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The configurational entropy of ice is calculated by thermodynamic integration from high to low temper-
atures. We use Monte Carlo simulations with a simple energy model which reproduces the Bernal–Fowler
ice rules. This procedure is found to be precise enough to give reliable values for the residual entropy sth

of different ice phases in the thermodynamic limit. First, we check it for a two-dimensional ice model.
Second, we calculate sth for ice Ih, and compare our result with those previously given in the literature.
Third, we obtain sth for ice VI, for which we find a value clearly higher than for ice Ih.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction Configurational disorder of protons in ice was first studied by
Water is known to show a wide variety of solid phases, and in
fact, 16 different crystalline ice phases have been identified so far
[1,2]. The determination of their crystal structures and stability
range in the pressure–temperature phase diagram has been a mat-
ter of research for several decades. However, despite the large
amount of experimental and theoretical work on the solid phases
of water, some of their properties still lack a complete understand-
ing. This is mainly due to their peculiar structure, where hydrogen
bonds between contiguous molecules give rise to properties some-
what different than those of most known liquids and solids [3–5].

In all ice phases (with the exception of ice X), water molecules
appear as well defined entities forming a network connected by H-
bonds. In this network each water molecule is surrounded by four
others in a more or less distorted tetrahedral coordination. The ori-
entation of each molecule with respect to its four nearest neigh-
bors fulfills the so-called Bernal–Fowler ice rules. These rules
state that each H2O molecule is oriented in such a way that its
two protons point toward adjacent oxygen atoms and that there
must be exactly one proton between two contiguous oxygen atoms
[6]. In the following we will refer to these rules simply as ‘ice rules’.

The presence of orientational disorder in the water molecules is
a property of several ice phases. While the oxygen atoms show a
full occupancy (f) of their crystallographic positions, the hydrogen
atoms may display a disordered spatial distribution as indicated by
a fractional occupancy of their lattice sites. Thus, ice Ih, the stable
phase of solid water under normal conditions, presents full proton
disorder compatible with the ice rules, i.e., occupancies of H-sites
of f ¼ 0:5. However, other phases such as ice II are H-ordered,
while others as ice III are characterized by a partial proton order-
ing, i.e., some fractional occupancies of H-sites are different from
0.5.
Pauling [7], who estimated its contribution to the entropy of a crys-
tal of N molecules to be S ¼ NkB lnð3=2Þ. This combinatorial esti-
mate turned out to be in good agreement with the ‘residual’
entropy derived from the experimental heat capacity of ice Ih
[8,9], although the calculation did not take into account the actual
structure of ice Ih. Nagle [10] calculated later the residual entropy
of hexagonal ice Ih and cubic ice Ic by a series method, and found in
both cases very similar values, which turned out to be close to but
slightly higher than the Pauling’s estimate. More recently, Berg
et al. [11] have used multicanonical simulations to calculate the
configurational entropy of ice Ih, assuming a disordered proton dis-
tribution compatible with the ice rules. Moreover, several authors
have calculated the configurational entropy of partially ordered ice
phases [12–14], a question that will not be addressed here.

Ice-type models are important not only for condensed phases of
water, but also for other kinds of materials showing atomic disor-
der [15], as well as in the statistical mechanics of lattice models
[16,17]. Although exact analytical solutions for the ice model in
the actual three-dimensional ice structures are not known at pres-
ent, an exact solution was found by Lieb for the two-dimensional
square lattice [18,19]. In this case, the configurational entropy re-
sults to be S ¼ NkB ln W , with W ¼ ð4=3Þ3=2 ¼ 1:5396, somewhat
higher than the Pauling value WP ¼ 1:5.

In this Letter, we present a simple, but ‘formally exact’ method, to ob-
tain the configurational entropy of H-disordered ice structures. It is
based on a thermodynamic integration from high to low temperatures,
for an ice model which reproduces the ice rules at low temperatures.

2. Computational method

To calculate the configurational entropy of the different ice
structures, we consider a simple model. The only requirement for
this model is that it has to reproduce the ice rules at low temper-
ature. Thus, irrespective of its simplicity, it can give the actual en-
tropy if an adequate thermodynamic integration is carried out.
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For concreteness, we summarize the ice rules [6]:

(1) There is one hydrogen atom between each pair of neighbor-
ing oxygen atoms, forming a hydrogen bond.

