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On the thermodynamics of carbon nanotube
single-file water loading: free energy, energy
and entropy calculations†

Jose Antonio Garate,ab Tomas Perez-Acleac and Chris Oostenbrink*a

Single-file water chains confined in carbon nanotubes have been extensively studied using molecular

dynamics simulations. Specifically, the pore loading process of periodic (6,6) and (5,5) single-walled

carbon nanotubes was thermodynamically characterized by means of free-energy calculations at every

loading state and compared to bulk water employing thermodynamic cycles. Long simulations of each

end-state allowed for the partitioning of the free energy into its energetic and entropic components.

The calculations revealed that the initial loading states are dominated by entropic (both translational and

rotational) components, whereas the latter stages are energetically driven by strong dipolar interactions

among the water molecules in the file.

1 Introduction

Carbon Nanotubes (CNTs), due to their remarkable structural,
mechanical and electromechanical properties,1 have been
revealed to be one of the most promising materials for building
nanodevices in a large variety of applications, such as molecular
detection,2 membrane separation,3 drug delivery, nanofluidic
machines4 and others. Moreover, at the theoretical level, CNTs
are excellent systems for studying water confinement, allowing the
modeling of complex structures such as water-permeable pores,
which are ubiquitous in biological systems (e.g. membrane
channels).5 For these reasons, the characterization of the flux
of water (and other fluids) through CNTs is of vital importance,
permitting a clearer understanding of the mechanics in more
complex biological media. Molecular Dynamics (MD) has proven
to be an ideal tool for the aforementioned studies, and since the
first work published dealing with MD simulation of water within
CNTs,6 other studies have followed it,1,7–11 providing an
improved picture of water dynamics within confined spaces.

Experimentally, water spontaneously fills the hydrophobic
cavity of CNTs.12–14 At the nanoscale level, the continuous
description using hydrodynamics fails, as the flux is dominated

by the movement of discrete particles; hence MD becomes the
perfect method to describe the system at a particle level,
allowing a detailed characterization of nanofluidics through
CNTs, which can be extremely hard to attain using experimental
means. One of the first studies demonstrated that water fills a
(6,6) CNT spontaneously in a single-file fashion.15,16 More recent
studies employed different conditions such as pressure-driven
water flux in hexagonal arrays of CNTs8,17 or more realistic
situations such as dipoles or charge distributions along the
CNT, which are ubiquitous in biological systems.9,18,19

Many authors have described the thermodynamics of
the water–CNT interactions. As the filling of the pores is a
spontaneous phenomenon, the most common approaches for
the estimation of free energies have been the calculations of
Potentials of Mean of Force (PMF).20 Other authors have used
particle insertion strategies,7,21,22 spectral analyses of velocity
autocorrelation functions23 and simple 1D-lattice models.24

Overall, these studies indicate that the filling process is indeed
a spontaneous process in spite of the hydrophobicity of the
pore. For small tube diameters, the smooth walls force water
molecules to form a highly ordered chain along the pore axis,
the energetics of which is theoretically well understood.
A strong electrostatic interaction is present due to the strong
dipolar alignment9,25 compensating for the loss of, on average,
two hydrogen bonds. Additionally, the remaining hydrogen
bond tends to be more directional and stable. On the other
hand, entropic contributions have been more elusive, and
despite extensive studies there is an ongoing debate on whether
the filling process is entropically driven; recent reports present
contradictory results on the magnitude and sign of the entropy
of this transfer process.21–23 Interestingly, some authors23 have
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reported that even for fully loaded tubes, entropy is the driving
force and not only for the initial loading stages where the
dipolar and dispersion interactions can hardly explain the
spontaneous nature of this phenomenon.

To our knowledge, few studies have systematically studied
the loading process,21,22 and among these are the endeavors of
Köfinger et al.26 and Maibaum and Chandler27 who have
elegantly described the thermodynamics of single-file water
through the use of lattice-models and Monte Carlo simulations.
Remarkably, despite the simplicity of these models the main
features of water enclosed in narrow pores are well described
up to a macroscopic scale, including phenomena like proton
defects and proton transport. Nevertheless, due to the nature
(and beauty) of these simplified models entropic contributions
are hard to attain and are estimated (optimized) by geometric
considerations and included as parameters in the models.26

In this study we aim to fully describe the water-loading
process with full atomistic simulations. Specifically, the free
energy difference between all loading states was calculated, and
both the energetic and entropic terms were computed. In
detail, in analogy to biomolecular systems,28 we considered
the water molecules as the ‘‘ligand’’ whereas the CNT was taken
as the ‘‘receptor’’. Accordingly, standard methods for studying
binding free energies were employed, namely thermodynamic
integration and thermodynamic cycling. For all these calculations,
MD simulations of periodic (5,5) and (6,6) single-walled CNTs were
employed, which are more representative of realistic tubes which
have lengths on the order of tens of nanometers.14 Additionally,
the former avoids the intrinsic correlations that exist at the water–
tube interface.21 Moreover, long simulations at each loading state
permitted the characterization of the energetic and entropic con-
tributions, which could subsequently be rationalized in terms of
hydrogen bonds, rotational relaxation times and diffusivity along
the pore axis. We conclude that initial loading states are driven by
entropy (both rotational and translational), with a gradual switch
towards energetic contributions as the pore is filled up.

