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Scalar product

Scalar product

Vector space (V ,+, ·) . . . the set V , on which two operations are defined:
addition (+) and multiplication by a real number (·). These operations fulfill
eight axioms (commutativity, asociativity, distributivity, zero and an opposite
element with respect to addition and a unitary element with respect to
multiplication by a real number).

Scalar product: a = (a1, a2, . . . , an) ∈ Rn, b = (b1, b2, . . . ,Bn) ∈ Rn ,

=⇒ a · b =
n∑

i=1

aibi ,

in R2

                                                            

||b|| · cosα . . . the orthogonal
projection of the vector b

in the direction of the vector a ,
a · b = ||a|| · ||b|| · cosα
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Scalar product

Properties of the scalar product

a · b = b · a
a · (b + c) = a · b + c · d

(α a) · (β b) = (αβ) a · b
a · b = 0 ⇐⇒ a = 0 ∨ b = 0 ∨ a⊥b︸︷︷︸

cos
π

2
= 0

Example Prove that the diagonals in rhombus are perpendicular one to
another one.

Two adjacent sides of the rhombus can be re-
garded as two vectors a, b. The vectors a, b
are linearly independent and ||a|| = ||b|| 6=
0. If also the diagonals of the rhombus are
considred as vectors u and v , we have u =
a + b, u 6= 0, v = b − a, v 6= 0. Then
u · v = (a + b) · (b − a) = −||a||2 + ||b||2 = 0,
i.e., the vectors u and v are perpendicular.
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Vector product

Vector product

The vector product is defined only for vectors in R3, i. e., a ∈ R3, b ∈ R3.
Let
−→
i = (1, 0, 0),

−→
j = (0, 1, 0),

−→
k = (0, 0, 1). Then

ur - -a ,xb

w = a× b =

∣∣∣∣∣∣
−→
i
−→
j
−→
k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ =

=
−→
i ·
∣∣∣∣ a2 a3

b2 b3

∣∣∣∣−−→j ·∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+−→k ·∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ =

= (a2b3 − a3b2,−a1b3 + a3b1, a1b2 − a2b1) ∈ R3.

The area of the parallelogram (ϕ is the smaller
of angles that vectors grip)

|a× b| = ||a|| · ||b|| · sinϕ .
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Vector product

Properties of the vector product

a× b = −b × a

a× b = 0 ⇐⇒ a = 0 ∨ b = 0 ∨ a ‖ b

a× (b + c) = a× b + a× c

(αa)× b = α(a× b)

a× b = ||a|| · ||b|| · sinα · n, where α ∈ 〈0, π〉

n . . . the unit normal vector, i.e., the unit vector perpendicular to the plane
defined by vectors a and b .

Remark

Mixed product

a · (b × c) .

V = |a·(b×c)| . . . volume of the parallelogram
determined by vectors a, b, c
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Gradient

Directional derivative

Let f = f (x1, x2, . . . , xn) is a function of n variables, point X0 ∈ D(f ) and−→a = (a1, a2, . . . , an) ∈ Rn with the norm ||−→a || = 1. Then the limit

lim
t→0

f (X0 + ta)− f (X0)

t
,

if it exists, is called the derivative of the function f in the point X0 in the
direction of the vector −→a . It is denoted as Daf (X0).

Remark
- Derivative of f in the direction of the vector −→a describes the rate of climb

or descent values of the function f in the direction of the vector −→a .

- For a function of two variables the partial derivative
∂f
∂x

is the derivative

in the direction of the vector −→e 1 = (1, 0) and the partial derivative
∂f
∂y

the derivative in the direction of the vector −→e 2 = (0, 1). Prove it.



Scalar and vector product Differential operations of the 1st order 2nd order differential operations Recommended literature

Gradient

Gradient

Let f (X ) = f (x1, x2, . . . , xn) is a function of n variables, X0 ∈ D(f ). The vector
of the first partial derivatives of the function f evaluated at the point X0 is
called gradient of the function f at the point X0,

gradf (X0) =

(
∂f (x1, . . . , xn)

∂x1
,
∂f (x1, x2, . . . , xn)

∂x2
, . . . ,

∂f (x1, x2, . . . , xn)

∂xn

)∣∣
X0
,

The gradient of the function f at the point X0 is also denoted as ∇f (X0),
where ∇ is the differential operator ”nabla”.
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Gradient

Theorem Let f be differentiable at the point X0 and let the vector −→a ∈ Rn

have the unit length: ||−→a || = 1 . Then

Daf (X0)∇f (X0) · −→a︸ ︷︷ ︸ = ||∇f (X0)|| · ||−→a || · cosϕ . (1)

scalar product

From the equation (1) it can be seen that Daf (X0) will be the greatest for
ϕ = 0, i. e., −→a will be the unit vector corresponding to the gradient:
−→a :=

∇f (X0)

||∇f (X0)|| , i.e., the gradient is the vector, which ”heads” in the

direction of the greatest growth of the function values.

