi is the charge and ε = 80 is the dielectric constant of
the solvent.

The fluid is modeled explicitly by neutral beads, which
interact with each other through LJ forces. The monomer
number density of the fluid monomers is set at 0.82σ−3. The
particles are restricted to the interior of a cylinder of con-
stant, or variable diameter and can only leave, and enter the
simulation box in the z-direction. The 3D-shape of the mod-
ulated diameter cylinder is obtained by a revolution about
z-axis of the curve −1.5|Sin[c]|9 + |Cos[2c] + 0.9|, where
c = 0.146(z − 26.9). Hence, the diameter of the modulated
cylinder varies between 4.8σ and 18σ . As a comparison, the
average bond length of the polymer chain is ≈1.15σ , and
the straight cylinder diameter is 12σ . In the x= and y= di-
rections, the size of the simulation box is a few times larger
than the largest diameter of the cylinder. This assures that the
electrostatic interactions, which are calculated using 3D peri-
odic boundary conditions and Ewald summation method, are
negligible in these directions. We built the cylinder surface
using neutral monomers, which interact through LJ forces
with the fluid and the polymer chains. The surface is rela-
tively closely packed such that no fluid monomers can leave
the cylinder in the x−, or y− direction. To possibly enhance
the separation resolution at the edges of the connecting chan-
nels, we introduced slight steps, which can be seen from the
drop in R′(z) in Fig. 1.

The number of counterions in the volume of the simula-
tion box is of the order of thousands and gives a Debye length
of λD =

√
2z2e2n∞/εkBT = 4.75σ . For comparison, the gy-

ration radius of the chain with N = 70 monomers when the
cylinder walls are removed is Rg(N = 70) ≈ 11.78σ . This
places the Debye layer thickness in the lower thin layer limit,
since λ−1

D Rg(N = 70) ≈ 2.48 is not much larger than unity.
The simulations were carried out separately for each

chain length using LAMMPS (http://lammps.sandia.gov), and
in particular the CUDA-USER package for accelerating the cal-
culation of the electrostatic interactions using graphical pro-
cessing units. The ensemble used is canonical (NVT) with
a Nose-Hoover thermostat,21 at a reduced temperature of
3kbT/ε. The time step used in the simulations is 
t = 0.008τ ,
where τ is the unit LJ time.

III. RESULTS AND DISCUSSIONS

In a classical straight cylinder, of uniform diameter, the
polyelectrolytes move with electrophoretic velocities vz inde-
pendent of N for much of the interval of the applied electric
fields (Fig. 3). This type of geometry serves only as a refer-
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FIG. 3. Electrophoretic velocities vz of charged chains of length N as a func-
tion of the applied field E‖ in uniform (noted cyl.) and modulated (noted
mod.) diameter cylinders, and in modulated cylinders under pulse field of
amplitude E‖ (noted −�−). The error bars are smaller than the symbol size.
(The off-time window of the pulse field is 70% of a time period.)

ence, since we aim to distinguish between the two test charged
chains when they travel at higher velocities. By introducing a
periodic modification of the diameter of the cylinder along
the main axis, we introduce in effect a periodic energetic
potential barrier in the z-direction, which results in elec-
trophoretic velocities dependent on N at low field values, and
independent of N at larger fields. The differences in chain ve-
locities shown in Fig. 3 are better emphasized in Fig. 4, which
shows for a few particular cases the average positions after an
elapsed set time of the applied electric field.

Considering yet the modified geometry under constant
applied fields, the range of low values is where the short chain
motion appears discontinuous, made of fast jumps with ve-
locity vt from one cavity to the next (Fig. 5). The jumps are
interleaved with stationary positions located at the center of
the cavities, which take a time of the order of tb (Fig. 5). At
larger applied fields, the potential energy barriers are reduced
and the time tb spent by the chains in cavities becomes negli-
gible, as we shall discuss in Sec. IV. Consequently, both short

cyl. E 0.08

m od . E 0.08

_ _ Eeff 0.26

_ _ Eeff 0.39N 150
N 70

5

10

15

20
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30

102 z

FIG. 4. Bar diagram of average positions z after a set time interval of elec-
trophoresis of charged chains of length N in constant (noted cyl.) and variable
diameter (noted mod.) cylinders under constant applied fields E‖, and sim-
ilar positions in modulated cylinders (noted −�−) in applied pulse fields of
relative strength Eeff (= E‖/3).
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FIG. 5. Schematic illustration on the center of mass motion z = z(t), at con-
stant low fields E‖ = 0.08, of the trapping time tb of charged chains in the
cavities of modulated diameter cylinders and the transit velocity vt through
constrictions.

and long chains move at high fields with the same velocity
(Fig. 3). As compared with the constant diameter cylinder, the
modified geometry proves therefore to be successful, at least
from the point of view of the separation resolution, since now
chains can be distinguishable even if they move with higher
electrophoretic velocities.