2 Methods
2.1 Thermodynamic integration

The free-energy difference (DA) between two states, A and B, can
be readily calculated using the TI formula:

DAA!B ¼
ðl¼1
l¼0

@VðlÞ
@l

� �
l
dl (1)

V(l) is a combined potential energy function connecting the
potential energy functions with a coupling parameter l for
states A (VA at l = 0) and B (VB at l = 1) respectively (see
below). In the current setup, state A is represented by a SPC
water molecule, while state B refers to a non-interacting
dummy particle, devoid of any non-bonded interactions. In

practice,
@VðlÞ
@l

� �
is computed at every l point and then

numerically integrated to obtain the free energy difference
between states A and B.

An extra l-dependent restraint to the perturbed water was
employed, in order to maintain the particle that was being
decoupled within the boundaries of a given region in space,

Vr ¼
1

2
lK rij
� �2

(2)

where K is the force constant for state B (l = 1.0). The restraint
was applied with respect to a neighboring water molecule in the
file. In this way the dummy particle was confined within the
tube, without altering the water flux through the tube axis. In
some situations, a prefactor was utilized in eqn (2) to give

Vr ¼ 2nþmlnð1� lÞm1
2
lK rij
� �2 (3)

giving rise to the so called hidden restraints,29 with user
specified exponents n and m, with n = 2 and m = 0. This allows

for both Vr (l) and
@VrðlÞ
@l

to be zero only at l = 0.0.

2.2 Soft-core potential energy

A soft-core potential energy function30 was employed to avoid
singularities near the end-states of the TI simulations. The
Lennard-Jones potential (LJ) energy function between atoms i
and j at a state X is then defined as:

VLJ rij;X; l
� �

¼ CX
12ði; jÞ

aLJl
2CX

126ði; jÞ þ r6i;j
� CX

6 ði; jÞ
" #

� 1

aLJl
2CX

126ði; jÞ þ r6i;j

(4)

aLJ is the softness parameter for the LJ interaction and ri, j the
distance between atoms i and j. CX

12(i, j) and CX
6(i, j) are the r12

and r6 LJ parameters for the atom pair (i,j). CX
126(i,j) equals

CX
12(i, j)/CX

6(i, j) when CX
6(i, j) a 0 and zero otherwise. Likewise,

the electrostatic interaction with the soft-core potential energy
function becomes:

VCRF rij;X; l
� �

¼ qXi q
X
i

4pe0e1

1

aCRFði; jÞl2 þ r2i;j

h i1
2

2
664

�
1

2
Crfr

2
i;j

aCRFði; jÞl2 þ R2
rf

� �3
2

�
1� 1

2
Crf

� 	
Rrf

3
775

(5)

qX
i is the partial charge of atom i and Crf and Rrf are parameters

of the reaction-field method. aCRF is the softness parameter for
the electrostatic interactions.

The total nonbonded potential energy for atoms i,j in a given
state is calculated as:

VNB(rij;X;l) = VLJ(rij;X;l) + VCRF(rij;X;l) (6)

The combined non-bonded potential energy function connect-
ing states A and B is now:

VNB(rij;l) = lVNB(ri,j;B;(1 � l)) + (1 � l)VNB(ri,j;A;l) (7)
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2.3 Free energy of transfer

Consider two systems, one of N bulk water molecules in a
volume V (N system) and one of n water molecules in a tube
solvated in a box of water in the same volume V (n system). N
atoms make up the tube and the solvating water molecules in
the latter system. The combined canonical partition function is:

QðN;n;N;V ;TÞ ¼
C

n! �N! �N!

ð
V

dqN
ð
V

dqN � dqn � e�bVðN;n;NÞ (8)

where V(N,n,N) = VN + Vn, with VN and Vn being the potential
energies of the N and n systems respectively. b = 1/kBT, with kB

the Boltzmann constant, T the temperature and C a constant.
Similarly, the combined partition function of a box with N � 1
water molecules of volume V (N � 1 system) and a tube with
n + 1 water molecules within the pore embedded in a box with
water of the same volume V (n + 1 system), is:

QðN�1;nþ1;N;V;TÞ

¼ C

ðnþ 1Þ! �N! � ðN � 1Þ!

ð
V

dqN�1 �
ð
V

dqN �dqnþ1 � e�bVðN�1;nþ1;NÞ

(9)

with V(n+1,N�1) = VN�1 + Vn+1, where VN�1 and Vn+1 are the
potential energies with the N � 1 and n + 1 systems, respectively.
Given that VN (or VN�1) and Vn (or Vn+1) are uncorrelated. In
other words, as the specific configurations of the solvent do not
alter the interactions of the loaded particles, we can write the
following:

QðN;n;N;V;TÞ ¼
C

n! �N! �N!

ð
V

dqN � e�bVN

�
ð
V

dqN � dqn � e�bVn

(10)

QðN�1;nþ1;N;V ;TÞ ¼
C

ðnþ 1Þ! �N! � ðN � 1Þ!

