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Evaluation of experimental data

Evaluation of experimental data
- Solving of chemical-engineering problems usually let us derive the

model of process or phenomenon taking place in the device.

- Frequently, we are not able to identify numerical values of model
parameters.

Function η(x) = E(Y (x)) defined on the domain A ⊂ R is called regression
function. Regression is the relationship between E(Y (x)) – the mean value
of random variable Y (x) – and the independent variable x .

Assume that we know the form of the regression function. Based on random
selection, we estimate its unknown parameters:
We choose n values of independent variable xj ∈ A, j = 1, . . . , n, and for
each xj observe (measure) the realization (value) yj of random variable Yj :

xj ∈ A, j = 1, . . . , n −→ yj = Y (xj ) .

Obtained pairs of values (x1, y1), . . . , (xn, yn) are used for the estimation of
unknown parameters.
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Basic model of linear regression

Model of linear regression must fulfil:

1. η(x) is a linear function of the form

η(x) =

p∑
k=1

βk fk (x) ,

where fk (x) are known functions, and βk , k = 1, . . . , p, unknown
parameters. The function η is linear in parameters.

2. Value xj is assigned random variable Yj , for which it reads

E(Yj ) = η(xj ) , D(Yj ) = σ2 , j = 1, . . . , n ,

The second equation means that the variance is independent of xj , and
thus it is constant. For example, it corresponds to the case that all
realizations y1, . . . , yn of random variables Y1, . . . ,Yn are measured with
the same precision.



Evaluation of experimental data Basic model of linear regression Nonlinear regression Recommended literature

3. Matrix F = (fij ) , where fij = fi (xj ) , i = 1, . . . , p, j = 1, . . . , n, has the
rank p . Note that the number n of pairs (xj , yj ) must be greater than the
number of unknown parameters p, precisely, it should hold true
n − p > 2 .

4. Random variables Y1, . . . ,Yn are not correlated, i.e.

cov(Yi ,Yj ) = 0, i , j = 1, . . . , n, i 6= j .

Matrix notation
Cy = σ2En ,

where En is the identity matrix of order n, Cy is the covariance matrix of
variables Y1, . . . ,Yn .

Example A regression line, i.e. the regression function of the form
η(x) = α + βx has the number of unknown parameters p = 2, and
β1 = α, f1 = 1, β2 = β, f2 = x .
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Equivalent model

F

Described model in the equivalent form is

Yj = η(xj ) + εj =

p∑
k=1

βk fkj + εj , j = 1, . . . , n , (1)

where values x1, . . . , xn are values of nonrandom variables, values fkj = fk (xj )
fulfil the 3. condition of the model. Random errors εj , j = 1, . . . , n , and the
covariance matrix Cε of the random vector ε = (ε1, . . . , εn) fulfil

E(εj ) = 0 , j = 1, . . . , n , Cε = σ2 En = Cy .

Equation (1) reads in the matrix form

−→
Y = F T−→β +−→ε .
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Least squares method

Least squares method

We find unknown parameters β1, . . . , βp in described model of linear
regression by least squares method . Let these estimations are b1, . . . , bp,
which are selection functions of random choice Y1, . . . ,Yn. We minimize the
sum of squares of deviations from observed values yj and their mean values
ηj = η(xj ), thus the sum of squares is

Q(β1, . . . , βp) =
n∑

j=1

(yj − ηj )
2 =

n∑
j=1

(
yj −

p∑
k=1

βk fkj

)2

.

Thus estimations b1, . . . , bp are found as a solution of the set of equations

∂Q
∂βk

= 0, k = 1, . . . , p.

This system is called the system of normal equations.
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Least squares method

We can rewrite the system of normal equations for searched estimations
b1, . . . , bp in a lucid form

b1S11 + b2S12 + · · · + bpS1p = S1y

b1S21 + b2S22 + · · · + bpS2p = S2y
...

b1Sp1 + b2Sp2 + · · · + bpSpp = Spy ,

where

Ski =
n∑

j=1

fkj fij , i , k = 1, . . . , p ,

Sky =
n∑

j=1

fkj yj , k = 1, . . . , p .

Clearly Sik = Ski for i , k = 1, . . . , p .
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Least squares method

Matrix notation:
If −→y = (y1, . . . , yn)T,

−→
b = (b1, . . . , bp)T, then normal equations can be

written in the form
F F T−→b = F −→y . (2)

Assume that h(F ) = p, then also h(F F T) = p and F F T is of the type p × p,
regular =⇒ exists (F F T)−1, and thus from equation (2) we can express
vector

−→
b : −→

b = (F F T)−1 F−→y ,

the vector
−→
b is uniquely determined and its each component is a linear

combination of values y1, . . . , yn .