We keep the modified cylinder geometry and exchange
the constant applied field for a pulse field. The square pulse
field is simply a succession of on/off-time windows during
which the chains are periodically driven through and let to
relax to equilibrium. If the effect of constrictions on the elec-
trophoretic motion is reflected by the parameters tb and vt ,
then for the case of pulse fields, the effect of relaxation can
be seen on the trajectory of the center of mass as a back-
track motion (Fig. 6). The mixing of biased diffusion with free
diffusion results therefore in a strong coupling between elec-
trophoretic velocity, chain elasticity, and external potential.
The electrophoretic velocity is then chain-length dependent
for a larger interval of applied fields. Just as for the two cases
discussed above, it becomes independent of chain length at
very large electric fields (Fig. 3).

We consider briefly hydrodynamic effects. If a long poly-
mer chain had been a solid object, such as, for example, a
cylinder with rounded tops, we could possibly use classical
formulas to estimate the hydrodynamic resistance met by the
charged chain during electrophoretic motion. These classical

0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

104 tim e

10
2

z Eeff 0.26

N 70 _ _
N 150 _ _

FIG. 6. Illustrative trajectories at small time scale of the center of mass mo-
tion of charged chains in modulated diameter cylinders under pulse electric
fields. The relaxation (or free diffusion) of the chains in the off-time window
of the pulse field appears as a backtrack motion and makes the trajectories
appear zigzagged.
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FIG. 7. The long time average of the transverse radius of the chain normal-
ized by the bond length b as a function of constant applied field E‖ in constant
(noted cyl.), variable diameter cylinders (noted mod.), and in pulsed fields
(noted −�−). The error bars are smaller than the symbol size. (In the case
of pulse fields, E‖ is rescaled by a factor of 1/3 to account for the off-time
window of a time period.)

formula in their simplest form would require as input simple
information about the object, such as cylinder radius and axial
length, assuming that the cylinder is more or less aligned with
the driving force during motion. The hydrodynamic friction
would then be proportional with the product of fluid viscos-
ity, square of the radius, and axial length.

However, as noted above, the charged chains are not solid
objects, but rather flexible and because of the confinement sol-
vent monomers must flow not only around the charged chains,
as in Zimm’s hydrodynamic model,22 but also through the
charged polymer coils. The porous nature (from a hydrody-
namic point of view) of the polymer coil renders therefore in-
applicable the classical formula for hydrodynamic resistance.

To have at least a qualitative measure of hydrodynamic
resistance, we can nevertheless use the gyration tensor. Since
the confining geometry is cylindrical, the flexible chains must
assume a cylindrical shape. We use the x and y components
of the gyration tensor, Rx

g and, respectively, R
y
g , to define the

chain radius
√

R
xy2
g =Rx2

g +R
y2
g

1/2
(Fig. 7). We may also call this

the transverse radius, because it is measured in a plane per-
pendicular to the symmetry axis of the cylindrical geometry.
We define the length of the chain as the average extension
of the chain in the z-direction. The extension is noted with
|zmax − zmin|, and is a time average value, where zmax and zmin

are the z-coordinates of the rightmost and, respectively, left-
most z-coordinates of chain monomers (Fig. 8). As defined,
the chain z-extension is not the same as the classical end-to-
end distance, which is the average distance between the first
and the last monomer of the chain.

We consider first the straight cylinder geometry and con-
stant applied electric fields. The transverse radii R

xy
g of the

two chains are similar, and nearly constant for the full range
of applied fields. The z-extension of the chains does, how-
ever, change with the applied electric field. At low fields,
|zmax − zmin| has the largest value and then decreases as the
field increases. The decrease in the z-extension of the chains
may seem counter-intuitive, and indicates that the chains com-
press themselves into more compact shapes as they travel
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0.0

0.2
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FIG. 8. Projected length |zmax − zmin| in the field direction normalized by
the contour length Nb of the chains. The legend notation is the same as in
Fig. 7. The error bars are smaller than the symbol size.

faster at high fields. The effect is purely hydrodynamic. Fur-
ther, if we assume that the driving force of the chains increase
in the same ratio as their contour lengths, and noting from
Fig. 8 that |zmax − zmin| ≈ N, it follows that the electric driv-
ing force is perfectly balanced by hydrodynamic friction. The
end result, as noted above, is that the chains move with the
same electrophoretic velocity at high fields.

