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Introduction

Numerical solution of differential equations – necessity for engineering
applications.

In this lecture we study numerical methods for solving a first order differential
equation

y ′ = f (x , y) , y(x0) = y0 .

In particular

Euler’s method, which is really too crude to be of much use in practical
applications. However, its simplicity allows for an introduction to the
ideas required to understand the better methods.

The Runge-Kutta method, perhaps the most widely used method for
numerical solution of differential equations.
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F Solution of the initial value problem by a one step method

We solve the initial value (Cauchy) problem

y ′ = f (x , y), y(x0) = y0 .

Uniqueness and existence of a solution:
If f (x , y) is continuous in
Ω = {(x , y), |x − x0| ≤ a, a > 0, |y − y0| ≤ b, b > 0} and if we denote

M = max
(x,y)∈Ω

|f (x , y)| , α = min(a,
b
M

) ,

then there exist a solution of the equation y ′ = f (x , y) defined in the interval
(x0 − α, x0 + α) .

Moreover, if f is a Lipschitz function, i.e.

|f (x , y1)− f (x , y2)| ≤ L |y1 − y2| L > 0, ∀(x , y1), (x , y2) ∈ Ω ,

the solution is unique .

Remark: L . . . Lipschitz constant
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Taylor expansion of the solution

We are looking for a function y = y(t) such that

dy
dt

= y ′ = f (t , y), y(0) = y0 , 0 < t < T .

Let us suppose that we have already computed the solution yn := y(tn) in
time tn and we want to find a solution in time tn+1. Let h := tn+1 − tn be the
corresponding time step.

Taylor expansion of yn+1 in the point yn:

yn+1 = yn + h · y ′n︸︷︷︸+
h2

2
y ′′n +

h3

6
y ′′′n + . . .

= f (tn, yn) from the differential equation
And y ′′n ?

y ′′ =

(
dy
dt

)′
=
∂f
∂t
· 1 +

∂f
∂y
· y ′ = ft + fy · f

y ′′′ =
∂

∂t
(ft + f fy ) +

∂

∂y
(ft + f fy ) f = ftt + 2f fyt + ft fy + f f 2

y + f 2 fyy ,

. . . etc.
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Error of the discretization

What is the difference between the solution obtained by a numerical method
and the exact solution? In other words what is the global discretization error

ei = y(xi )− yi ?

If we solve numerically a differential equation we compute each iteration with
a so called local discretization error. The global discretization error is just the
accumulation of the local discretization errors. The methods that manage to
keep a small error with respect to the exact solution are called stable
methods.

For a description of the rate of convergence we use the term order of the
method. The order of the method is a natural number p such that for small h
local discretization error is of order hp+1.
For example

yn+1 = yn + hy ′n +O(h2)︸ ︷︷ ︸ means that lim
h→O+

yn+1

h2 = k 6= 0,

local discretization error

the method is of the order p = 1. The following Euler’s method is the method
of the first order.
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Euler’s method

Euler’s method

Euler’s method is based on the assumption that the tangent line to the
integral curve at (tn, y(tn)) approximates the integral curve over the interval
(tn, tn+1). Because of the linearization, we use only the first two terms of the
Taylor expansion:

We choose y(0) := y0 and construct a sequence

yn+1 = yn + hf (tn, yn) , n = 0, 1, 2, . . . .

Let us note that Euler’s method is the first order method.

Remark The step of the method h can be changed with a particular
iteration (adaptive choice of step):

yn+1 = yn + hnf (tn, yn) .
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Euler’s method

F

Example Solve the following initial value problem by Euler’s method. Find
the solution in time t = 3,

y ′ = 0, 3 y sin(t) , y(1) = 2 .

For simplicity, let us consider n = 4, i.e., h = 0.5 .

yj+1 = yj + h f (tj , yj ), where f (tj , yj ) = 0, 3yjsin(tj ) .

tj step 0.5 step 0.005
1 2 2

1.5 2.252441295 2.30249902026881692
2 2.589461130 2.66460601831410714

2.5 2.942649681 2.99089235783755570
3 3.206813761 3.16533517440834976
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Euler’s method

F Example

Example
Solve the following initial value problem by Euler’s method. Use the
integration step h = 0.2 and compute three iterations.

y ′ = t − 2y , y(0) = 1 .

Exact solution: y(t) =
1
4

[
2t − 1 + 5e

−2t ]
.