Remark For f : R2 → R is the gradient always orthogonal to the level sets.
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Gradient

F

Example Compute the derivative of the function f (x , y) = x2y − xy2 in the
direction −→a at the point (1, 2); −→a is the unit vector corresponding to the
vector v = (3, 4).

Solution ||v || = 5 ⇒ a =
1
5

(3, 4) , f is continuous, differentiable function,

∇f (x , y) = grad f (x , y) =

(
∂f
∂x

(x , y),
∂f
∂y

(x , y)

)
= (2xy − y2, x2 − 2xy) ,

Daf (1, 2) = ∇f (1, 2) · a = (0,−3) · 1
5

(3, 4) = −12
5
.

Example Compute the derivative of the function f in the direction of the
vector a = (1, 0) at the point (1, 0), f (x , y) = x

√
y .

Solution f is continuous but at the point (1, 0) is not differentiable. We
have to calculate the derivative at this point by the definition.

Daf (1, 0) = lim
t→0

f (x + ta)− f (x)

t
= lim

t→0

f (1 + t , 0)− f (1, 0)

t
= 0 .

Example f (x , y , z) = x2 + x ln z − y3 . Compute ∇f (1, 2, e).

Solution:
∇f (x , y , z) = (2x + ln z,−3y2,

x
z

), ∇f (1, 2, e) = (3,−12,
1
e

) .
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Divergence

Divergence

Divergence and curl are two vector operators with properties derived from
observations of the behavior of the vector field of liquid or gas.

We can imagine the divergence of the vector field so that the vector field F
gives velocity to the fluid flow. As the flow rate increases, the fluid expands
away from the beginning. In this case the divergence of the vector field is
positive (Fig. Left) div F > 0 .

If the vector field represents fluid which flows so that it compresses into the
beginning, the divergence of the vector field is negative div F < 0, fluid
compression occurs (Fig. right).
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Divergence

F := F (x , y) . . . two-dimensional velocity vector field
F := F (x , y , z) . . . vector velocity field in three-dimensional space

The divergence of the vector field measures the expansion or compression of
the vector field at that point, but does not indicate the direction in which the
expansion or compression is going on =⇒ the divergence is a scalar

F : R3 −→ R3, F = (F1,F2,F3), div F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

Notation:

∇ . . . operator nabla . . . ∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

Then the divergence is the scalar product of the vectors ∇ and F ,

∇· F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (F1,F2,F3) =

∂

∂x
F1 +

∂

∂y
F2 +

∂

∂z
F3
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Divergence

F Examples

Example 1. F (x , y , z) = (−y , xy , z) =⇒ div F = 0 + x + 1 = x + 1

Example 2. F (x , y , z) = (x , y , z) =⇒ div F = 1 + 1 + 1 = 3 . . .
positive constant.In this case the divergence is independent on the choice of
the point (x , y , z). The fluid expands.

Example 3. Let us compute the divergence of the vector field

F (x , y , z) =
(x , y , z)

(x2 + y2 + z2)3/2 , (x , y , z) 6= (0, 0, 0).

Solution div F (x , y , z) =

=
∂

x
x

(x2 + y2 + z2)3/2 +
∂

y
y

(x2 + y2 + z2)3/2 +
∂

z
z

(x2 + y2 + z2)3/2

=
(x2 + y2 + z2)− 3x2

(x2 + y2 + z2)5/2 +
(x2 + y2 + z2)− 3y2

(x2 + y2 + z2)5/2 +
(x2 + y2 + z2)− 3z2

(x2 + y2 + z2)5/2

=
3(x2 + y2 + z2)− 3(x2 + y2 + z2)

(x2 + y2 + z2)5/2 = 0

So if we are not at the origin, the flow is not expanding nor contracting,
div F = 0.
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Divergence

Let us sink a small ball mounted at the origin into the liquid and consider the
vector field from Example 2. The fluid flows away from the ball. Because the
vector field has a positive divergence everywhere, the flow of the vector field
will be away from the ball, even if we move the ball from the origin.
In the left figure, there is the vector velocity field in three-dimensional space
from Example 2, on the right, there is the two-dimensional vector field from
Example 4.
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Divergence

F Dependence on the dimension

Example 4. Two-dimensional version of the vector field from Example 3.

