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No label Mandatory material. This will be in writing tests and will be tested during
the oral examination.

F Worked examples for practice - optional

F For students who want to know more. This material will not be a part of
lectures, it will not be in written tests, and it will not be tested during the
oral examination.
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Solution of systems of linear algebraic equations

Solution of systems of linear algebraic equations

Let us solve a system of linear algebraic equations

Ax = b , A ∈ Rm×n , x ∈ Rn , b ∈ Rm

Basically, two types of methods are used:

direct methods . . . after a final number of steps we obtain the solution x
iterative methods . . . x is gained as a limit of a sequence of iterations xn :

x = lim
n−→∞

xn

Here, very important is so called stopping criterion.

Remak
We say that the matrix B is in upper triangular form (UT–form) iff

bii 6= 0, bij = 0 for i > j (below the diagonal) .
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Solution of systems of linear algebraic equations

Direct methods

1. Gauss elimination

A ∼ B , B in upper triangular form (UT–form) . . . forward direction

B =

 ∗ x x x
0 ∗ x x
0 0 ∗ x

 x . . . direction back – the unknowns are evaluated

Theorem of Frobenius
A system of linear algebraic equations Ax = b has a solution

⇐⇒
h(A) = h(A|b) , i.e.

the rank of the matrix A has to be equal to the rank of the extended
matrix (A|b) of the system .
Number of solutions:

If h(A) = h(A|b) = n =⇒ the system has just one solution.
If h(A) = h(A|b) < n =⇒ the system has an infinite number of solutions
and dim Vh = n − h(A) > 0, where Vh is the space of all solutions of the
homogeneous system.
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Solution of systems of linear algebraic equations

F

Example Which number q makes this system singular and which right side
t gives it infinitely many solutions? Find the solution that has z = 1.

x + 4y − 2z = 1

x + 7y − 6z = 6

3y + qz = t .

Solution Let us transform the extended matrix of the system into UT-form: 1 4 −2 1
1 7 −6 6
0 3 q t

 ∼
 1 4 −2 1

0 3 −4 5
0 3 q t

 ∼
 1 4 −2 1

0 3 −4 5
0 0 q + 4 t − 5


q 6= −4 ∧ t 6= 5 ⇒ h(A) = h(A|b) = n = 3 ⇒ in this case the system
has just one solution:

x = −17q + 10t + 18
3(q + 4)

, y =
4t + 5q
3(q + 4)

, z =
t − 5
q + 4

.

The equation z = 1 is fulfilled by all points of the line t = q + 9.
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Solution of systems of linear algebraic equations

F

q + 4 = 0 ∧ t − 5 6= 0 ⇒ q = −4, t 6= 5. Then h(A) = 2, h(A|b) = 3
and there is no solution of the system. The number q = −4 makes this
system singular.

q = −4, t = 5 . Then the original system is similar to the system[
1 4 −2 1
0 3 −4 5

]
⇒ h(A) = h(A|b) = 2, n = 3 ⇒

the system has infinitely many solutions, one unknown has to be a
parameter, z = α, α ∈ R. Then y = 5

3 + 4
3α, x = − 17

3 −
10
3 α.

x =

 x
y
z

 =
1

3

 −17
5
0

 +
α

3

 −10
4
3

 , Vh = {x ∈ R3
, x =

 x
y
z

 =
α

3

 −10
4
3

 , α ∈ R},

dimVh = 1 and z = 1⇔ α = 1. Then x = −9, y = 3. For q = −4 the
right hand side t = 5 gives infinitely many solutions, x = (−9, 3, 1)T is
the solution with z = 1
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Solution of systems of linear algebraic equations

F Solution of the system of linear algebraic equations via
decompositions

2.a) LU–decomposition (Gauss elimination is a particular example of
LU–decomposition)

A = LU

L . . . a lower triangular matrix with ones on the diagonal,
U . . . an upper triangular matrix, uii 6= 0 (if this is not true, the rows of the
matrix has first to be permute by a permutation matrix P and then we
decompose the matrix PA) .

L =


1 0 0 0
x 1 0 0

. . .
. . .

x . . . x 1

 U =


∗ x x x
0 ∗ x x

. . .
. . .

0 . . . 0 ∗


Because

Ax = b ⇐⇒ (LU)x = b ⇐⇒ L(Ux) = b ,

we solve two systems with a triangular matrix each:

At first Ly = b , then Ux = y .
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Solution of systems of linear algebraic equations

F

2.b) QR–decomposition
A = QR

Q . . . an orthogonal matrix: QQT = E ⇐⇒ Q−1 = QT

R . . . an upper triangular matrix.

We multiply the equation (QR)x = b from the left by the matrix QT .
We obtain

QTQ︸︷︷︸Rx = QTb Rx = QTb

E
and we have again a system with a triangular matrix.

As we have already noted, the LU–decomposition need not exist.
QR–decomposition exists always.