Euler’s method exact sol. error
j tj f (tj−1, yj−1) yj = yj−1 + hf (tj−1, yj−1) y(tj ) yj − y(tj )
0 0.0 initian cond. = 1.0000 0 0

1 0.2 0 − 2 · 1 = −2.000 1.0 + (0.2)(−2.0) = 0.6000 0.6879 −0.0879

2 0.4 0.2 − (2)(0.6) = −1.000 0.6 + (0.2)(−1.0) = 0.4000 0.5117 −0.1117

3 0.6 0.4 − (2)(0.4) = −0.400 0.4 + (0.2)(−0.4) = 0.3200 0.4265 −0.1065
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Euler’s method

F

In the following figure, you may see a comparison of the exact solution and
the numerical one by (•) Euler’s method. Integral curves z(t) start always
from points of the numerical solution as from the new initial value condition
for the given equation.
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Euler’s method

F Stability of Euler’s method

Let us solve the model problem

y ′ = λy , λ a constant (1)

Euler’s method =⇒

yn+1 = yn + λh yn , t.j. yn+1 = yn(1 + λ h) ,

i.e., we obtain

yn = yn−1(1 + λ h) = yn−2(1 + λ h)2 = . . . = y0(1 + λ h)n .

For λ = λ1 + iλ2 . . . imaginary, we have

yn = y0(1 + λ1h + iλ2h︸ ︷︷ ︸)n = y0 σ
n .

σ . . . so called amplification factor

The numerical solution is stable (i.e. it will remain limited for the growing
(large) n, too), if |σ| ≤ 1 .
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Euler’s method

F

Let in (1), λ = λ1 + iλ2, λ1 ≤ 0 , σ = 1 + λ1h + iλ2h .

Then the region of stability for Euler’s method is part of the left half of the
complex plane, in particular inside of the circle

|σ|2 = (1 + λ1h)2 + λ2
2h2 = 1 .

For any value of λh in the left half of the complex plane outside of this circle
the numerical solution is blowing up, while the exact solution decreases. If we
want to have a stable solution, we must reduce the h so, that λh would be
inside the circle.
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Euler’s method

Implicit (backward) Euler’s method

The yn+1 occurs in the equation implicitly:

yn+1 = yn + h f (tn+1, yn+1) .

Disadvantage: the method is computationally more demanding than explicit
Euler’s method.
Advantage: it is more stable, sometimes linearization of f can be exploited
with advantage.

F Example Use Euler’s implicit method with step sizes h = 0.5, h = 0.1 to
find approximate values of the solution of the initial value problem

y ′ =
2t + 1
5t4 + 1

, y(2) = 4, at points t = 4, t = 5 .

Present your results in tabular form. Compute the analytic solution by
separation of variables and compare the exact values with results obtained
by Euler’s implicit method.
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Euler’s method

F Implicit Euler’s method – Example

Example Let us apply the implicit Euler’s method to the model problem (1):

yn+1 = yn + λhyn+1 =⇒ yn+1 =
1

1− λh
yn , i.e.,

yn =
1

1− λh
yn−1 =

(
1

1− λh

)2

yn−2 = . . . =

(
1

1− λh

)n

y0 .

We obtain:
yn = σny0 , σ =

1
1− λh

.



Introduction One step methods Multistep methods Stability of k−steps methods ”Stiff”systems Predictor-corrector method Recommended literature

Euler’s method

F θ–methods

We can define the following one-parameter class of one-step methods, called
θ−methods:

For a given initial approximation y0, we define yn+1 as a convex combination
of f (tn, yn) and f (tn+1, yn+1) (θ . . . parameter):

yn+1 = yn + h[(1− θ)f (tn, yn) + θf (tn+1, yn+1)] , n = 0, 1, . . . ,N − 1 , θ ∈ 〈0, 1〉 .

• θ = 0 =⇒ yn+1 = yn + hf (tn, yn) . . . (explicit) Euler’s method

• θ = 1 =⇒ yn+1 = yn + hf (tn+1, yn+1) . . . implicit Euler’s method

• θ =
1
2

=⇒ yn+1 = yn +
1
2

h[f (tn, yn) + f (tn+1, yn+1)]

. . . trapezoidal rule.