Second, we consider the modulated geometries and con-
stant applied fields. Here, the chains thread through constric-
tions, which a have smaller diameter than the diameter of the
expansion chambers, and therefore the long time averages of
R

xy
g can be larger than the radius of the straight cylinders,

which is in between the two values (Fig. 1). The transverse
radii decrease slightly with increasing field, up to E‖ ≈ 0.2.
This effect indicates a preferential orientation of the chains
in the field direction, with increasing velocities. This has the
result that |zmax − zmin| also increases (Fig. 8). This behavior
is quite dissimilar to the case of electrophoresis in constant
diameter cylinders, and is simply a consequence of the phys-
ical barriers posed by the constrictions, because the narrow
connecting channels between the cavities force a preferential
orientation of the chains as they pass through. At low fields,
the reorientation processes coupled with the fact that the trap-
ping time in the cavities depends on chain length N leads to
electrophoretic velocities dependent on N. At high fields, the
barrier effect is much reduced, as shown for example by the
transit velocities (Fig. 9), and finally both chains move with
similar electrophoretic velocities.

Finally, we consider the case of variable-diameter cylin-
ders and applied pulse fields. We note that both the trans-
verse radii and the z-extensions are qualitatively similar to
the case of modulated cylinders and constant applied fields.
There are, however, additional relaxation effects during the
off-time window of the applied field that must be taken into
account. These relaxation effects are inherently chain-length
dependent, which lead to separation by size of the polyelec-
trolytes at fields as high as E‖ = 0.8 (Fig. 3). Beyond this
field value, which is particular to the present setup, the relax-
ation effects have a diminishing impact on the electrophoretic
motion, and the chains move with the same velocity.
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FIG. 9. Transit velocities vt and average electrophoretic velocities vz of
the charged chains driven in modulated diameter cylinders as a function of
the applied field E‖ (not pulse field). At high fields, both vt and vz coincide.
The largest chain of N = 150 passes through constrictions almost unhindered,
at fields E‖ > 0.08.

IV. SCALING THEORY

We present in the following a scaling theory for the trap-
ping time tb of the shortest chain as a function of the applied
electric field E‖. For the purpose of clarity, we reduce the cav-
ities (Fig. 2) to simplified cylinders of uniform diameter R0

and the connecting channels to cylinders of uniform diameter
δ (Fig. 10).

Here, we consider that at equilibrium and in the absence
of the applied field, the chain can be entirely contained into
one cavity. The migration of the charged chain as a func-
tion of the applied electric field can then be divided into three
regimes.23

The first migration regime is at low applied electric fields
when the chain is in equilibrium in a cavity, without enter-
ing the connecting channel yet. The energy barrier is sim-
ply the sum of entropic and electric free energies. To de-
rive these two expressions, we consider a compression blob
model of the chain, where the number of monomers in a com-
pression blob is g ∼ (�/(Na3))1/(3ν −1), where a is the bond
length. The entropic free energy due to volume interactions is

then

Fent ∼ kBT (((Nνa)3)/�)1/(3ν−1) (4)

and the electric free energy contribution is

Felec ∼ NqeE‖L, (5)

where L is the chain projection in the z-direction. The ef-
fective charge of the chain is assumed to be equal to the
bare charge, which is the case when counterion condensa-
tion effects are negligible. The maximum barrier potential
is attained when the total free energy Fent + Felec is at a
maximum. Solving ∂(Fent + Felec)/∂L = 0 for L it follows
that L∗ = (kBT )(3ν−1)/3νN (1/3ν)R

−2/3ν

0 (qeE‖)(1−3ν)/3ν and the
equilibrium number of monomers in a compression blob

g∗ ∼ (
qeE‖a/(kBT )Na2/R2

0

)−1/(3ν)
. (6)

In the second regime, at higher applied electric fields, the
chain penetrates into the connecting channel. We note with x
the position of the first monomer/blob of the chains and with
n the numbers of chain monomers in the connecting channel.
In this regime, we assume that the size of the compression
blobs is the same as δ, the diameter of the connecting cylinder
(Fig. 10). The entropic energy per monomer after entry is
∼kBT/gin, where gin ∼ (δ/a)1/ν , and the free energy per
monomer behind the channel is kBT/g*. Similarly, the electric
contribution to the total free energy is ∼ −nqeE‖x. It is im-
portant to note here that the field inside the connecting chan-
nel is assumed to be unperturbed from the field in the cavity
(the channel walls are assumed electrically non-conducting).
The total free energy can therefore be written as following:24