LU–decomposition is advantageous namely if we have to solve many
linear systems with the same matrix. Then we will compute the matrices
L and U only for the first system.
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Solution of systems of linear algebraic equations

Other direct methods

3. Cramer’s rule – it is ideal for regular matrices 2× 2, for larger systems it
is unusable .

4. Application of the inverse A−1 of the matrix A (E is the identity matrix)

Ax = b︸ ︷︷ ︸ , A regular =⇒ ∃A−1 : A A−1 = A−1 A = E .

the simplest matrix equation

We multiply the equation Ax = b from the left by the matrix A−1:

A−1A︸ ︷︷ ︸ x = A−1b =⇒ x = A−1b
E

This method is very unstable it can’t be recommended for practical
numerical computations. It is useful in proofs of theoretical results.
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Solution of systems of linear algebraic equations

Iterative methods

5. Jacobi and Gauss–Seidel methods
The idea:

A = D−L− U

D = diag(aii) a diagonal matrix
−L a sharp lower triangular matrix
−U a sharp upper triangular matrix

A =


a11 x x x
x a22 x x
x x a33 x
x x x a44


Let aii 6= 0, i = 1, . . . , n , then the matrix L + U has all diagonal entries
equal to zero.

Ax = b ⇐⇒ (D− L− U)x = b

D x︸︷︷︸ = b + (L + U) x︸︷︷︸ =⇒ x(k+1) = D−1(b + (L + U)x(k))︸ ︷︷ ︸
(k + 1)−st iteration k−th iteration the Jacobi method
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Solution of systems of linear algebraic equations

The Gauss–Seidel method

Let the matrix A be again written as

A = D− L− U

(D− L− U)x = b ⇐⇒ (D− L) x︸︷︷︸ = b + U x︸︷︷︸ =⇒
(k + 1)st iteration k−th iteration

the Gauss–Seidel method :

x(k+1) = (D− L)−1(b + Ux(k)) .
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Matrix inversion

Matrix inversion

Let A be a square matrix n× n . We say that a matrix B is an inverse matrix to
the matrix A, iff AB = BA = E . The matrix inverse to A is usually denoted as
A−1 , i.e.,

AA−1 = A−1A = E .

The inverse matrix A−1 to the matrix A exists ⇐⇒ A is nonsingular
(detA 6= 0) .

Let A = (aij)n×n , det A 6= 0 (A is a regular matrix) . Then

A−1 =
1

det A


A11, . . . A1n

A21, . . . A2n
...

...
An1, . . . Ann


T

, where Aij = (−1)i+j Mij ,

Aij is a cofactor of aij , Mij is a minor that belongs to aij .
Gauss–Jordan method
In this case we don’t need to know at the beginning of the computation
that the matrix A is regular. We use equivalent operations to transform

(A|E) ∼ (E|A−1) .
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Matrix equations

Matrix equations

The simplest matrix equation

Ax = b , A square, regular , n × n =⇒ ∃A−1

We multiply the equation by A−1 from the left and obtain

A−1A︸ ︷︷ ︸ x = A−1b =⇒ x = A−1b

E

If I would multiply the equation by A−1 from the right:

A︸︷︷︸ x︸︷︷︸ −1
A︸︷︷︸ = b︸︷︷︸ A−1︸︷︷︸

n× n n× 1 n× n n× 1 n× n . . . can’t multiply

Example:
XA− E = 2X + A , A =

(
1 3
0 2

)
XA− 2 X = A + E =⇒ X(A− 2E) = A + E , A− 2E =

(
−1 3

0 0

)
det(A− 2E) = 0 =⇒ A− 2E doesn’t have an inversion.

The matrix equation has no solution.
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Matrix equations

F

Example

A X + X = A− E , A =

 1 1 1
1 1 0
1 0 0


(A + E)X = A− E =⇒ X = (A + E)−1 (A− E)

A + E =

 2 1 1
1 2 0
1 0 1

 , det(A + E) = 1 6= 0 =⇒ ∃ (A + E)−1

(A + E|E) =

 2 1 1 1 0 0
1 2 0 0 1 0
1 0 1 0 0 1

 ∼
 2 1 1 1 0 0

0 −3 1 1 −2 0
0 1 −1 1 0 −2

 ∼
∼

 6 0 4 4 −2 0
0 −3 1 1 −2 0
0 0 −2 4 −2 −6

 ∼
 6 0 0 12 −6 −12

0 −6 0 6 −6 −6
0 0 −2 4 −2 −6

 ∼
∼

 1 0 0 2 −1 −2
0 1 0 −1 1 1
0 0 1 −2 1 3

 = (E|(A + E)−1)

X = (A + E)−1 (A− E) =

 −3 2 4
2 −1 −2
4 −2 −5

 .
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Eigenvalues and eigenvectors of the matrix

Eigenvalues and eigenvectors of the matrix

Definition A number λ (real or complex) is called the eigenvalue of the real
or complex matrix A if it satisfies for a nonzero vector x the equation

Ax = λ x ,

x 6= 0 . . . eigenvector of the matrix A that corresponds to the eigenvalue λ.