ð
V

dqN�1 � e�bVN�1

�
ð
V

dqN � dqnþ1 � e�bVnþ1

(11)

The free energy (DA) of transferring a water molecule from
the pore to the bulk is directly related to the quotient between
eqn (10) and (11):

DAðnþ1;N�1Þ!ðn;NÞ ¼ �kBT ln
QðN;n;N;V ;TÞ

QðN�1;nþ1;N;V;TÞ
(12)

QðN;n;N;V;TÞ
QðN�1;nþ1;N;V ;TÞ

¼ nþ1

N
�

Ð
Vdq

N �dqn � e�bVN
Ð
Vdq

N � e�bVnÐ
Vdq

N�1 � e�bVN�1
Ð
Vdq

N �dqnþ1 � e�bVnþ1

(13)

Employing Zwanzig’s formula,31 we can write this
quotient as:

QðN;n;N;V ;TÞ
QðN�1;nþ1;N;V;TÞ

¼ nþ 1

N
�
e�b Vn�Vnþ1ð Þ
 �

nþ1
e�b VN�1�VNð Þh iN

(14)

where the triangular brackets denote an ensemble average over
a simulation run for state n + 1 or N. Applying eqn (12):

DAðnþ1;N�1Þ!ðn;NÞ ¼ DAtransfer

¼ � kBT ln
nþ 1

N

� 	
� kBT ln e�b Vn�Vnþ1ð Þ

D E
nþ1

þ kBT ln e�b VN�1�VNð Þ
D E

N

¼ DA1 þ DA2 � DA3 (15)

The first term of eqn (15) is a correction due to the indis-
tinguishability of the particles ‘‘binding’’ to the tube. In the
case of one ligand being transfered from infinite dilution to a
single site, this correction equals zero. The second term
accounts for the alchemical decoupling of a water molecule
within the pore. To avoid the ‘‘wandering-ligand’’ problem, a
harmonic potential energy function is applied to restrain the
dummy particle within the cavity. DA2 can be decomposed into
an alchemical term (which includes the contribution of the
harmonic potential energy, eqn (2)) plus the transfer of a
restrained dummy to the bulk, i.e. removal of restraints:

DA2 = DA2A + DA2T (16)

DA2T ¼ �kBT ln
V

2pkBT
K

� 	3
2

(17)

where V is the volume of the system and K is the force constant of
the harmonic oscillator. Similarly, the third term of (15) equals the
decoupling of a water molecule in the bulk phase, which is
equivalent to the water–water desolvation free energy; DA3 and
DA2A are computed employing eqn (1), whereas DA1 and DA2T are
computed analytically, not requiring further simulations.
In Fig. 1, the thermodynamic cycle depicting the unloading
process is shown.

Fig. 1 Proposed thermodynamic cycle for the free energy of unloading
the CNT. The individual free energy terms are defined in eqn (15)–(18).
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Imposing that VN (or VN�1) and Vn (or Vn+1) are uncorrelated,
in other words the specific configurations of the bulk do not
influence the water molecules within the tube and vice versa, we
can compare the previous derivation with PMF calculations from
simulations of open (finite) tubes:

PMFðnþ1;N�1Þ!ðn;NÞ ¼ �kBT ln
Pn�1
Pn

� 	
(18)

where Pn�1 and Pn are the probabilities of finding n � 1 or n
molecules inside the tube, respectively. An equivalent derivation
was carried out employing a grand canonical formalism9,21 or
thermodynamic cycling.28

2.4 Entropy of transfer

Entropy was calculated from the total energy by:

TDStransfer = DhEi � DAtransfer (19)

where DhEi is the difference between the average energy of two
loading states increased by the average solvation energy of
water in the bulk.32

2.5 Average loading from free energies

Average loadings were computed by weighting each loading
state (N) with its corresponding free energy employing the
following expression:

hNi ¼
XML

N¼0
Ne

�DAN
kBT (20)

where DAN ¼
Pn¼N
n¼0

DAðn;NÞ!ðnþ1;N�1Þ; in other words, the cumula-

tive transfer free energies (see eqn (15)) up to the loading state N.
ML represents the maximum loading state simulated.

2.6 Rotational relaxation

Reorientation correlation functions Ca(t) of SPC water were
computed for the dipole (m) and the H–H vectors,

Ca(t) = hea(t)�ea(0)i (21)

where ea is a unit vector pointing along the direction of the a
axis. Ca(t) normally shows an exponential decay, and can be
fitted employing the following expression:

CaðtÞ ¼ A exp
�t
ta

� 	
(22)

ta denotes the first-order rotational relaxation time and A is a
constant.

2.7 Water self-diffusion

Self-diffusion coefficients along the pore axis (Dz) for the oxygen
of SPC water were calculated from mean-squared displace-
ments (MSD), using the Einstein relation:33

Dz ¼ lim
t!1

rz t0 þ tð Þ � rz t0ð Þð Þ2
D E

t0

2t
(23)

where rz(t) corresponds to the z component of the oxygen
position vector at time t, and the averaging is performed over
multiple time origins (t0) and water molecules.