It can be shown that a θ−method is explicit for θ = 0 and it is implicit for
0 < θ ≤ 1 .
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Runge - Kutta methods

Runge - Kutta methods

Runge - Kutta methods (RK) – more precise than Euler’s methods:

explicit: The solution in time tn+1 is computed from the values yn, f (tn, yn)
and from f (t , y) enumerated at a point between points tn and tn+1

=⇒ better accuracy because we use more information about the
function f .

implicit: They usually lead to the solution of nonlinear algebraic
equations, but the amount of work involved is balanced by better
numerical stability.
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Runge - Kutta methods

RK method of the second order

Let us solve again the equation y ′ = f (t , y) .
In the time step tn+1, we obtain the solution from the equation

yn+1 = yn + γ1k1 + γ2k2 , (2)
where

k1 = hf (tn, yn)
k2 = hf (tn + αh, yn + βk1, ) , α, β, γ1, γ2 ∈ R .

The constants α, β, γ1, γ2 have to be determined in such a way that the
method should have the highest order of accuracy possible. To determine the
order of accuracy, we exploit the Taylor expansion of y(tn+1)

yn+1 = yn + h y ′n︸︷︷︸+
h2

2
y ′′n︸︷︷︸+ · · · =⇒

f (tn, yn) ft + f fy

yn+1 = yn + hf (tn, yn) +
h2

2
(ftn + fnfyn )+ · · · (3)

and compare the coefficients in (2) and (3) .
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Runge - Kutta methods

F

Taylor series for the function of two variables k2 = hf (tn +αh, yn +βk1) =⇒

k2 = h
(

f (tn, yn) + βk1fyn + αhftn +O(h2)
)
.

Remark Symbol O (capital O)

g(h) = O(hp) ⇐⇒ |g(h)| ≤ C · hp , C is a constant independent of h .

Then yn+1 = yn + (γ1 + γ2)hfn + γ2βh2fnfyn + γ2αh2ftn + · · ·

We compare the result with (3) and obtain three nonlinear equations for 4
unknowns:

γ1 + γ2 = 1 , γ2α =
1
2
, γ2β =

1
2
.

Let α ∈ R be a parameter. Then γ2 =
1

2α
, β = α , γ1 = (1− 1

2α
) .
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Runge - Kutta methods

We obtain Runge - Kutta methods of the 2nd order:

k1 = hf (tn, yn)

k2 = hf (tn + αh, yn + βk1)

yn+1 = yn + (1− 1
2α

)k1 +
1

2α
k2 .

We choose α and get the method. For example

α =
1
2

=⇒ γ2 = 1 , β =
1
2
, γ1 = 0 =⇒

yn+1 = yn + k2 = yn + hf (tn +
1
2

h, yn +
1
2

k1) .

Remark RK method of the 2nd order requires at each step twice
quantification of function values.
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Runge - Kutta methods

RK methods of 4th order

For solving initial value problems, the RK methods of 4th order are mostly
used

yn+1 = yn +
1
6

k1 +
1
3

(k2 + k3) +
1
6

k4 ,

where
k1 = hf (tn, yn)

k2 = hf (tn + h
2 , yn + 1

2 k1)

k3 = hf (tn + h
2 , yn + 1

2 k2)

k4 = hf (tn + h, yn + k3) .

At each step, we need to compute function values 4 times.

Although laborious, the RK method of 4th order is stable and very accurate. It
is easily programmable, because it requires no differentiation, only
computation of function values.
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Runge - Kutta methods

F Example

By Runge-Kutta method of 4th order solve the initial value problem

y ′ = t2 − y , y(0) = 1,

with step h = 0.1 on interval 〈0; 0.5〉.
Solution The data t0 = 0, y0 = 1, f (t , y) = t2 − y are given, we will
compute y1, i.e., the approximation of the solution in t1 = 0.1.

k1 = f (0; 1) = 02 − 1

k2 = f (0 +
1
2

0.1; 1 +
1
2

0.1(−1)) = f (0.05; 0.95) = −0.9475

k3 = f (0 +
1
2

0.1; 1 +
1
2

0.1(−0.9475)) = f (0.05; 0.952625) = −0.950125

k4 = f (0 + 0.1; 1 + 0.1(−0.950125)) = f (0.1; 0.9049875) = −0.8949875

y1 = y0 +
1
6

0.1(k1 + 2k2 + 2k3 + k4)
.

= 0.9051627.

For comparison: the exact solution of our problem is y = −e
−t

+ t2 − 2t + 2
and y(0.1) = 0.9051626 .
Compute aproximation of the solution and exact solution in points 0.2; 0.3; 0.4
and 0.5.
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Runge - Kutta methods

Computational error

Computational error

a) y(tn) . . . exact solution in time tn, yn . . . approximate solution in time tn
en = yn − y(tn) . . . global error of the approximation

b) The computer works in finite arithmetic:
rn = ỹn − yn . . . rounding error
We want to compute f but in fact, we compute the numerical
approximation ỹn .