The set of all eigenvalues of the matrix A . . . spectrum of the matrix A

Ax = λx . . . the matrix equation for the unknown eigenvector x

Ax− λx = 0 , (A− λE)x = 0 , x 6= 0 , A− λE must be singular =⇒

det(A− λE)︸ ︷︷ ︸ = 0 . . . characteristic equation of the matrix A

characteristic polynomial of the matrix A = polynomial of degree n :

P(λ) = det(A− λE) = (−1)n(λn + p1λ
n−1 + p2λ

n−2 + · · ·+ pn) , where

−p1 = a11 + a22 + · · ·+ ann = the trace of the matrix A
pn = (−1)ndet A

Be careful! Eigenvalues of a real matrix may be imaginary .
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Eigenvalues and eigenvectors of the matrix

F

Example Let us compute eigenvalues and corresponding eigenvectors of

the matrix A =

(
2 1
−5 0

)
.

A− λE =

(
2− λ 1
−5 −λ

)
=⇒ det(A− λE) = λ2 − 2λ+ 5

Characteristic equation λ2 − 2λ+ 5 = 0 =⇒ λ1 = 1 + 2i , λ2 = 1− 2i ,
eigenvalues of the matrix A are the complex conjugate numbers.
Let us calculate eigenvector x1 that corresponds to the eigenvalue
λ1 = 1 + 2i , i.e., we have to solve the system with the singular matrix :

(A− λ1E)x1 = 0 , x1 = (h1, h2)
T 6= 0 , i.e., the system(

1− 2i 1
−5 −1− 2i

)(
h1

h2

)
=

(
0
0

)
This system has infinity many solutions, but we need only one eigenvector.
Let us choose for example h1 = 1 , then h2 = −1 + 2i . Because the
eigenvalues are complex conjugate, the eigenvectors are also complex
conjugate. We obtain

x1 =

(
1

−1 + 2i

)
, x2 =

(
1

−1− 2i

)
.
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Eigenvalues and eigenvectors of the matrix

An estimate of the spectral radius

An estimate of the spectral radius – the Gershgorin theorem
Let A = (ajk ) be a square n × n matrix. Let us denote

Kj = {µ ∈ C, |µ−ajj | ≤
n∑

k=1
k 6=j

|ajk |} is a circle with the center Sj and radius rj ,

Sj = ajj , rj =
n∑

k=1
k 6=j

|ajk | , i.e., the radius rj of the circle Kj is equal to the sum

of absolute values of non diagonal entries in j−th row. Then all eigenvalues

of the matrix A are located in the union of all circles, i.e., in
n⋃

j=1

Kj .

Numerical methods for computation of eigenvalues are based on LU or QR
decomposition of the matrix A .
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Eigenvalues and eigenvectors of the matrix

Example

A =


1 −1 1 −1
0 1 −1 0
−1 0 0 −1

0 1 2 −2

 ,

S1 = 1 r1 = 3
S2 = 1 r2 = 1
S3 = 0 r3 = 2
S4 = −2 r4 = 3

Eigenvalues are

1.126575852 ± 0.7768133722 i, −1.126575852 ± 1.391009448 i .

All eigenvalues are located in the set M = K1 ∪ K2 ∪ K3 ∪ K4 .
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The Givens matrices of plane rotations

F The Givens matrices of plane rotations

The matrix Gpq ∈ Rn×n, p < q, of the form

Gp,q =



1
. . .

1
c . . . . . . . . . s
... 1

...
...

. . .
...

... 1
...

−s . . . . . . . . . c
1

. . .
1



,

←− p

←− q

x x
p q

where s = sinφ, c = cosφ, φ real, is called the Givens matrix of the plane
rotation.
The matrix Gpq performs the rotation of Rn around the point 0 ∈ Rn about the
angle φ in p-q plane.
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The Givens matrices of plane rotations

F Elementary rotation matrix

The idea:

G12 =

(
cosϕ sinϕ
− sinϕ cosϕ

)
, x =

(
x1

x2

)
=⇒ G12x =

(
x1 cosϕ+ x2 sinϕ
−x1 sinϕ+ x2 cosϕ

)
.

By a suitable choice of ϕ we can gain that one of the component of the vector
x vanishes. For example, let us choose ϕ in such a way that the second
component will vanish:

−x1 sinϕ+ x2 cosϕ = 0 . Now, we apply cosϕ =

√
1− sin2 ϕ .

Then

x2
1 sin2 ϕ = x2

2 (1− sin2 ϕ) =⇒ sin2 ϕ =
x2

2

x2
1 + x2

2
pro (x1, x2) 6= (0, 0) .

We have
sinϕ =

|x2|√
x2

1 + x2
2

; similarly cosϕ =
|x1|√

x2
1 + x2

2

.