(2) Each oxygen atom is surrounded by four H atoms, two of
them covalently bonded and two other H-bonded to it.

Our model is defined as follows. We consider an ice structure as de-
fined by the positions of the oxygen atoms, so that each O atom has
four nearest O atoms. This defines a network, where the nodes are
the O sites, and the links are H-bonds between nearest neighbors.
The network coordination is four, which gives a total of 2N links,
N being the number of nodes. We assume that on each link there
is one (and only one) H atom, which can move between two posi-
tions on the link (close to one oxygen or close to the other).

Given a configuration of H atoms on an ice network, the energy
U is defined as:

U ¼
XN

n¼1

EðinÞ ð1Þ

where the sum runs over the N nodes in the network, and in is
the number of hydrogen atoms covalently bonded to the oxygen
on site n, which can take the values 0, 1, 2, 3, or 4. The energy
associated to site n is then EðinÞ ¼ jin � 2j (see Figure 1), having
a minimum for in ¼ 2, which imposes the fulfillment of the ice
rules at low temperature. In this way, all hydrogen configurations
compatible with the ice rules on a given structure are equally
probable in the low-temperature limit, i.e., it is implicit in the
model that all configurations obeying the ice rules have the same
energy.

We note that this simple model, although it is a convenient tool
for our present purposes, does not represent any realistic inter-
atomic interaction, in the sense that we are not dealing with a real
ordering process, but with a numerical approach to ‘count’ H-dis-
ordered configurations of ice. Since the entropy is a state function,
one can obtain the number of configurations compatible with the
ice rules by a kind of thermodynamic integration from a reference
state (T !1) for which the H configuration is random (does not
respect the ice rules), to a state in which these rules are strictly ful-
filled (T ! 0). We note that in our calculations we use reduced
variables, so that all quantities such as the energy U and the tem-
perature T are dimensionless. The entropy per site s that we calcu-
late is therefore related with the physical configurational entropy S
as S ¼ NkBs.

The heat capacity per site,

cvðTÞ ¼
1
N

dhUi
dT

ð2Þ

has been obtained from the energy fluctuations at temperature T, by
using the expression [20]
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Figure 1. Sketch of the different hydrogen configurations around an oxygen atom.
Open and solid circles represent oxygen and hydrogen atoms, respectively. For each
configuration, i is the number of H atoms close to the central oxygen, gðiÞ indicates
its multiplicity, and EðiÞ refers to its energy in the model described in the text.
cvðTÞ ¼
ðDUÞ2

NT2 ; ð3Þ

where ðDUÞ2 ¼ hU2i � hUi2. The configurational entropy per site can
be obtained from the heat capacity by thermodynamic integration
as

sðTÞ ¼ sð1Þ þ
Z T

1

cvðT 0Þ
T 0

dT 0 ð4Þ

In our case, the entropy per site for T !1 is given by

sð1Þ ¼ 1
N

lnð22NÞ ¼ 2 ln 2 ð5Þ

where 2N in the exponent indicates the number of links in the net-
work under consideration (Note that 22N is the total number of pos-
sible configurations in our model, since each of the 2N links admits
two different positions for an H atom).

A practical problem with Eq. (4) in a thermodynamic integra-
tion is that the limit T !1 cannot be reached, and any cutoff in
the temperature, even if this is taken at large T, can introduce sys-
tematic errors in the calculated entropies. To overcome this prob-
lem we use the fact that an analytical model can approximate very
well the high-temperature thermodynamic variables, with an error
smaller than the error bars associated to the simulation procedure.
Such an analytical model can be obtained by considering the nodes
as ‘independent’, as in Pauling’s original calculation for a hypothet-
ical network including no loops. In this case, the partition function
is given by