For Euler’s method:
(1) . . . the global error of approximation en,

En is directly proportional to the first
power of h
(2) . . . rounding error

rn is inversely proportional to the first
power of h
(3) . . . total error for Euler’s method

About rounding errors, we can convince
only if we repeat the calculation with the
different pracission (double precission,. . . )
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Runge - Kutta methods

Richardson’s extrapolation

Richardson’s extrapolation is used to generate high-accuracy results while
using loworder formulas.
Let us solve an initial value problem by a numerical method of the order p.
Let y(x) be the exact solution of our problem. Let us choose two different
steps h = h1 and h = h2 and let y1 = y(x , h1) be the approximate value of the
solution at the point x with the step h1, y2 = y(x , h2) with the step h2. Then

y(x)
.

= y1(x) + C · hp
1 (4)

y(x)
.

= y2(x) + C · hp
2 , (5)

where C is a constant the same in both cases, independent on h.
From the equation (4) we substract the equation (5) and obtain

0 = y2 − y1 + C · hp
2 − C · hp

1 ⇒ C =
y2 − y1

hp
1 − hp

2

.

We put this constant C into the equation (5):

y(x)
.

= y2(x) +
y2 − y1

hp
1 − hp

2

· hp
2 ⇒ y(x)

.
= y12 =

y2

(
h1
h2

)p
− y1(

h1
h2

)p
− 1

.

The approximation y12 is called Richardson’s extrapolation of the solution y
obtained from the values y1 a y2.
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Linear multistep methods

Linear multistep methods

One-step methods . . . to find yn+1 we need information only from previous
time level yn

Multistep methods . . . to find yn+1 we need information from more time
levels (for example it is not sufficient to start from the initial condition)

Let us consider three consecutive time levels

tn−1 , tn = tn−1 + h , tn+1 = tn−1 + 2h

and let us integrate a differential equation fom tn−1 to tn+1 using Simpson’s
rule:∫ b

a
f (x)dx ≈

h
3

(f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + · · · + 4f (xn−1) + f (xn)) .

Remember also that ∫ tn+1

tn−1

y ′(t)dt = y(tn+1)− y(tn−1) .
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Linear multistep methods

So, we have

y(tn+1) = y(tn−1) +

∫ tn+1

tn−1

f (t , y(t))dt ≈

≈ y(tn−1) +
1
3

h (f (tn−1, y(tn−1)) + 4f (tn, y(tn)) + f (tn+1, y(tn+1)))

Let yn
.

= y(tn) .

We obtain method

yn+1 = yn−1 +
1
3

h (f (tn−1, yn−1) + 4f (tn, yn) + f (tn+1, yn+1)) .
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Linear multistep methods

Let now a uniform partitioning with step h be given:

tn, tn+1 = tn + h, tn+2 = tn + 2h, . . .

The general linear k−steps method has the form:

αk yn+k + αk−1yn+k−1 + · · ·+ α0yn = h(βk fn+k + βk−1fn+k−1 + · · ·+ β0fn) ,

where constants αj , βj ∈ R, αk 6= 0 and α2
0 + β2

0 > 0; fn
.

= f (tn, y(tn)) .

If βk = 0, then yn+k can be computed explicitly from values yn, . . . , yn+k−1 and
from values of the function f in the previous time levels
=⇒ explicit k−step method

If βk 6= 0, then yn+k appears on both sides of the equation and as a
consequence the method is implicit .

Remark linear – in the formula, only a linear combination of yn and f (tn, yn)
occurs .
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Linear multistep methods

Examples
Four-steps linear explicit Adams–Bashforth’s method

yn+4 = yn+3 +
1

24
h (55fn+3 − 59fn+2 + 37fn+1 − 9fn)

Four-steps linear implicit Adams–Moulton’s method

yn+4 = yn+3 +
1

24
h (9fn+4 + 19fn+3 − 5fn+2 − 9fn+1)

Remark Before we can apply a k−step method, we need to know k initial
values y0, . . . , yk−1, where y0 is a given initial condition, y1, . . . , yk−1 must be
somehow calculated for example by Euler’s method or RK method. In any
case, the data contain numerical errors and it is important to know how these
errors affect other approximations yn, n ≥ k , that are calculated by k−step
method. Thus, we are interested in stability of numerical methods with
respect to small perturbations of initial data.
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F Stability of k−steps methods

How to determine the stability?

Let {tn} be a uniform partitioning with step h .