(it is not necessary to know the angel ϕ, we need only sinϕ and cosϕ) .
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The Givens matrices of plane rotations

F Zeroing one component of the vector

G1,2 . . . elementary matrix of the rotation.

G1,2 is the orthogonal matrix:

GT
1,2G1,2 = G1,2GT

1,2 =

(
cosϕ sinϕ
− sinϕ cosϕ

) (
cosϕ − sinϕ
sinϕ cosϕ

)
=

(
1 0
0 1

)
= E

Let us set
sinϕ =

|x2|√
x2

1 + x2
2

a cosϕ =
|x1|√

x2
1 + x2

2

.

Then

G12x =

(
x1 cosϕ+ x2 sinϕ

−x1 sinϕ+ x2 cosϕ

)
=


x2

1√
x2

1 + x2
2

+
x2

2√
x2

1 + x2
2

−x1x2√
x2

1 + x2
2

+
x1x2√
x2

1 + x2
2

 =

(
||x||

0

)
.
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The Givens matrices of plane rotations

F

Example Let x = (3, 4)T. Let us set sinφ = 4
5 , cosφ = 3

5 . Then

G12x =
1
5

(
3 4
−4 3

)(
3
4

)
= (5, 0)T.

If we multiply the vector xT by the matrix GT
pq from the right, we have

xTGT
12 =

1
5
( 3, 4 )

(
3 −4
4 3

)
= ( 5, 0 ).

If we put sinφ = 3
5 , cosφ = − 4

5 , we obtain

G12x =
1
5

(
−4 3
−3 −4

)(
3
4

)
= (0,−5)T,

and similarly,

xTGT
12 =

1
5
( 3, 4 )

(
−4 −3

3 −4

)
= ( 0, −5 ).
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The Givens matrices of plane rotations

F

G12x =

(
||x||

0

)

-

6

x

y

�
�
�
�
�
�
�7

?-
G12x = (||x ||, 0)T

x = (x1, x2)
T
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The Givens matrices of plane rotations

F Rotation of a vector in R3

The matrix of rotation G for a vector x ∈ R3?

The idea: we substitute G1,2 into the identity matrix E3×3 - three possibilities:
For a suitable choice of ϕ

G̃12 =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 =⇒ G̃12 ·

 x1

x2

x3

 =

 x̃1

0
x3


For a suitable choice of ϕ

G̃13 =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 =⇒ G̃13 ·

 x1

x2

x3

 =

 x̃1

x2

0


For a suitable choice of ϕ

G̃23

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 =⇒ G̃23 ·

 x1

x2

x3

 =

 x1

x̃2

0


If we apply the Givens plane rotation to any vector, only one of the
components of this vector will vanish.
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The Givens matrices of plane rotations

F

G := G̃13G̃12 =⇒ G

 x1

x2

x3

 = G̃13

 x̃1

0
x3

 =

 ˜̃x1

0
0


We applied two rotation matrices and as a result we obtained the vector with
two zero components of the vector x.

G12 is an orthogonal matrix =⇒ G−1
12 = GT

12

xTG−1
12 = (x1, x2) ·G−1

12 = (x1, x2) ·
(

cosϕ − sinϕ
sinϕ cosϕ

)
=

=

 (x1)
2√

x2
1 + x2

2

+
(x2)

2√
x2

1 + x2
2

,− x1x2√
x2

1 + x2
2

+
x2x1√
x2

1 + x2
2

 = (||x ||, 0)

If we multiply xT from the right by the matrix G−1
12 the second component of

the vector xT will vanish.
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The Givens matrices of plane rotations

F

The Givens matrix of the plane rotation Gpq ∈ Rn×n is always the orthogonal
matrix

GT
pqGpq = GpqGT

pq = E .

It is different from the identity matrix E only in entries in positions

(p, p), (p, q), (q, p) a (q, q) .

If we multiply any matrix A by the matrix Gpq from the left, only pth and qth
column of the matrix A will change, if we multiply any matrix A by the matrix
GT

pq from the right, only pth and qth row of the matrix A will change.



Matrix equations, inverse of a matrix. Eigenvalues and eigenvectors of a matrix, generalized eigenvectors. Solution of systems of linear algebraic equations Matrix reduction Singular value decomposition of a rectangular matrix Least squares solution Recommended literature

The Givens matrices of plane rotations

F The order of zeroing the entries

By a suitable choice of the Givens matrices one can transform a given matrix
A ∈ Rn×n into the similar upper triangular matrix. The order of zeroing the
entries is very important, because we don’t want the entries that have already
vanished to become nonzero again.

Let us construct a sequence of the matrices Gpq (p < q) in such a way that
qth component of the given vector will vanish and we multiply the matrix A
from the left by these matrices in the following order

G12 G13 . . . G1n

G23 . . . G2n
. . .

Gn−1,n

.