F ∼ kBT (1/gin − 1/g∗)(gin/δ)x − qeE‖(gin/δ)x2, (7)

where x = (n/gin)δ. The height of the potential barrier 
U
appears at x = x* and results from the condition of maximum
of the total free energy 
F:


U ∼ (kBT )2/(qeE‖(δ/gin))(1/gin − 1/g∗)2. (8)

From Eq. (8), it is noted that the entry barrier depends on the
chain length and decreases with increasing chain length.24

L

Ξ

R0

Δ

x

Ro

FIG. 10. (Left) Schematic representation of a compression blob model of a chain squeezed in a cylindrical confining cavity of diameter R0. At equilibrium
between forces of entropic and electric origin, the chain occupies the confined volume � = LR2

0 . (Right) At higher applied electric fields, n monomers of the
chain are pushed into the connecting channel of diameter δ for a distance x.
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The trapping time, or the escape time τ of the chain
which passes from one cavity to the next by surmounting
the potential barrier 
U can be obtained by solving the one-
dimensional Fokker-Plank equation25, 26 for the potential F(x)
given in Eq. (7):

∂P (x, t)

∂t
= ∂

∂x

1

γ (x)

[
∂F (x)

∂x
+ ∂

∂x
kBT

]
P (x, t), (9)

where γ (x) = ηx is the x-dependent friction coefficient.23 The
solution of Eq. (9), with reflective boundary at x = 0 and ab-
sorbing boundary at x = x0 � x* (here, x* is the position
inside the channel where the total free energy Eq. (7) is at
maximum) can be written as following:23

τ =
∫ x0

0
dx · x · e


F (x)
kB T

∫ x

0
dx ′ 1

x ′D(x ′)
e
− 
F (x′ )

kB T , (10)

where D(x) � kBT/γ (x). Using the short notation


F/(kBT ) = Ax − Bx2, (11)

where

A = 1

δ

[
1 −

(
δ

a

)1/ν(
qeE‖a
kBT

· Na2

R2
0

)1/(3ν)]
(12)

and

B = qeE‖
kBT δ

·
(

δ

a

)1/ν

, (13)

then the last integral in Eq. (10) can be greatly simplified con-
sidering that the term exp(−
F(x′)/(kBT)) is very small at x*
= A/(2B) and thus

∫ x

0
e−Ax ′+Bx ′2

dx ′ =
√

π

2

1√
B

. (14)

This term is a constant, which can be taken out of the first
integral in Eq. (10). On the other hand, this integral is sharply
peaked at x* and it can be simplified to the following relation:

∫ x0

0
xeAx−Bx2

dx =
√

π

2

1√
B

x∗ · e
U/(kBT ). (15)

The final expression for the mean escape time τ is then:

τ ∼ η

kBT

x∗

B
e
U/(kBT ) ∼ η

kBT

A

B2
eA2/(4B). (16)

We are reminded here that Eq. (16) is valid if the size of a
cavity is larger than �, and the diameter δ of the connecting
channels is sufficiently large that a blob theory can be formu-
lated. It is also assumed that the size ξ of a compression blob
is independent of chain length N. The height of the potential
barrier 
U is larger than the thermal energy, i.e., 
U � kBT,
which after using Eqs. (6) and (8) reduces to the inequality
qeE‖δ/(kBT ) � (R2

0/(Nδ2))6ν/(2−3ν).
Upon increasing the applied electric field, we enter the

last regime where the chains encounter negligible potential
barriers, and migrate with the same electrophoretic velocities.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
10

100

1000

104

105

E

t b

th eory
N 70 m od .
N 150 m od .

FIG. 11. (Points) Log-linear plot of the trapping time tb of the chains in
the cavities of the variable diameter cylinder as a function of the applied
electric field E‖ (not pulse) and (continuous line) scaling prediction from Eq.
(16). Only at the lowest field value tb could be measured for the chain with
N = 150.

For the chain with N = 70 monomers migrating in modu-
lated cylinders, under constant applied electric field, the trap-
ping times tb measured according with the sketch in Fig. 5
are fit with the above Eq. (16) over the middle interval of
fields. Considering the various approximations made in the
scaling theory (neglect of the charge-charge interactions and
the straightening of the rounded shape of the cavities), the
agreement with the scaling theory in Fig. 11 appears to
be reasonably good. At very high fields, the above scaling
of τ = τ (E‖) predicts a strong decrease with the field. In
this regime, the chain mobility approaches a plateau value
(Figs. 12 and 13).