F (x , y) =
(x , y)

(x2 + y2)3/2 , (x , y) 6= (0, 0)

div F (x , y) =
∂

x
x

(x2 + y2)3/2 +
∂

y
y

(x2 + y2)3/2

=
(x2 + y2)− 3x2

(x2 + y2)5/2 +
(x2 + y2)− 3y2

(x2 + y2)5/2

=
2(x2 + y2)− 3(x2 + y2)

(x2 + y2)5/2 =
−1

(x2 + y2)3/2 < 0

Everywhere except at the origin we have div F (x , y) < 0. The fluid is
compressed, although it flows ”out”. As a result of fluid flow, if we put the
circle to the flowing fluid, the fluid flows into the circle faster than from the
circle.
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Rotation

Rotation

The notion of the vector operator curl is based on the idea how liquid or gas
can rotate (circulate).

   

   

 

                        

 

 

 

 

 

curl of 2-dimensional curl of 3-dimensional
vector field vector field



Scalar and vector product Differential operations of the 1st order 2nd order differential operations Recommended literature

Rotation

F . . . a vector field that represents the flow of fluid

Place a small ball into the liquid and fixed the center of the ball =⇒ the ball
can rotate in any direction around its center, but can not move. This rotation
measures curl F of the vector field F at the center of the (small) ball
. . . microscopic rotation (circulation) of the vector field F . Operator curl is a
vector, curl F ∈ R3, that points along the axis of the rotation and its orientation
is determined according to the right-hand rule.

curl F = ∇× F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
× (F1,F2,F3) =

=

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
F1 F2 F3

∣∣∣∣∣∣∣∣ = i

∣∣∣∣∣∣
∂

∂y
∂

∂z
F2 F3

∣∣∣∣∣∣− j

∣∣∣∣∣ ∂

∂x
∂

∂z
F1 F3

∣∣∣∣∣+ k

∣∣∣∣∣∣
∂

∂x
∂

∂y
F1 F2

∣∣∣∣∣∣ =

(
∂F3

∂y
− ∂F2

∂z

)
i−
(
∂F3

∂x
− ∂F1

∂z

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k ,

where i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) are the unit vectors in the
direction of the coordinate axes.
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Rotation

F Examples

Example F (x , y , z) = (−y , xy , z). Compute curl F .

curl F =

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
−y xy y

∣∣∣∣∣∣∣∣ = i(0− 0)− j(0− 0) + k(y + 1) = (0, 0, y + 1) .

Example F (x , y , z) = (y , x2,−z). Compute curl F .

curl F =

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
y x2 −z

∣∣∣∣∣∣∣∣ = i(0−0)− j(0−0) + k(2x −1) = (0, 0, 2x −1) .

Notation:

curl F = ∇× F , F = (F1,F2,F3) ∈ R3, curl F ∈ R3
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Rotation

Macroscopic rotation

Microscopic rotation – a small ball thrown into the liquid with the center fixed,
so the small ball can rotate in all directions around its center, but can not
move

Macroscopic rotation – if we release the center of the ball then the ball starts
to spin in circles carried by fluid flow. The macroscopic rotation can not be
easily calculated as a curlF .

Example F (x , y , z) = (−y , x , 0) . . . rotation around the axis z. In this
case we can imagine the macroscopic rotation as the rotation of the (free)
ball in the fluid in the plane z = 0. Attention!!! The macroscopic rotation is not
curlF of the vector field F . To be able to measure curlF , we have to fix the
center of the ball. Verify that curl F = (0, 0, 2) .

Example F (x , y , z) =
(−y , x , 0)

x2 + y2 , (x , y) 6= (0.0).

We distinguish two cases: Along circles x2 + y2 = constant =⇒ we get the
previous example, a macroscopic rotation around z axis. For a general point
that does not lie on the axis z we obtain curl F = (0, 0, 0) . Verify.
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Green’s Theorem

Green’s Theorem

C . . . oriented, simple, closed curve =⇒

curve integral
∫
C

Fds represents rotation F ”around”the curve C.