Attention! Calculation is extremely numerical unstable, see the lecture
”Linear algebra”.
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Least squares method

F Example

Let a regression line goes through the beginning, η(x) = a x , then fj = xj and
β1 = a . Denote −→x = (x1, . . . , xn)T, F = (x1, . . . , xn) . Then

F F T = (x1, . . . , xn) · (x1, . . . , xn)T =
n∑

j=1

x2
j =⇒ (FF T)−1 =

1∑n
j=1 x2

j

.

Estimation of the parameter a is

a = (F F T)−1F−→y =

(
1∑n

j=1 x2
j

)
−→x T−→y =

∑n
j=1 xjyj∑n
j=1 x2

j

.
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Least squares method

F Example

Experiments were conducted in which ice crystals were placed into a compartment at a
constant temperature (-5◦C). In order to analyze the growth of the ice crystals as a
function of time, the saturation of the air by water was kept constant. The experimental
data points were randomized over time. The experimental data are presented in the
following table, where y is the axial length of the crystals in microns and x is the time in
seconds. Repeated measurements were also performed in order to examine the lack of
fit. Use a straight–line model, y = β0 + β1x and fit it to the data.

x [s] y [mm] x [s] y [mm]
50 19 125 28
60 20, 21 130 31, 32
70 17, 22 135 34, 25
80 25, 28 140 26, 33
90 21, 25, 31 145 31
95 25 150 36, 33

100 30, 29, 33 155 41, 33
105 35, 32 160 40, 30, 37
110 30, 28, 30 165 32
115 31, 36, 30 170 35
120 36, 25, 28 180 38
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Least squares method

F Solution

The experimental data are in vector and matrix notation

y =



19
20
21
17
...

35
38


X =



1 50
1 60
1 60
1 70
...

...
1 170
1 180


,

where y is n × 1 vector and X is an n × p matrix; n = 43 is the total number
of experimental points, and p represents the number of parameters, in this
case two: β0, β1. The first column of X should only contain 1 in each position.
The number of different x−positions is m = 22. As there are many repeated
experiments, m is significantly lower than the total number of experimental
points n. We denote ni the number of observations for each xi , i = 1, . . . ,m,
and n =

∑m
i=1 ni .The model parameters can be calculated as follows:

b =
[
β0, β1

]
= (X TX )−1X Ty =

[
14.19

0.1346

]
.

We obtained the model y = 14.19 + 0.1346 x .
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Least squares method

F Unbiased estimation of linear parametric function

Task We find estimation of the linear function of parameters
−→
β = (β1, . . . , βp)T . Assume a parametric function

γ =

p∑
k=1

ckβk =
−→c T ·

−→
β ,

where −→c = (c1, . . . , cp)T is known nonzero vector (−→c 6= 0) .

Statement The best estimation of linear parametric function −→c T ·
−→
β is a

function (statistics) g =
−→c T ·

−→
b , where

−→
b is the solution of normal equations.

E(g) = γ, and ”the best” means that the variance D(g) is minimal in the
class of unbiased estimations.
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Nonlinear regression

Goal: Estimation of parameters a1, . . . , an in nonlinear empirical formulae

y = f (x, a) .

We will minimize the sum of squares of deviations

S(a) =
m∑

j=1

(
f (x j , a)− y j

)2
=

m∑
j=1

q2
j (a) ,

where qj is the residuum of j th measured point. Denote by a+ the point in
which the sum of squares S(a) has its minimum. The value a+ is obtained as
a limit of so called minimizing sequence ak in such a way that

S(ak+1) < S(ak ) .
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F

Taylor series of function f (neglect terms of higher order than 1):

f (x , a) ≈ f (x , ak ) + gradT
a f (x , ak ) (a− ak ) ⇐⇒

f (x , a) ≈ f (x , ak ) +
n∑

j=1

∂f (x , ak )

∂aj
(aj − ak

j ) .

Evaluate the approximation formulae

y − f (x , ak ) =
n∑

j=1

∂f (x , ak )

∂aj
4ak

j .

Let Γ(a) be the Jacobi matrix,

Γ(a) =


∂f (x1, a)

∂a1

∂f (x1, a)

∂a2
. . .

∂f (x1, a)

∂an
...

...
∂f (xm, a)

∂a1

∂f (x1, a)

∂a2
. . .

∂f (xm, a)

∂an

 .
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F

We search for a solution:

4+ak = −
(

ΓT(ak ) Γ(ak )
)−1

ΓT(ak )q(ak ) ,

where q = (q1, . . . , qm). Using 4+ak we calculate the next iteration

ak+1 = ak + λ4+ak , λ ∈ (0, 1〉 .

The starting value: λ = 1. If S(ak+1) ≥ S(ak ), then we decrease λ.

The calculation is performed for

ΓT(ak ) Γ(ak )︸ ︷︷ ︸4+ak = −ΓT(ak ) q(ak ) .

matrix n × n

Process is stopped, if ||4+ak || is less than a required precision.
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