2.8 Molecular dynamics simulations

All MD simulations were performed using the GROMOS11
simulation package.34,35 The SHAKE algorithm36 was employed
to constrain all bonds and water angles to their reference values
with a relative tolerance of 10�4, allowing for a time-step of 2 fs
using the leapfrog algorithm.37 Periodic boundary conditions
with a rectangular box were applied. Non-bonded interactions
were computed using a triple range cut-off. Interactions within
a short-range cut-off of 0.8 nm were computed for every time-
step, from a pair-list that was generated every 5 steps. At these
time points, interactions between 0.8 and 1.4 nm were also
computed and kept constant between updates. A reaction-field
contribution was added to coulombic interactions approximating a
homogeneous medium outside the long-range cut-off, employing
the relative permittivity of SPC water (61).38 All interactions
were calculated using the GROMOS 45A4 parameter set; specifically
all CNT atoms were modelled as sp2 carbons.39 After a steepest-
descent minimization to remove bad contacts, velocities were
randomly assigned from a Maxwell–Boltzmann distribution at
298 K. All simulations were run at the canonical (NVT) ensemble
using the Nosé–Hoover chains coupling algorithm for temperature
(3 chains, 298 K).40,41 The solute and solvent atoms were indepen-
dently coupled to the heat bath. Due to a decoupling of translations
and rotations within the periodic tubes, these were thermostated
independently. Periodic (6,6) and (5,5) tubes along the z-axis of
length 3.19 nm and widths 0.80 and 0.68 nm respectively, were
placed in a rectangular box of size 3.6� 3.6� 3.19 nm3 comprising
a total number of 4047 atoms for the (6,6) system and 4094 atoms
for the (5,5) system. A depiction of the simulated system is shown
in Fig. 2.

In detail, 13 water molecules were placed within the pores
and were sequentially removed. For this purpose, TI simula-
tions were performed for SPC water annihilation, which on
average, encompassed 17 non-equidistant windows and 1.5 ns

Fig. 2 Simulated systems, the periodic cell is depicted in blue. (a) (5,5)
single-walled CNT system. (b) (6,6) single-walled CNT system.
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of simulation time per window. Calculations were conducted
using a non-bonded soft-core potential energy function30 with
softness parameters aLJ = 0.5 and aCRF = 0.5 nm2. Given that the
free energy is a state function, the specific values of these
parameters should not affect the final DA calculated with
eqn (1). Previous work by de Ruiter et al. has shown that the
chosen parameters deviate less than kBT from a set of reference
simulations.42 Each loading state (from 13 to 0 water molecules)
was also simulated for 100 ns, in order to obtain converged
energies for use in eqn (19). Moreover, due to the short relaxa-
tion times of the H–H vector (see eqn (21) and (22)) extra 1 ns
simulations for each loading state, saving coordinates every 10 fs
were carried out. Lastly, and for comparison, free simulations of
bulk SPC (40 ns) and open non-periodic (6,6) and (5,5) single-
walled CNTs were conducted for 20 ns and 100 ns respectively
using the same length of the CNTs and a box size of 4.8 � 4.8 �
4.8 nm3. Overall, the total simulation time amounted to 3.38 ms.

3 Results and discussion
3.1 Transfer free energies, energies and entropies

In Table 1, DAtransfer, DEtransfer and TDStransfer employing
eqn (15) and (19) are presented. A summary of the TI simula-
tions and convergence analyses for total potential energies can
be found in ESI† (see Fig. S1–S4 and Table S1). A fully loaded
tube was defined by the maximum loading state recorded in
free open-tube simulations, which was 13 and 11 water mole-
cules for the (6,6) and (5,5) systems, respectively.

3.2 Transfer free energies

Transfer free energies (DA(n+1)-(n)) for the (6,6) and (5,5) systems
are presented in Table 1. DA(6,6)

(n+1)-(n) is always favorable towards
the confined conditions, including the case for n = 1. The deeper
free energies for the fully loaded states (n > 10) are a direct
consequence of enhanced electrostatics due to periodicity.

The (5,5) system, on the other hand, favors the unloaded
states. Only for high loadings are the electrostatic interactions

able to fully compensate the strong confinement, rendering
DA(5,5)

(11)-(10) positive. It is important to notice the low values for
the energetic and entropic components which are, in general,
always within kBT, implying a big uncertainty in these free
energies due to typical thermal fluctuations. The latter suggests
a bimodal mode, where the tube is either empty or filled. For an
open tube, other authors have shown this behavior.7,21,22

3.2.1 Cumulative transfer free energies. With the aim of
having a full picture of the loading process, cumulative free
energies for the loading process (and its energetic and entropic
components) are depicted in Fig. 3. Additionally, results from
cumulative PMF calculations of open non-periodic tubes
employing eqn (18) are included. In the case of the (6,6) free
simulations, below loadings of n = 8, no events were recorded;
thus it was assumed that the cumulative free energies were
equivalent up to that point. For more details on the open non-
periodic tube’s PMFs, refer to Fig. S5 (ESI†).