Z ¼ zN

22N ð6Þ

where z is the one-site partition function:

z ¼ 6þ 8e�1=T þ 2e�2=T ; ð7Þ

(as derived from the Boltzmann factors for 16 possible configura-
tions of four hydrogen atoms; see Figure 1) and the term 22N in
the denominator appears to avoid counting links with zero or two
H atoms. In fact, the high-temperature limit of Z in Eq. (6) is
Z1 ¼ 16N=4N ¼ 22N , which is the number of configurations compat-
ible with the condition of having an H atom per link. The energy per
site is

hui ¼ 4
z

2e�1=T þ e�2=T
� �

: ð8Þ

For the actual ice structures, the corresponding oxygen networks
contain loops, which means that the factorization in the partition
function in Eq. (6) is not possible. However, at high temperatures
thermodynamic variables for the real structures converge to those
of the independent-site model. At high temperature, hui in Eq. (8)
can be expanded in powers of 1=T so that

hui ¼ 3
4
� 7

16T
þ 3

64T2 þ
19

768T3 þ . . . ð9Þ

and using Eqs. (2) and (4) we find for the entropy

sðTÞ ¼ sð1Þ � 7
32T2 þ

1
32T3 þ

19
1024T4 þ . . . ð10Þ

Keeping terms for sðTÞ up to 1=T4, we find sðT ¼ 10Þ ¼ 1:38414. We
have checked that at temperatures T � 10, both the energy and heat
capacity derived from this model coincide (within error bars) with
those derived from our Monte Carlo simulations for the actual net-
works studied here. Thus, to obtain the configurational entropy for
the ice structures, our thermodynamic integration in fact begins at
T ¼ 10, a temperature at which the entropy of the actual network is
taken as that of the analytical (no loops) model. We note that at
lower temperatures (T � 1), the simulations for the considered
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Figure 2. Entropy per site as a function of the inverse lattice size (1=N) for the two-
dimensional square lattice. Open circles indicate results of our thermodynamic
integration in the limit T ! 0. Error bars are in the order of the symbol size. A solid
circle shows the exact analytical result obtained by Lieb [18].
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networks yield energy values different from those derived from the
‘independent-node’ model in Eqs. (6) and (7), which is in fact the
reason why we find for these networks entropy values different
from the Pauling result.

With this simple scheme for the energy, we have carried out
Monte Carlo simulations on ice networks of different sizes. The
largest networks employed here included 3600, 2880, and 3430
sites for the square lattice, ice Ih, and ice VI, respectively. Periodic
boundary conditions were assumed. Sampling of the configuration
space was carried out by the Metropolis update algorithm [21]. For
each network we considered 360 temperatures in the interval be-
tween T = 10 and T = 1, and 200 temperatures in the range from
T = 1 to T = 0.01. For each considered temperature, the simulation
started from the last hydrogen configuration in the previous tem-
perature, and then we carried out 104 Monte Carlo steps for system
equilibration, followed by 8� 106 steps for averaging of thermody-
namic variables. Each Monte Carlo step consisted of an update of
2N (the number of H-bonds) hydrogen positions successively and
randomly selected. Finite-size scaling was then employed to obtain
the configurational entropy per site sth corresponding to the ther-
modynamic limit (extrapolation to infinite size).

Using a simple energy model as that employed here, an alterna-
tive procedure to calculate the configurational entropy can consist
in obtaining directly the density of states as a function of the en-
ergy, as described elsewhere for order/disorder problems in con-
densed matter [22]. Then, in our case the entropy could be
obtained from the number of states with zero energy, i.e., compat-
ible with the ice rules.

3. Results and discussion

We have applied the method described above to calculate the
configurational entropy of the ice model in three different net-
works. First, we check the precision of the method for the two-
dimensional square lattice, for which an exact analytical solution
is known. Then, we calculate sth for the familiar ice Ih, and com-
pare our results with those obtained in earlier work. Finally, we
present results for the configurational entropy of ice VI, for which
one expects sth to be appreciably different from ice Ih, due to the
presence of four-membered rings of water molecules in its
structure.

For each considered network, we have obtained the configura-
tional entropy sN in the limit T ! 0 for several system sizes N, as
described in Section 2. In Figure 2 we present sN for the ice model
on the two-dimensional square lattice. Open symbols represent the
configurational entropy derived from our thermodynamic integra-
tion, as a function of the inverse system size. We find that sN de-
creases for increasing system size N, and in fact there is a linear
dependence of sN on 1=N for N J 150, in the form

sN ¼ sth þ
a
N
; ð11Þ

where a is a network-dependent parameter. For smaller system
sizes (not shown in the figure), sN deviates slightly from the linear
behavior, becoming smaller than the value predicted from a linear
fit for N > 150 sites. Extrapolation of the linear fit for 1=N ! 0 gives
a value sth = 0.43153(3), in good agreement with the exact solution
for the square lattice found by Lieb [18] by the transfer-matrix
method: sth ¼ 3

2 lnð4=3Þ ¼ 0:43152. Information on the least-square
fit carried out here is given in Table I.