For example if F represents water flow velocity field, this integral shows how
large tendency has water to circulate along a path in the direction of the
orientation of C.

Green’s Theorem . . . transforms the calculation of the curve integral over a
closed curve C to the calculation of the double integral over the interior of C.
But what we will integrate over the interior of C to obtain the same result as
we would integrate over a closed curve C?
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Green’s Theorem

Green’s Theorem shows the relationship between the microscopic rotations
along a closed path C and the sum of microscopic rotations inside C

   

      

Macroscopic circulation Sum of microscopic circulations
of the vector field F along C of the vector field F inside C∫

C
F ds =

∫∫
D

microscopic circulation F︸ ︷︷ ︸ dA

curlF · k

D . . . the domain ”inside”the closed curve C,
k . . . the unit vector in the direction of the axis z,
curl F · k . . . z−component of the operator curl F
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Green’s Theorem

Green’s Theorem Let C be positively oriented simple closed curve, and D
be the ”interior”of the closed curve C. Then∫

C
F ds =

∫∫
D

(rot F ) · k dA =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA .

Example Compute
∫
C

y2dx + 3xydy , where C is positively oriented

boundary of the upper semicircle D.

-

6

x

y'$
1−1

- 6

C
D

F (x , y) = (y2, 3xy)

Using the double integral: integrand

∂F2

∂x
− ∂F1

∂y
= 3y − 2y = y

domain D: −1 ≤ x ≤ 1, 0 ≤ y ≤
√

1− x2
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Green’s Theorem

∫
C

y2dx + 3xydy =

∫∫
D

(rot F ) · k dA =

∫∫
D

ydA =

=

∫ 1

−1

∫ √1−x2

0
ydy

 dx =
1
2

∫ 1

−1
(1− x2)dx =

2
3
.

Alternative calculation: curve integral:

I =

∫
C

y2dx+3xydy , C is positively oriented border of the upper semicircle D .

-

6

x

y'$
1−1

- 6

C1

C2

D

Parametrization C1 : r = 1, t ∈ 〈0, π〉 ,
x = cos t , y = sin t , dx = − sin tdt , dy = cos tdt

Parametrization C2 : t ∈ 〈−1, 1〉 ,
x = t , y = 0 , dx = dt , dy = 0
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Green’s Theorem

I =

∫
C1

y2dx+3xydy+

∫
C2

y2dx+3xydy =

∫ π

0
(− sin3 t+3 cos t sin t)dt+

∫ 1

−1
0dt =

=

∫ π

0
sin t (− sin2 t + 3 cos t)dt = −

∫ π

0
sin t(1− cos3 t)dt + 3

∫ π

0
sin t cos tdt

−
∫

sin t (1−cos2 t)dt =

∣∣∣∣ cos t = u
− sin tdt = du

∣∣∣∣ =

∫
(1−u2)du = 1− 1

3
cos3 t∫

sin t cos tdt =

∣∣∣∣ cos t = u
− sin tdt = du

∣∣∣∣ = −
∫

udu = −1
2

cos2 t

I =

[
1− 1

3
cos3 t

]π
0
− 1

2

[
cos2 t

]π
0

=
2
3
.

Exercise Using Green’s Theorem, compute (draw the curve)∫
C

(
√

x − y) dx +

(
1

1 + y2 + x
)

dy ,

where he curve C is a union of the part of the parabola y2 = x between the
points A = (0; 0) and B = (1; 1) and a line segment AB. The curve is
positively oriented.
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Green’s Theorem

Remark Path independence for curve integrals: Let F = (F1,F2,F3) be a
vector field on simply connected domain G ⊂ R3 , C be a closed curve. Then
the curve integral of the vector field∫
C

Fds is path independent, i.e., the vector field F is conservative (potential)

on G

⇐⇒
∂F1

∂y
=
∂F2

∂x
,

∂F1

∂z
=
∂F3

∂x
,
∂F2

∂z
=
∂F3

∂y
,

⇐⇒
curl F = 0 .

Remark Integral definition of divergence – it concerns the surface integral
and we will not deal with it here.