After k multiplications, k ≤ 1
2 n(n − 1) (we don’t apply the Givens rotation to

that entry of the matrix which is already zero) we obtain the similar matrix R
in the upper triangular form. The matrix

G = Gn−1,nGn−2,n . . .G13G12

is orthogonal,
G A = R =⇒ A = GT R.
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The Givens matrices of plane rotations

F

Let us draw the schema of the Givens method applied to the matrix A ∈ R4×4

in order to transform it into upper triangular form. (+ . . . the entries that have
not been changed by the transformation, ∗ . . . elements that changed):

A =


++++
++++
++++
++++

 G12

−→


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
++++
++++

 G13

−→


∗ ∗ ∗ ∗
0 +++
0 ∗ ∗ ∗
++++

 −→
G14

−→


∗ ∗ ∗ ∗
0 +++
0 +++
0 ∗ ∗ ∗

 G23

−→


++++
0 ∗ ∗ ∗
0 0 ∗ ∗
0 +++

 G24

−→


++++
0 ∗ ∗ ∗
0 0 ++
0 0 ∗ ∗

 G34

−→


++++
0 +++
0 0 ∗ ∗
0 0 0 ∗

 = R.

Disadvantage: The Givens matrix sets always to zero only one element in the
given matrix.

Advantage (namely if you work with sparse matrices): If we apply the Givens
rotation to a given matrix then only two columns or rows will be changed.
Others entries will not change.
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Householder’s matrices of the reflection

F Householder’s matrices of the reflection

Householder’s matrix of the reflection . . . the matrix that is able to set to
zero more entries of the given vector in once.

Hv = E− 2
v vT

||v||2 , v ∈ Rn , v 6= 0 .

x ∈ Rn =⇒ H x := Hvx is a vector symmetric with the given vector x by
the manifold % , that is orthogonal to the vector v .

HT = (E− 2
v vT

||v||2 )
T = H =⇒ H is symmetric

HT H = H2 = E =⇒ H is orthogonal .

Remark: Hx = x− v =⇒ for v = x− ||x||e1 is Hx = ||x||e1

the vector that has all components except the first one equal to zero.
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Householder’s matrices of the reflection

F

Example
x = (3, 4)T, v = x− ||x||e1 = (−2, 4)T,

H =
1
5

(
3 4
4 −3

)
, H x = (5, 0)T.
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Householder’s matrices of the reflection

F Solution of the system of linear algebraic equations by the
Householder method

Ax = b , A ∈ Rn×n .

We find n − 1 Householder’s matrices H1, H2, . . . ,Hn−1 , such that

H A := Hn−1 · · · · · H2 · H1 · A = R ,

R is an upper triangular matrix. Then we solve the system with the triangular
matrix R:

H A = R , H is orthogonal, i.e. HT = H−1 =⇒ A = HT R .

H Ax = Hb =⇒ Rx = Hb
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Singular values

Singular values of a rectangular matrix

A ∈ Rm×n, m 6= n . . . any rectangular matrix. We can’t define eigenvalues
for rectangular matrices, but . . .

ATA ∈ Rn×n =⇒ ATA is a square matrix(
ATA

)T
= ATA =⇒ ATA is symmetric

xT
(

ATA
)

x = (Ax)T Ax = ‖Ax‖2 ≥ 0 ∀ x ∈ Rn =⇒ ATA is positive semidefinite

Eigenvalues λ1, λ2, . . . , λn of the matrix ATA are real, nonnegative. We may
write them as λk = σ2

k , σk ≥ 0, k = 1, . . . , n. The numbers

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are called singular values of the matrix A.

For the largest and the smallest singular value of the rectangular matrix A, it
holds:

σ1 = max
06=x∈Rn

‖Ax‖
‖x‖ , σn = min

06=x∈Rn

‖Ax‖
‖x‖ .
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Singular value decomposition

Singular value decomposition

Theorem Let A ∈ Rm×n be any matrix. Then
there exist two orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that
the m × n matrix S = UTAV has a ”diagonal”form

S =

(
D 0
0 0

)
D = diag (σ1, σ2, . . . , σr ), σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

where σ1, σ2, . . . , σr are the nonzero singular values of the matrix A and
r is the rank of the matrix A;
the nonzero singular values of the matrix AT are also the numbers
σ1, σ2, . . . , σr .

The decomposition A = USVT . . . singular value decomposition of the
matrix A.

Remark S = UTAV
the columns of the matrix U . . . m orthonormal eigenvectors of the
symmetric m ×m matrix AAT,
the columns of the matrix V . . . n orthonormal eigenvectors of the
symmetric n × n matrix ATA.
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Singular value decomposition

F

Example Compute the singular value decomposition of the matrix

A =

[
1 1 0
0 1 1

]
.

Solution We want to compute the decomposition A = USVT, where U is
2× 2 orthogonal matrix, S has singular values on the diagonal, V is 3× 3
orthogonal matrix.