An argument why the entropy per site should decrease for
increasing size is the following. Let us call XN the number of config-
urations compatible with the ice rules for size N. For two indepen-
dent cells of size N the number of possible configurations would be
X2

N . Then, putting both cells together to form a larger cell of size 2N,
we have X2N < X2

N , because one has to discard configurations that
do not ‘match’ correctly in the border between both N-size cells.
The decrease of sN for increasing N can thus be viewed as an effect
of the boundary conditions. Assuming that sN behaves regularly as a
function of 1=N in the thermodynamic limit (1=N ! 0), one expects
for large N a dependence of the form sN ¼ sth þ a=N þ b=N2 þ . . ..
This is in fact what we find from our simulations, with the param-
eter b so small that the linear dependence of sN on 1=N is clearly
consistent with the results at least for N > 150.

For the three-dimensional structure of ice Ih we also find a lin-
ear dependence of the configurational entropy on the inverse net-
work size. This is shown in Figure 3, where one observes that the
slope (parameter a in Eq. (11)) is larger than in the case of the
two-dimensional lattice. The entropy in the thermodynamic limit
is lower for ice Ih, as expected from earlier results for this ice struc-
ture [10,11]. We find sth ¼ 0:41069ð8Þ. As already observed in the
analytical result by Nagle [10] and in the multicanonical simula-
tions by Berg et al. [11], the configurational entropy is higher than
the earlier estimate by Pauling. Moreover, our result is slightly
higher than that of Nagle [10], who found sth ¼ 0:41002. Our result
is a little higher than that found by Berg et al. [11], although we
consider that both data are compatible one with the other, given
the error bars (see Table I).

Apart from ice Ih and cubic ice Ic, we are not aware of any direct
calculation of the configurational entropy of H-disordered ice for
other ice structures. To assess the influence of the ice network on
the entropy, we have also considered the case of ice VI, where H
atoms are known to be disordered [23,4,2]. In Figure 4 we display
our results for the configurational entropy of ice VI, as a function of
the inverse network size. We find in this case a slope a = 3.44,
much larger than for the square lattice and ice Ih. The extrapola-
tion of sN to infinite network size gives sth ¼ 0:42138ð11Þ, clearly
higher than the value corresponding to ice Ih (a 2.6% larger). This
result is remarkable, since up to now the only comparison in this
respect concerned ice Ih with the Pauling estimate, being the en-
tropy an 1.3% larger in the former case than in the latter. Now
we see that for ice VI the configurational entropy for this H-disor-
dered structure is 3.9% larger than the Pauling result.

We note the tendency of the entropy sth to increase due to the
presence of loops in the ice structure. In fact, the Pauling



Table I
Entropy for the ice model on the square lattice, ice Ih, and ice VI, as derived from our Monte Carlo simulations. nP: number of data points employed in the linear fits; a: slope of the
linear fit as in Eq. (11); q: correlation coefficient. For comparison, we give the entropy values obtained in earlier works.

Ice Author np a sth W q

Square This work 12 1.05(1) 0.43153(3) 1.53961(5) 0.9994
Square Lieb [18] 0.431523 1.539601

Ih This work 9 1.84(2) 0.41069(8) 1.50786(12) 0.9994
Ih Nagle [10] 0.41002(10) 1.50685(15)
Ih Berg et al. [11] 0.4104(2) 1.5074(3)