Regarding the (6,6) system, the total DA, DE and TDS of
loading 12 water molecules (which is the most favorable loading)

Table 1 DA(n+1,N�1)-(n,N), DE(n+1,N�1)-(n,N) and TDS(n+1,N�1)-(n,N) in kJ mol�1 for the (6,6) and (5,5) single-walled CNT systemsa

# Pore loading transition

System (6,6) System (5,5)

DA DE TDS DA DE TDS

13 - 12 �13.3 � 0.7 13.5 � 0.8 26.8 � 1.1 �169.0 � 1.6 �126.4 � 0.8 42.6 � 1.8
12 - 11 12.5 � 0.6 38.0 � 0.8 25.5 � 1.0 �37.2 � 0.9 �5.5 � 0.9 31.8 � 1.2
11 - 10 13.2 � 0.7 10.0 � 0.8 �3.2 � 1.1 3.8 � 0.8 22.0 � 0.9 18.2 � 1.1
10 - 9 6.7 � 1.4 6.7 � 1.5 0.0 � 2.1 �1.6 � 1.1 �2.3 � 1.1 �0.7 � 1.5
9 - 8 6.1 � 1.7 4.1 �1.7 �1.9 � 2.4 �3.1 � 1.4 �1.2 � 1.5 1.9 � 2.1
8 - 7 5.3 � 1.3 5.0 � 1.4 �0.3 � 1.9 �5.1 � 1.4 �2.7 � 1.5 2.4 � 2.1
7 - 6 6.7 � 1.6b 4.4 � 1.7 �2.3 � 2.4 �5.5 � 1.4b �3.3 � 1.4 2.2 � 1.9
6 - 5 5.3 � 1.2b 5.0 � 1.3 �0.3 � 1.7 �5.1 � 1.2b �2.5 � 1.2 2.7 � 1.7
5 - 4 4.6 � 1.4 4.3 � 1.4 �0.4 � 2.0 �5.4 � 1.3b �1.7 � 1.3 3.6 � 1.8
4 - 3 7.1 � 1.3 3.3 � 1.4 �3.7 � 1.9 �3.9 � 1.4b �2.4 � 1.5 1.5 � 2.0
3 - 2 7.9 � 0.8 2.9 � 0.9 �5.0 � 1.2 �2.1 � 1.3 �3.3 � 1.3 �1.1 � 1.8
2 - 1 5.4 � 0.7 �3.1 � 0.8 �8.5 � 1.0 �3.2 � 0.8 �4.2 � 0.9 �1.0 � 1.3
1 - 0 0.5 � 0.6 �20.7 � 0.8 �21.2 � 1.0 �7.3 � 0.8 �23.8 � 0.9 �16.5 � 1.2
Bulk SPC 25.9 � 0.4 44.9 � 0.4 19.0 � 0.6 — — —

a Errors are obtained by calculating block averages, extrapolating to infinite block length. b Eqn (3) was used instead of (2) to reduce the noise at l = 0.

Fig. 3 Cumulative transfer free energies from the bulk (DAtransfer) for the
(6,6) system (panel a) and (5,5) system (panel b). Dashed lines depict the
cumulative free energies for the open non-periodic systems. The panels
on the right show the cumulative entropies and energies of transfer from
the bulk.
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amounted to �82.0, �60.7 and 21.3 kJ mol�1, respectively.
Therefore, the full process is both entropically and energetically
driven. From the triple panels of Fig. 3 two phases for the
loading process can be characterized: an entropically driven
stage at low loadings and an energetically driven phase at high
loadings. With respect to the PMF calculations, a similar trend is
observed, the shift to higher DA’s can be credited to the lack of
periodicity and the intrinsic differences between the simulated
systems i.e. water–tube interface correlations. Specifically, at
high loadings, the dipolar coupling between the water molecules
within the pore expands across the periodic boundaries; in fact,
an extra hydrogen bond is formed between periodic images of
the water file. Due to the purely energetic contribution of this
extra interaction, the more favourable values of DA for the
periodic system at these loading stages (mainly energetically
driven) are expected. Employing the DA values of Fig. 3 in
eqn (20) rendered an average loading of 11.98 water molecules
which is in good agreement with the average loading of
11.78 observed for open simulations.

For the (5,5) systems, the differences between the open and
the periodic tubes are significant. While the cumulative DA
values from the periodic system show a continuous increase up
to pore loadings of n = 10, the cumulative PMF from the open
systems is relatively flat with values around 0 kJ mol�1. In this
simulation a bimodal mode pore loading switching between
completely filled and completely empty was observed and the
loading distributions were essentially equal at simulation times
of 25, 50 and 100 ns. Similar simulations at constant pressure
favored the fully loaded state (data not shown), suggesting that
this system is more sensitive to the pressure and the presence
of a vacuum within the tube. This means that our initial
assumption that the water configurations in the bulk are largely
uncorrelated with the waters in the tube does not hold and a
comparison between the periodic and non-periodic systems
becomes meaningless. For the periodic systems, loading the
tube up to 11 water molecules is unfavorable with DA, DE and
TDS amounting to 37.3, 25.4 and �11.9 kJ mol�1, respectively.