ATA =

 1 1 0
1 2 1
0 1 1

 Eigenvalues of ATA : λ1 = 3, λ2 = 1, λ3 = 0
Singular values of A : σ1 =

√
3, σ2 = 1, σ3 = 0

Corresponding eigenvectors:

λ1 = 3 : (ATA− 3E) =

 −2 1 0
1 −1 1
0 1 −2

 ∼ [ −2 1 0
0 −1 2

]

ṽ1 = (1, 2, 1)T, ‖ṽ1‖ =
√

6 ⇒ v1 =
1√
6
(1, 2, 1)T .



Matrix equations, inverse of a matrix. Eigenvalues and eigenvectors of a matrix, generalized eigenvectors. Solution of systems of linear algebraic equations Matrix reduction Singular value decomposition of a rectangular matrix Least squares solution Recommended literature

Singular value decomposition

F

λ2 = 1 : (ATA− E) =

 0 1 0
1 1 1
0 1 0

 ∼ [ 1 1 1
0 1 0

]

ṽ2 = (1, 0,−1)T, ‖ṽ2‖ =
√

2 ⇒ v2 =
1√
2
(1, 0,−1)T .

λ3 = 0 : (ATA) =

 1 1 0
1 2 1
0 1 1

 ∼ [ 1 1 0
0 1 1

]

ṽ3 = (1,−1, 1)T, ‖ṽ3‖ =
√

3 ⇒ v3 =
1√
3
(1,−1, 1)T .

We obtained

V =


1√
6

1√
2

1√
3

2√
6

0 − 1√
3

1√
6
− 1√

2
1√
3

 and S =

[ √
3 0 0

0 1 0

]
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Singular value decomposition

F

We multiply the equation A = USVT by the matrix V from the right and obtain

AV = US ⇒ Avi = σiui ,

and we can compute the columns of the matrix U by formula

ui =
1
σi

Avi , i.e., u1 =
1
σ1

Av1 =
1√
2

[
1
1

]
u2 =

1
σ2

Av2 =
1√
2

[
1
−1

]
Thus,

U =
1√
2

[
1 1
1 −1

]
.

We can check that the equation A = USVT really holds.
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Singular value decomposition

Practical computation of the singular value decomposition

Let A ∈ Rm×n. Is there any connection between spectral decompositions of
the matrices ATA and AAT?

Let us perform the spectral decomposition of the matrix ATA, i.e., we
compute eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 of the matrix ATA and
corresponding orthonormal eigenvectors v1, v2, . . . , vn.

Then the orthonormal eigenvectors u1, u2, . . . um corresponding to the same
nonzero eigenvalues of the matrix AAT are obtained by a simple formula

uj =
Avj

σj
, j = 1, . . . ,m .

It is not necessary to perform spectral decomposition of the matrix AAT.
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Singular value decomposition

F Numerical computation

A ∈ Rm×n, m ≥ n (w.l.o.g.)

Golub–Reinsch algorithm: two steps

bidiagonalization of the matrix A by applying the Householder matrices
of the reflection:

A −→ J(0) =

(
J0

0

)
, J0 =



x x 0
x x

. . .
. . .
. . . x

0 x

 .

After n reduction steps we obtain an upper bidiagonal m × n matrix J(0),

J(0) = PnPn−1 . . .P1AQ1Q2 . . .Qn−2,

Pk , Qk are the Householder matrices of the reflection.
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Singular value decomposition

F

Q := Q1Q2 · · ·Qn−2 , P := P1P2 · · ·Pn , P and Q . . . orthogonal ,

J(0) = PTAQ, (J(0))TJ(0) = JT
0J0 = QTATAQ .

The matrices J0 and A are similar, i.e. they have the same singular
values. Now, we have to perform the singular value decomposition of the
bidiagonal matrix J0.
We diagonalize J0 by using a particular variant of the QR method with
shifts based on applying of the sequence of the Givens rotation matrices

J0 −→ J1 −→ . . . −→ D , where D is diagonal , Jk+1 = ST
k Jk Tk ,

Sk and Tk are orthogonal matrices. We will choose the matrices Tk in
such a way that the sequence of the tridiagonal matrices Mk = JT

k Jk

converge to a diagonal matrix. The matrices Sk are chosen such that all
matrices Jk are in a bidiagonal form.

The method is very quick and numerically stable. The details are out of the
aim of the course. You can read more about the method in Wilkinson J. H.,
Reinsch C. or in Golub G., Van Loan Ch.



Matrix equations, inverse of a matrix. Eigenvalues and eigenvectors of a matrix, generalized eigenvectors. Solution of systems of linear algebraic equations Matrix reduction Singular value decomposition of a rectangular matrix Least squares solution Recommended literature

Overdetermined system of linear equations

Overdetermined system of linear equations

A ∈ Rm×n, m ≥ n, b ∈ Rm , ? x ∈ Rn : Ax = b.