VI This work 9 3.44(6) 0.42138(11) 1.52406(16) 0.9990

Generic Pauling [7] 0.405465 1.5
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Figure 3. Entropy per site as a function of the inverse network size (1=N) for
hexagonal ice Ih. Open circles show results of our thermodynamic integration in the
limit T ! 0. Error bars of the data points are on the order of the symbol size. Other
symbols represent earlier results for the configurational entropy of ice Ih: solid
circle, Pauling [7]; open diamond, Nagle [10]; solid square, Berg et al. [11].
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Figure 4. Entropy per site as a function of the inverse network size (1=N) for ice VI.
Open circles display results of our thermodynamic-integration procedure in the
low-temperature limit. Error bars are in the order of the symbol size.
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approximation neglects the presence of loops, as happens in the
so-called Bethe lattice (also known as Cayley tree) [16,17]. This
gives a value sth ¼ 0:40547. For ice Ih, which contains six-mem-
bered rings of water molecules, the entropy is higher by an 1.3%,
and it is still higher for the square lattice with four-membered
rings (a 6.4% respect the Pauling approach). With this trend in
mind, we could expect for ice VI a value of the entropy intermedi-
ate between those of ice Ih and the square lattice, as it contains
four- and six-membered rings (apart from other larger loops)
[4,24,25]. Similarly, for ice networks with larger ring sizes, one
can expect a smaller configurational entropy for disordered hydro-
gen distributions, and thus closer to the Pauling result.

Some further comments on Table I are in order. In most papers
dealing with the configurational entropy of ice, it is the parameter
W which is given, instead of the entropy sth itself. As we find di-
rectly sth from our thermodynamic integration, we have calculated
W in the different cases as W ¼ expðsthÞ. Also the error bars DW
and Dsth in the values of sth and W, respectively, are related by
the expression DW ¼W Dsth, as can be derived by differentiating
the exponential function. Our error bars for sth represent one stan-
dard deviation, as given by the least-square procedure employed to
fit the data. In the result by Nagle [10], the error bar was estimated
by this author from an extrapolation of the series terms calculated
in his analytical procedure. Note also that, although the result ob-
tained by Pauling was intended to reproduce the residual entropy
of ice Ih, it does not take into account the actual ice network, but
only the fourfold coordination of the structure. For this reason
we qualify it as ‘generic’. Concerning the results by Berg et al.
[11], we note that these authors have recently [26] given an entro-
py value for ice Ih slightly smaller than their earlier result, but both
of them are compatible one with the other, taking into account the
statistical error bars.

To avoid any possible confusion, we emphasize that the simple
model employed in our calculations is not intended to reproduce
any physical characteristic of ice (such as order/disorder transi-
tions) further than calculating the entropy of an H distribution
compatible with the ice rules. It implicitly assumes that the distri-
bution of H atoms on the ice network has no long-range order, and
only imposes strict fulfillment of the ice rules (short-range order)
in the limit T ! 0. The configurational entropy obtained in this
way is what has been traditionally called residual entropy of ice
[7]. With this in mind, we are not allowing for any violation of
the third law of Thermodynamics.

In this context, it is generally accepted that the equilibrium ice
phases in the low-temperature limit (at low and high pressures)
display ordered proton structures, as expected from a vanishing
of the entropy. Order–disorder transitions have been observed be-
tween several pairs of ice phases [1,2,25]. These transitions are
accompanied by orientational ordering of the water molecules,
which implies a kinetically unfavorable reorganization of the H-
bond network. In several cases, the transition from a disordered
to an ordered phase only occurs after doping the sample, which
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seems to provide a mechanism favoring the rearrangement of the
H-bond network [27,28,25]. Thus, at low temperature ice Ih trans-
forms into ice XI, an H-ordered phase, but this transition has never
been observed in pure ice, only in doped materials at 72 K
[27,29,28]. Something similar happens for high-pressure phases,
and ice VI in particular transforms into proton-ordered ice XV
[24,2].

Given the entropy difference found here for real structures such
as ice Ih and ice VI, a detailed knowledge of the configurational en-
tropy for the different ice phases can be important for precise cal-
culations of the phase diagram of water [30,31], as noted earlier for
ice phases with partial proton ordering [13].

4. Conclusions

We have presented results for the configurational entropy of H-
disordered ice structures, calculated by means of a thermodynamic
integration. A simple model allowed us to derive the entropy cor-
responding to each structure. This procedure has turned out to be
very precise, indicating that the associated error bars can be made
very small without employing sophisticated methods, but only
using standard statistical mechanics and numerical procedures.

For real ice structures, such as ice Ih and ice VI, we find a differ-
ence in configurational entropy of 2.6%. For ice VI we obtain an en-
tropy value 3.9% higher than the Pauling estimate, as a
consequence of its particular network connectivity. This method
can be applied to other ice structures with hydrogen disorder,
which will presumably give different values for the configurational
entropy, due to differences in their network topology.
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