3.3 Transfer energies

Energy contributions are proportional to the amount of water
molecules located within the cavity; at initial loading stages,
negative DE(6,6)

(n+1)-(n) are observed. This is expected as van der
Waals interactions between the pore atoms and a single water
molecule cannot compensate for the dipolar and hydrogen
bond interactions of the bulk. This energetic gain is not as
severe compared to the heat of solvation of water (DEsolv =
�44.9 kJ mol�1), implying that the pore only partially decouples
the water molecule from the bulk. The reported values for
infinite pores are in line with our calculations.21 Periodicity
effects are present, which are reflected in the considerably
higher values of DE(6,6)

(1)-(0) = �6.8 kJ mol�1 previously reported
for open tubes.22 This can be explained by correlations of this
single water molecule with the bulk phase in open systems.
From 23% of loading, DE(6,6)

(n+1)-(n) increasingly favors the con-
fined state, with an average constant rate of 4.5 kJ mol�1 per
added water molecule. At loadings larger than 84%, the energy

experiences a dramatic jump; in these states water is tightly
packed forming an unruptured chain which enhances dipolar
and hydrogen bond interactions. Moreover, periodicity effects
are also present, with the water chain now forming an extra
H-bond with its periodic image.

Energetically the (5,5) system shows a peculiar trend. As in
the (6,6) system, initially a negative DE(5,5)

(1)-(0) is observed, which
is maintained up to 90% of loading. The energetic differences
are very small and within kBT. At n = 11, this trend notably shifts
toward a positive value, which again is due to periodicity effects
as an additional H-bond can be formed. Further loadings are
strongly unfavorable towards the confined state.

3.3.1 Water-file energy components. Other authors have
described single-file water solely in terms of water–water inter-
actions.26,27 To explore the validity of this approach we inves-
tigated the specific energetics of the single water chain for
loaded states. In detail, the non-bonded interaction energies of
the water file were decomposed into 3 terms: water-file–tube
(WF–T), water-file–solvent (WF–S) and water-file–water-file
(WF–WF) interactions, these three terms were subsequently
decomposed into their van der Waals and Coulombic compo-
nents, for a total of 5 terms (the CNT atoms have zero partial
charges). Fig. 4 presents normalized hEWF–Ti, hEWF–Si and hEWF–WFi
as functions of pore loadings. Intrinsically, the interactions
between the water file and the surroundings are almost inde-
pendent of the loading (hE6,6

WF–Ti E �22 kJ mol�1, hE5,5
WF–Ti E

�19 kJ mol�1). The same occurs for hEWF–SiE �2 kJ mol�1 for
all loadings, therefore these interactions could be added as
parameters in more simplified models as effective chemical

Fig. 4 Normalized non-bonded interaction energies (E) for the water file
components as a function of each loading state for the (6,6) system (panel a),
and (5,5) system (panel b). WF–T: water-file tube; WF–WF water-file water-file
interaction energy; WF–S water-file solvent interaction energy. VdW: van der
Waals; C: Coulomb.
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potentials.27 Moreover, the solvent could be treated as continuous,
supporting the previous assumption of no correlations among
configurations of solvent and configurations of loaded particles.
Nonetheless, care should be taken when comparing to open tube
results, given that the interactions at the pore mouths between bulk
and loaded water molecules are neglected. The latter has a stronger
effect on the (5,5) pore, as shown in the cumulative transfer free
energies (see Fig. 3). On the other hand, hEC

WF–WFi builds-up
progressively, in a non-linear fashion showing a cooperative
effect. Again the discontinuity at the last points are due to
periodicity. The consistently positive values for hEVdW

WF–WFi are a
reflection of the tightly packed water chain within the pore,
which becomes more pronounced at higher loads where the
dipole–dipole terms overcome dispersion interactions. hEWF–WFi
should be explicitly included in any reduced description; recently
developed 1D Ising models add these terms in the form of
dipole–dipole and (hydrogen-bonded) contact energies.26 The
aforementioned analysis serves to explain the lower values of
DE(5,5)

(n+1)-(n) from Table 1; as seen in Fig. 4, hEC
WF–WFi is

systematically lower than its (6,6) counterpart. Interestingly the
confinement has stronger effects on the electrostatic inter-
actions of the water file than on the chain–tube interaction,
the values of which do not greatly differ between the pores.