Our system has more equations then unknowns, we say it is overdetermined.
The system has a solution only if the right hand side b is an element of the
column vector R(A) of the matrix A:

b ∈ R(A) = {y ∈ Rm, ∃x ∈ Rn : Ax = y} ⊂ Rm ,

i.e. b must be a linear combination of the columns of the matrix A. The
components of the computed vector x = (x1, x2, . . . , xn)

T are the coefficients
of this linear combination:

x1


a11

a21
...

am1

+ x2


a12

a22
...

am2

+ · · ·+ xn


a1n

a2n
...

amn

 =


b1

b2
...

bm

 .

Usually, b /∈ R(A) and insted of seeking the exact solution, we have to look
for such a solution that is the “closest one” to the exact solution.
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Overdetermined system of linear equations

Problem formulation

Let A ∈ Rm×n, m ≥ n, b ∈ Rm.

We are looking for a solution of the system Ax = b in sense of the least
squares, i.e., we are looking for

x ∈ Rn, x ∈ arg min
y∈Rn
||Ay− b||.

The least square solution of the system
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Overdetermined system of linear equations

Normal equations

‖x‖ = (xTx)
1
2 . . . the norm of the vector x

E = ‖Ax− b‖ . . . error of the computation

We are looking for such a point x̃ ∈ Rn, for which the error E is minimal.

Geometrically: the error E is the distance of the points Ax and b. This
distance is the smallest one if the vector Ax̃ is an orthogonal projection of the
vector b on the space R(A)

=⇒ the error vector Ax̃− b has to be orthogonal to the space R(A),

i.e., for any x ∈ Rn the vector Ax ∈ R(A) has to be orthogonal to the vector
Ax̃− b:

(Ax)T(Ax̃− b) = 0 ⇔ xT(ATAx̃− ATb) = 0 ∀ x ∈ Rn.

The last equation can be fulfilled if and only if the vector x̃ solves the so
called system of normal equations

ATAx̃ = ATb .
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Overdetermined system of linear equations

Theorem The vector x ∈ Rn is a least square solution of the system
Ax = b if and only if x solves the system of normal equations.
Moreover, the least square problem has just one solution if and only if the
rank h(A) of the matrix A is maximal, i.e. h(A) = n. In this case we say that
the matrix A has the full rank.

Remark If A ∈ Rm×n, m ≥ n, then

h(A) = n ⇐⇒ det(ATA) 6= 0.

The system Ax = b has a unique least square solution if and only if the
matrix ATA is regular.
Then from the normal equations we obtain

x̃ = (ATA)−1ATb

and if the matrix A ∈ Rm×n has orthonormal columns, i.e., ATA = En , where
En is n × n identity matrix, then

x̃ = ATb .
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Solution of the normal equations

F Theory: The solution of the normal equations

ATAx = ATb, c := ATb, ATA nonsingular =⇒ x = (ATA)−1c

The spectral analysis of the matrix ATA ∈ Rn×n :

eigenvalues λi > 0, eigenvectors vi ∈ Rn, {v1, . . . , vn} . . . base of Rn =⇒

x =
n∑

i=1

αivi , c =
n∑

i=1

γivi

ATA(
n∑

i=1

αivi) =
n∑

i=1

γivi

n∑
i=1

αiλivi =
n∑

i=1

γivi

 =⇒ αi =
1
λi
γi , i = 1, . . . , n.

How interprete the last equation?
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Solution of the normal equations

F

Let eigenvalues λi > 0, i = 1, . . . , n, of the matrix ATA are such that λn is
much smaller then other eigenvalues:

λ1 ≥ λ2 ≥ · · · ≥ λn−1 >> λn > 0.

The matrix ATA maps the sphere in Rn with the diameter equal to 1 into an
ellipsoid with axes in the directions of the eigenvectors vi . The length of the
axis in the direction vn is much smaller then lengths of the other axes. It
means that the mapping ATA maps any vector of the length 1 into a vector
with a negligible nth component and the ellipsoid lies in fact in Rn−1.

If we solve the normal equations we have to apply the inversion mapping

(ATA)−1. This mapping has the same eigenvectors, but eigenvalues are
1
λi

:

(ATA)−1vi =
1
λi

vi .

Because
1
λn

is much larger then others
1
λi

, the corresponding ellipsoid will be

in fact onedimensional.
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Solution of the normal equations

F

The mapping of the sphere with diameter 1 via the matrix ATA;
λ1 ≥ λ2 ≥ · · · ≥ λn−1 >> λn > 0

The mapping of the sphere with diameter 1 via the matrix (ATA)−1;
λ1 ≥ λ2 ≥ · · · ≥ λn−1 >> λn > 0
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Solution of the normal equations

Numerical solution of the normal equations

How large is in this case the error of the computation E = ‖ATAx−ATb‖?

In the finite computer arithmetic is, in general, the vector ATAx arbitrarily
incorrect, because ones lost digits can’t be gain back. It means that all
components except the last one are damaged or even lost.