Remark Chemical interpretation of divergence:
div v(P), where the vector field v is the concentration gradient, represents the
quantity of the chemical substance, which in a neighborhood of point P will
be added by diffusion or arises by a chemical reaction (div v(P) < 0) or from
the neighborhood of the point P disappears (div v(P) > 0).
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Green’s Theorem

Definition The point P, in which div v(P) > 0 (expansion) is called a
source of the vector field v . The point P, in which div v(P) < 0 (compression)
is called a sink of the vector field v .

Remark The vector field v on the domain G is called
solenoidal (or divergenceless) ⇐⇒

div v(P) = 0 ∀P ∈ G,

i.e. in G, there are no sources, nor sinks.

Remark If v(x , y , z) is a velocity field in fluid then in hydrodynamics we call
the condition

div v = 0

the continuity equation for incompressible fluids.

Definition Let the vector field v(x , y , z) on the domain G be the velocity
field of a flowing fluid. Then curl v represents the tendency of particles at the
point (x , y , z) to rotate about the axis that points in the direction of curl v . If

curl v(x , y , z) = 0 ∀(x , y , z) ∈ G ,

then the fluid is called irrotational.
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Green’s Theorem

When to apply the Green’s Theorem?

Green’s Theorem allows us to calculate the line integral of the vector field as
a double integral: ∫

C
Fds =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dxdy ,

where D ⊂ R2, C = ∂D is a positively oriented closed curve.

Equivalently: F (x , y) = (P(x , y),Q(x , y)), P : D −→ R, Q : D −→ R , ∂D is
a closed curve , ∫

∂D
Pdx + Qdy =

∫∫
D

(
∂Q
∂x
− ∂P
∂y

)
dxdy .

Remark: If F is a conservative (potential) vector field, ∂D is a positively
oriented closed curve, then ∫

∂D
Fds = 0 .
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2nd order differential operations

Let f (x , y , z) be a scalar field, f : R3 −→ R, f ∈ C2(G) , and a(x , y , z) be a
vector field, a ∈ C2(G). We already know differential operations of the first
order:

∇f = grad f , ∇ · a = div a , ∇× a = curl a .

Applying ∇ again we obtain second derivatives for a scalar or a vector field.

div grad f

div grad f = ∇·∇f =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)(
∂f
∂x
,
∂f
∂y
,
∂z
∂z

)
=
∂2f
∂x2 +

∂2f
∂y2 +

∂2f
∂z2

Let us set

4f =
∂2f
∂x2 +

∂2f
∂y2 +

∂2f
∂z2

4 . . . Laplace operator, Laplacian

The following notation is also in use

4 = ∇ · ∇︸ ︷︷ ︸ = ∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

dot product
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Laplace’s equation, Poisson’s equation

Laplace’s equation is a second-order partial differential equation named after
Pierre-Simon Laplace who first studied its properties. This is often written as:

4u = 0, or ∇2u = 0

where 4 = ∇2 is the Laplace’s operator and u is a scalar function.
Laplace’s equation and Poisson’s equation are the simplest examples of
elliptic partial differential equations. The general theory of solutions to
Laplace’s equation is known as potential theory. The solutions of Laplace’s
equation are the harmonic functions, which are important in many fields of
science.

4 u = g 6= 0 Poisson’s equation
div rot a
div rot a = ∇ · (∇× a) = ∇ ·

(
∂a3

∂y
− ∂a2

∂z
,
∂a1

∂z
− ∂a3

∂x
,
∂a2

∂x
− ∂a1

∂y

)
=

∂2a3

∂x∂y
− ∂2a2

∂x∂z
+

∂2a1

∂y∂z
− ∂2a3

∂x∂y
+
∂2a2

∂x∂z
− ∂2a1

∂y∂z
= 0

=⇒ div rot a = 0 .

Exercise Simplify rot (rot a).
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rot grad f , f ∈ C2(G)

rot grad f = ∇×∇f =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣∣∣∣ =

i
(

∂2f
∂y∂z

− ∂2f
∂z∂y

)
− j
(

∂2f
∂x∂z

− ∂2f
∂x∂z

)
+ k

(
∂2f
∂y∂z

− ∂2f
∂z∂y

)
= 0.

Hence,
rot grad f = 0 .

Remark If we consider (∇×∇)f . . .