3.3.2 Hydrogen bonds and dipolar alignment. To explore
periodicity effects and gain more insight into the nature of the
transfer energies presented in Table 1, water dipolar alignment
and hydrogen bonds per water molecule were investigated. In
Fig. 5 and 6 the average number of hydrogen bonds per water
molecule (hH-bonds/ni) and distributions of the cosine between
the water dipole (m) and the pore axis, i.e. z-axis (cos(y)), for
each loading state are depicted. In both (5,5) and (6,6) systems,
hH-bonds/ni monotonically increases, and the big jumps
observed at specific loadings, e.g. n = 11 for the (5,5) and n =
12, are due to periodicity, as an extra H-bond is formed between
a donor at one end of the tube and acceptor at the other.
Not surprisingly, this correlates with the energy jumps at those
loading states (see Table 1 and Fig. 4). The lower values for

(hH-bonds/ni) in the (5,5) pore are a consequence of the
geometric confinement experienced by the particles, which on
average hinder the hydrogen bond interactions as there is less
space to form the adequate angle between donor and acceptor
groups (see Fig. 2). It is well known that a strong dipolar
alignment is present in single file water. In Fig. 6 normalized
histograms for cos(y) are shown for both systems. Regarding
fully loaded tubes (n > 10), only one state for cos(y) occurs with
very narrow peaks around �1, reflecting a strong dependence
on the initial conditions, a clear consequence of the high
energetic cost of switching m. As anticipated, both systems
switch toward a bimodal mode with peaks at �1 and 1 when
water molecules are sequentially removed. The peaks become
wider with lower water loadings. Interestingly, even for n = 2,
the bimodal mode is still displayed. The (5,5) system presents,
in general, more symmetric distributions, a case for a system
that shows fewer correlations i.e. the energetic interactions are
weaker, see Table 1 and Fig. 4. At n = 1, the distributions are
uniform due to the lack of dipole–dipole interactions that induce
the alignment. Essentially, these results are in line with those of
open non-periodic tubes (for more details see Fig. S5, ESI†).

3.4 Transfer entropies

The (6,6) single-walled CNT has been extensively described in
the literature, particularly in MD studies,7,20–23 allowing for a
detailed comparison of our results with previous work. The
(6,6) pore initial loading states are clearly entropically favored,
as shown by the negative entropies of transfer to the bulk (see
the last rows of columns 4 and 5 of Table 1). Interestingly
TDS(6,6)

(1)-(0) = �21.2 kJ mol�1 is almost equivalent to the water
entropy of solvation (TDSsolv = �19.0 kJ mol�1), which implies
that a single water molecule within the tube is practically in the

Fig. 5 Average number of hydrogen bonds per water molecule as a
function of the loading state for the (5,5) and (6,6) systems.

Fig. 6 Distributions of cos(y) at each loading state, for the (6,6) and (5,5)
systems. y is the angle between the water dipole m and the z-axis.
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gas-phase condition without fully losing its energetic interactions,
rendering DA(6,6)

(1)-(0) close to zero. Other authors have described this
phenomenon in terms of liquid to gas-phase transitions.43 Com-
pared to previous studies, TDS(6,6)

(1)-(0) agrees with data reported by
Vaitheeswaran and collaborators21(�15.9 kJ mol�1) but differs
significantly from the more recent values by Waghe et al.
(�0.6 kJ mol�1).22 Even though the same authors have found that
TDS is rather insensitive to the parameter set employed,21,22 the
latter was computed for an open non-periodic tube, thus reflecting
the strong coupling of this single water molecule to the bulk
phase, which will certainly reduce its entropy. On the other hand,
TDS(6,6)

(1)-(0) is strikingly similar to TDSsolv = �21.2 kJ mol�1 of Olano
et al. reported for TIP3P from the hydrophobic cavity of the protein
barnase,28 suggesting that similar entropic effects are a more
general feature of hydrophobic cavities. Up to n = 10, i.e. 84% of
loading, TDS(6,6)

(n+1)-(n) are still favorable but practically zero, implying
that, notwithstanding the confinement, there is an intrinsic con-
tribution from translations and rotations equivalent to the bulk
phase; similar trends are reported up to 57% and 66% of loading,
for shorter periodic and non-periodic tubes respectively.21,22

Further loadings, up to 90%, dramatically shift towards positive
transfer entropies, which is expected due to the smaller available
volume, consequently reducing the translational degrees of free-
dom; besides, rotations along the tube axis become extremely
correlated (see below). It seems that at these loading stages,
periodicity has no noticeable effects given the overall qualitative
agreement between our results (see first two rows of columns 4 and
of Table 1) and previously reported data.21,22 One final point is the
negative bulk transfer entropies observed for the average loading of
the (6,6) system (n C 11, see Table 1). These can be compared to
the entropies calculated by Pascal et al.23 which for infinite tubes
were filled with the average loading of open tubes. Even though
their reported value is on the order of 12 kJ mol�1, qualitatively it is
striking and counterintuitive to observe that even for almost fully
loaded states, entropy favors the confined state.

Regarding the (5,5) transfer entropies, thermodynamic data are
scarcely available and to our knowledge few have employed them in
simulation studies. Nonetheless, Hummer and coworkers7,21,22

have utilized (6,6) pores with modified Lennard-Jones parameters,
effectively reducing the pore diameter, thus permitting a qualitative
comparison. A similar trend is observed with respect to the (6,6)
case, with initial loading states being entropy driven and small
transfer bulk entropies of up to 90% of loading. There is an
increment of TDS(5,5)

(1)-(0) of around 5 kJ mol�1, which is expected
due to the reduced pore size, which causes frictional effects on
the moving particles. Similarly, at a loading of 90% and above,
TDS(5,5)

(n+1)-(n) is in line with the (6,6) system and previous
data21,22 suggesting that both periodicity and the particular
pore geometry do not substantially affect those. The higher
values of TDS(5,5)

(n+1)-(n), for n > 11, are expected as these are
overloaded states which were not observed in simulations of
open (5,5) tubes.