Numerical solution x = (ATA)−1ATb :

F we apply the Choleski decomposition to the symmetric positive
definite matrix ATA.
Disadvantage: it is necessary explicitly compute the matrix ATA, i.e., we
have to compute many dot products that means that already the matrix
ATA can be computed with a quite large error. The advice is to apply a
method that doesn’t need the matrix ATA to be explicitly given but works
only with the matrix A.

via iterative methods.

The lost of the digits of the numerical computation is characterized by a so
called condition number of the matrix. It is in this case equal to

κ(ATA) =
λ1

λn
.
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Solution of the normal equations

Example
Ax = b 10 7 8 7

7 5 6 5
8 6 10 9
7 5 9 10


 u1

u2
u3
u4

 =

 32
23
33
31

 ⇒ x = (1, 1, 1, 1)T

Ax̂ = b̂ 10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10


 u1

u2
u3
u4

 =

 32, 1
22, 9
33, 1
30, 9

 ⇒ x̂ = (9, 2;−12, 6; 4, 5;−1, 1)T

Ãx̃ = b 10 7 8, 1 7, 2
7, 08 5, 04 6 5

8 5, 98 9, 98 9
6, 99 4, 99 9 9, 98


 u1

u2
u3
u4

 =

 32
23
33
31

 ⇒ x̃ = (−5, 79; 12, 02;−1.57, 2.57)T

The relative error:
εrel (b̂) =

‖b̂− b‖
‖b‖

= 0, 003, εrel (x̂) = 8, 2

εrel (Ã) =
‖Ã− A‖
‖A‖

= 0, 009, εrel (x̃) = 6, 64

The matrix A is symmetric, det(A) = 1, but the condition number is
κ(A) = 4488



Matrix equations, inverse of a matrix. Eigenvalues and eigenvectors of a matrix, generalized eigenvectors. Solution of systems of linear algebraic equations Matrix reduction Singular value decomposition of a rectangular matrix Least squares solution Recommended literature

The solution of the normal equations by singular value decomposition

F The normal equations and singular value decomposition

Let A = USVT, x = arg min
y∈Rn
||Ay− b|| =⇒ SVTx = UTb , where

S = diag(σ1, . . . , σp), p = min(m, n). Let the rank h(A)= r < p. Then
σr+1 = · · · = σp = 0, the matrix S is singular and the inversion doesn’t exist.
But if we multiply the second equation by the matrix S+ from the left

S+ =

(
D−1 0
0 0

)
, D−1 =

 1
σ1 . . . 1

σr

 ,

we obtain the system VTx = S+UTb with the orthogonal matrix VT. The
matrix S+ is so called Moore–Penrose pseudoinversion of the matrix S .
Here, we will not study pseudoinversions.
A comparison:

κ(A) =
σ1

σr
, κ(ATA) =

λ1

λr
=

(
σ1

σr

)2

= (κ(A))2 =⇒

by the direct solution of the normal equations we lost two times more valid
digits then if we apply the singular value decomposition.
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The solution of the normal equations by singular value decomposition

Singular expansion of the matrix

The equation A = USVT can be rewritten as a sum of ”singular terms” that
correspond to the matrix A:

A =
r∑

i=1

σiuivT
i , h(A) = r , h(uivT

i ) = 1 =⇒

x ∈ Rn =⇒ Ax =
r∑

i=1

σiuivT
i x =

r∑
i=1

(vT
i xσi)ui . . .

a linear combination of the vectors ui , i = 1, . . . , r .

Application: data compression
Let the matrix A ∈ Rm×n contains the measured data. We are looking for an
approximation of this matrix by the matrix B such that the rank of the matrix
B, h(B) = k < min(m, n) and the matrix B contains all important
information from the data in the matrix A. For example if we would like to
have the rank of the matrix B equal to 1, we just set B = σ1u1vT

1 .

Be careful! Different choice of k will influence the quality of the results.
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Data compresion – an example

F An example

Example We want to digitalize a photo in such a way that we replace the
photo by a matrix 24× 24 pixels. The elements of the matrix are 0 (black box)
or 1 (white box). We set the criterion for zero singular value to be smaller then
10−4and obtain 16 nonzero singular values. All others are with this precision
equal to 0:

9, 5403 6, 6288 5, 6369 3, 4756 2, 7385 2, 2023 1, 5835 1, 5566
1, 4207 1, 2006 0, 9905 0, 9258 0, 7479 0, 6744 0, 6122 0, 4698

We are looking for such k that the relative error will not be greater then 10.
The relative error is

e(k) = 1−

√√√√∑k
i=1 σ

2
i∑16

i=1 σ
2
i

In particular, e(2) = 0.18, e(3) = 0.09 =⇒ three ”singular terms”of the matrix
A, =⇒

B =
3∑

i=1

σiuivT
i , h(B) = 3
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Data compresion – an example

F

The original photo
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k = 3; k = 5; k = 5, elements of B are rounded to 0 or 1
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