∇×∇ =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
∂

∂x
∂

∂y
∂

∂z

∣∣∣∣∣∣∣∣∣ = 0, i.e., (∇×∇)f = 0 · f = 0
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Gauss-Ostrogradsky’s theorem

Gauss-Ostrogradsky’s theorem

Theorem Gauss-Ostrogradsky’s
Let Ω ⊂ R2 be a compact domain with a Lipschitz boundary Γ, u ∈ H1(Ω) .
Then ∫

Ω

∂u
∂xi

dx =

∫
Γ

u ni dS , i = 1, 2,

where n = (n1, n2) is the unit outer normal to the boundary Γ .

The theorem says that the double integral over the domain Ω (= the inside of
the closed positively oriented curve Γ) is equal to the line integral over the
boundary Γ.

In the theorem, let us set u := v · w . We obtain∫
Ω

(
∂v
∂xi

w +
∂w
∂xi

v
)

dx =

∫
Γ

v ·w ·ni dS , i = 1, 2, v ,w ∈ C1(Ω), Ω ⊂ R2 .

1. Green’s formula∫
Ω

∂v
∂xi

wdx =

∫
Γ

v · w · ni dS −
∫

Ω

∂w
∂xi

vdx , i = 1, 2, v ,w ∈ C1(Ω), Ω ⊂ R2 .
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Gauss-Ostrogradsky’s theorem

The 1st Green’s formula in components:∫
Ω

∂v
∂x1

wdx =

∫
Γ

v · w · n1 dS −
∫

Ω

∂w
∂x1

vdx (2)∫
Ω

∂v
∂x2

wdx =

∫
Γ

v · w · n2 dS −
∫

Ω

∂w
∂x2

vdx (3)

We substitute in the equation (2) w :=
∂w
∂x1

and in the equation (3) w :=
∂w
∂x2

.

Hence, ∫
Ω

∂v
∂x1

∂w
∂x1

dx =

∫
Γ

v · ∂w
∂x1
· n1 dS −

∫
Ω

∂2w
∂x2

1
vdx (4)∫

Ω

∂v
∂x2

∂w
∂x2

dx =

∫
Γ

v · ∂w
∂x2
· n2 dS −

∫
Ω

∂2w
∂x2

2
vdx (5)
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Gauss-Ostrogradsky’s theorem

Now, we add equations (4) and (5) and obtain∫
Ω

(
∂v
∂x1

∂w
∂x1

+
∂v
∂x2

∂w
∂x2

)
dx =

∫
Γ

v ·
(
∂w
∂x1
· n1 +

∂w
∂x2
· n2

)
dS −

∫
Ω

(
∂2w
∂x2

1
+
∂2w
∂x2

2

)
vdx ,

i.e., ∫
Ω

grad v · grad wdx =

∫
Γ

v grad w · ndS −
∫

Ω

4 w · vdx ,

equivalently ∫
Ω

∇v ∇wdx =

∫
Γ

v
∂w
∂n

dS −
∫

Ω

4w vdx .

Finally we obtain 2nd Green’s formula:

−
∫

Ω

4w vdx = −
∫

Γ

v
∂w
∂n

dS +

∫
Ω

∇v ∇wdx .



Scalar and vector product Differential operations of the 1st order 2nd order differential operations Recommended literature

Gauss-Ostrogradsky’s theorem

F Divergence theorem (Gauss–Green–Ostrogradsky’s theorem)

Definition (generalized surface) The surface S ⊂ Rn(n ≥ 2) is called a
generalized (n − 1)−surface if S is the finite union of smooth
(n − 2)−surfaces, (n − 3)−surfaces, . . . , 2−surfaces, smooth curves and
points.

Theorem (Gauss–Green–Ostrogradsky’s) Let Ω be a bounded, connected
opened set in Rn, n ≥ 2, with the boundary ∂ Ω that is a generalized
(n − 1)−surface. Let all functions (scalars or vectors) integrated be (for
simplicity) continuous together with their needed derivatives on Ω. We denote
−→ν a unit vector of outer normal to Ω in points ∂ Ω, in which it exists.

For f : Ω ⊂ Rn → R, and for
−→
T : Ω ⊂ Rn → Rn , respectively, it holds

Gauss–Green–Ostrogradsky’s theorem for k ∈ {1, . . . , n}:∫
Ω

∂f
∂xk

dx =

∫
∂ Ω

fνk dS.

Divergence theorem: ∫
Ω

div
−→
T dx =

∫
∂ Ω

−→
T · −→ν dS.
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