3.4.1 Diffusivity and reorientational correlation times. A
more profound understanding of the calculated transfer entro-
pies can be gained by studying dynamical properties such
as diffusivity and rotational relaxation times. In Table 2 water

self-diffusion constants along the tube axis (Dz) for different
pore loadings of the (6,6) and (5,5) systems employing eqn (23)
are presented.

Before discussing these results, the validity of eqn (23) needs
to be addressed; previous authors have shown that the Einstein
relation no longer holds for water in non-homogeneous media,
particularly for confined states. Consequently, several correc-
tions and formulations have been derived;44,45 other authors
predict unidirectional normal diffusion at longer time-scales
for open tubes.46 In the case of fully loaded periodic tubes, we
observed highly correlated motion; moreover, the water file
flows as a single particle along the pore axis, which renders
constant unidirectional velocities (see Fig. S6 and S7 and
Table S2, ESI†). Thus the mean-square displacement (MSD)
becomes quadratic in time indicating ballistic diffusion. This
phenomenon has previously been reported for infinite (8,8)
pores.47 The ballistic diffusion was observed down to 30%
loading; below these the concerted movement no longer hap-
pens, switching towards a Fickian regime. In Table 2 we show
only the results for these loadings; for the complete set of MSD
calculations we refer to Fig. S6 and S7 (ESI†). For both pores, Dz

remains 2 orders of magnitude larger than bulk water. This is
expected due to the frictionless nature of the flow within the
tube and suggests that at low pore loadings, enclosed water is
translationally entropically favored compared to the bulk.
Moreover, Dz in the (5,5) system is always lower due to confine-
ment, which is in agreement with the lower transfer entropies
to the bulk shown in Table 1. Other authors have shown a
similar trend in terms of translational degrees of freedom in
the form of distributions of nearest–neighbor particles.21

Reorientational relaxation times of the dipole m (tm) and H–H
(tH–H) vectors calculated using eqn (21) and (22) are shown in
Table 3. In the case of the perfect dipolar alignment, these
vectors represent rotations along the pore axis and perpendi-
cular to it. The confinement in the tube generates a strong
anisotropy between tm and tH–H. The former is highly sensitive
to the pore loading, having relaxation times on the order of tens
of nanoseconds, a clear indication of the strong correlations
between the dipoles. Moreover, at full loadings (n > 10), not
even a single dipole flipping event was recorded in 100 ns (see
Fig. 6), preventing the calculation of tm. As expected, the (6,6)
system always displays bigger values for tm at loadings of over
40%. Below this threshold the dipolar coupling is not as strong
and similar values for tm for the (6,6) and (5,5) systems are
obtained. In contrast, the lower values for tH–H indicate fast
rotations around the pore axis, and the constant exchange

Table 2 Diffusion constant along the pore axis

# Pore loading

System (6,6) System (5,5)

Dz [nm2 ps�1] Dz [nm2 ps�1]

4 — 0.172
3 0.290 0.095
2 0.427 0.156
1 1.535 0.160

Bulk SPC Dxyz [nm2 ps�1] = 0.0041. All values were computed at 298 K.
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between the dangling hydrogen of neighbor molecules explains
these unusually fast rotations.25 tH–H tends to be independent
of the loading; however at very low loadings, n o 4 converges
towards bulk values. Both tm and tH–H at n = 1, are very low, a
clear indication of the lack of correlations normally present in
the gas phase. Note the similarity of all t-values between a pore
loading of 2 and bulk water.

4 Conclusions

The thermodynamics of water loading of periodic (6,6) and (5,5)
single-walled carbon nanotubes was extensively studied
employing free energy calculations for both systems. The (6,6)
results are in line with previous results7,21,22 as well as with
PMF calculations of an open pore displaying very favorable free
energies towards the loading states which are both entropically
and energetically driven. The (5,5) systems, in contrast, do not
favor loaded states and appear more sensitive to the bulk
pressure. It was found that entropic contributions dominate
the initial loading states, whereas energetic contributions
systematically build up for higher loadings. For the former,
increased rotation and translation are the main contributors.

Diffusivity for low loading states are 2 to 3 orders of
magnitude higher than for the bulk and at high loading states
becomes ballistic as the water file moves as a single entity.
Rotations show a high degree of anisotropy; rotations of the
dipole axis are very rare, with increased frequency for lower
pore loadings. Perpendicular rotations along the pore axis are
enhanced and almost independent of the loadings, compensating
for the entropy loss due to confinement, which in part explains the
mostly negligible transfer entropies for the majority of the loading
states.

In terms of energetics, at high loading states, electrostatics
plays the main role reflected in hydrogen bonds and dipolar
alignment. These are further enhanced by periodicity, even
though entropy plays a role. The main difference between the

(6,6) and (5,5) systems are the electrostatic interactions, which
for the (5,5) tubes are greatly reduced due to the geometric
constraints imposed by the smaller pore size of these tubes.
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