In the case of pulse electric fields, a scaling theory can be
similarly constructed by taking the weighted average of the
above trapping time during the on-time window of the pulse
field, with the relaxation time τ 0 during the off-time window.
To estimate τ 0, we first notice in Fig. 6 that the motion of
the center of mass of the chain during the off-time window of
pulse fields is in opposite direction to the direction of motion
in the on-time window. This means that the chain, when the
field is switched off, is most likely found in a state where it
tries to reach the maximum of the potential barrier. The prob-
lem is therefore of finding the exit time of the chain from

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.02

0.04

0.06

0.08

E

Μ z

N 70 m od .

N 70 cyl.

N 150 m od .

N 150 cyl.

FIG. 12. Electrophoretic mobilities μz of the chains in straight and variable
diameter cylinders as a function of the applied electric field.
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FIG. 13. Electrophoretic mobilities μz of the chains under applied pulse
electric fields E‖ in variable diameter cylinders. (E‖ is rescaled by a factor
of 1/3 to account for the off-time window of the time period.) As a reference,
the electrophoretic mobilities μz of the chains under applied constant electric
fields from Fig. 12 are also reproduced here.

inside a connecting channel into a cavity. Assuming that the
first monomer/blob of the chain is initially at x in the interval
(0, x*) then the mean exit time through the particular end at x
= 0 is as follows:26

τ0 ∼ x(2x∗ − x)

3D
, (17)

where D ∼ 1/R‖ is the diffusion constant of a chain with
N monomers.27 The chain extensions in the axial direction
R‖ = |zmax − zmin| are shown in Fig. 8. If we focus on the
largest values of E‖, or equivalently Eeff, we notice from
Fig. 8 that R‖ ∼ N . From Eq. (17), it follows that the delay
due to relaxation processes, which depends on the depth x at
the time the applied field was switched off, is given by the
following relation:

τ0 ∼ x(2x∗ − x)N. (18)

The probability of exiting through point x = 0 depends on x
and is proportional with (x* − x)/x*.26 Since the most part
of the escape time during the field-on state is spent by the
chain trying to reach the maximum of the potential barrier at
x*, it follows that if the chain just passed the maximum of
the potential barrier at x*, then during the off-time window
of the field it will not retract into the cavity it came from,
but simply move forward. However, if the chain is not yet at
x → x* then26

τ0 ∼ (x∗2)N. (19)

Considering that x* = A/(2B) and B = B(E‖) increases with
the applied field while A = A(E‖) decreases with the field,
and here also the trapping time tb during the on-time win-
dow is almost negligible, independent on N, it follows from
Eq. (19) that the influence of τ 0 on the electrophoretic ve-
locity becomes negligible and thus independent of N at very
high fields. This trend is eventually observed in Fig. 13 at
Eeff ≈ 0.4.

V. CONCLUSIONS

In summary, we performed molecular dynamics simula-
tions of electrophoretic motion of charged chains in classi-
cal constant, and variable diameter cylinder geometries. The
modulated cylinders are in a sense similar to a series of
nanopore constrictions connected by expanding chambers.
From these computer experiments, we showed that in constant
diameter cylinders, charged chains driven by constant electric
fields move with electrophoretic velocities, which quickly be-
come independent of chain length as the field is increased. In
modulated geometries (or straight cylinders of variable diam-
eter), the size-separation of charged chains can be achieved
with a higher resolution than in constant diameter cylinders
if the applied fields are weak. Here, it is important to have in
the design expansion chambers that are tailored to the chain
sizes that we want to separate. For two chain sizes, the cavities
should be large enough to contain the short species, but not the
largest. Naturally, the method would not work for chain sizes
very close to each other, because of fluctuations.

At high fields, as shown, both constant and variable di-
ameter geometries lead however to velocities independent of
N. A strong coupling between forces due to chain elastic-
ity, diffusion processes, and external potentials, must enter
into the description of the problem if faster separation of the
charged chains by size is required. We showed that by mixing
biased diffusion in modulated geometries and relaxation pro-
cesses, which in fact amounts to using pulse electric fields, the
separability limit, where the chains can still be distinguish-
able, can be pushed to even higher velocities. Nevertheless,
at high fields, the electrophoretic velocities of the chains be-
come once again independent of chain length. This observa-
tion leaves the door open for further improvements in elec-
trophoresis of charge chains, particularly, for studies on the
effect of the on-off time windows of the pulse electric field, di-
electrophoretic effects,28, 29 separability resolution as a func-
tion of device parameters, or use of pre-filtration systems.
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