A general linear k−step method has the form

α0yn+α1yn+1+· · ·+αk yn+k = h (β0f (tn, yn) + β1f (tn+1, yn+1) + · · · + βk f (tn+k , yn+k )) ,

where α0, . . . , αk a β0, . . . , βk are real constants, αk 6= 0, α2
0 + β2

0 > 0 .

Let us denote polynomials

ρ(z) =
k∑

j=0

αjz j = α0 + α1z + · · ·+ αk zk 1. characteristic polynomial

σ(z) =
k∑

j=0

βjz j = β0 + β1z + · · ·+ βk zk 2. characteristic polynomial
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F

Theorem The condition of stability

A linear multistep method is numerically stable for any differential equation
y ′ = f (t , y), where f is a Lipschitz function,

if and only if

the roots of the first characteristic polynomial ρ(z) lie inside a closed unit
circle, whereby the roots lying on the unit circle are simple.

Remark Function f is Lipschitz on the domain J × D ⇐⇒

∃ L > 0 : |f (t , y)− f (t , z)| ≤ L|y − z| ∀(t , y), (t , z) ∈ J × D .

Remark We haven’t study the error of the approximation, i.e. the accuracy
of k−step methods.
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F

Examples
1. Adams–Bashforth method

yn+4 = yn+3 +
1

24
h (55fn+3 − 59fn+2 + 37fn+1 − 9fn)

yn+4 − yn+3 =
1

24
h (55fn+3 − 59fn+2 + 37fn+1 − 9fn)

For the first characteristic polynomial ρ(z) we have

ρ(z) = z4 − z3 = z3(z − 1) = 0 =⇒
z = 0 is a triple zero inside the unit circle
z = 1 lies on the unit circle, single root
=⇒ the method is numerically stable .

2. Three steps method of 6th order

11yn+3 + 27yn+2 − 27yn+1 − 11yn = 3h (fn+3 + 9fn+2 + 9fn+1 + fn)

ρ(z) = 11z3 + 27z2 − 27z − 11 = 0 (reciprocal equation) .

Zeros: z1 = 1, z2
.

= −0, 3189, z3
.

= −3, 1356 =⇒ |z3| > 1 =⇒
this method is not numerically stable .
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F

3. Determine all values b ∈ R, for which is the linear k−steps method

yn+3 + (2b − 3)(yn+2 − yn+1)− yn = hb(fn+2 + fn+1)

numerically stable.

Solution
ρ(z) = z3 + (2b − 3)(z2 − z)− 1 = 0 .

Because ρ(1) = 0 then z = 1 is a single zero of ρ(z),

z3 + (2b − 3)(z2 − z)− 1 = (z − 1) · (z2 + z + 1 + z(2b − 3)︸ ︷︷ ︸ = 0

:= ρ1(z) = z2 + z(2b − 2) + 1

Now we are looking for zeros of ρ1. Let us try ρ1(1) = 2b =⇒ b 6= 0 ,
otherwise z = 1 wold not be a simple zero and the method would not be
stable. From the same reason, because ρ(−1) = −2b + 4 then b 6= 2.
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So, where are the zeros of ρ1? We denote them z1, z2. Then

(z−z1)(z−z2) = z2 + z(2b−2) + 1 =⇒ −(z1 + z2)z + z1z2 = z(2b−2)+1 ,

i.e., z1z2 = 1 . But z1 6= ±1 , z2 6= ±1, i.e., both z1, z2 are imaginary.

D = 4(b − 1)2 − 4 < 0 ⇐⇒ b ∈ (0, 2) .

Conclusion

If b ∈ (0, 2) then the zeros of ρ(z) are

z1 = 1, z2,3 = 1− b ± i
√

1− (b − 1)2 , z2 6= z3, |z2,3| < 1 ,

i.e. all zeros of ρ(z) lie for b ∈ (0, 2) in the closed unit circle =⇒

the method is numerically stable⇐⇒ b ∈ (0, 2) .
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Theorem A necessary condition (but not sufficient) for convergence of a
multistep method is the numerical stability of the method.

The linear k−steps method with the characteristic polynomial
ρ(z) = zk − zk−1 . . . are so called Adams methods
– explicit . . . Adams–Bashforth methods
– implicit . . . Adams–Moulton methods

The linear k−steps method with the characteristic polynomial
ρ(z) = zk − zk−2

– explicit . . . Nyström method
– implicit . . . Milne–Simpson method .

Remark It is possible to study also so called absolute stability (A–stability) of
linear multistep methods. We will not study it here.
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”Stiff”systems

”Stiff”equations are differential equations for which the numerical method is
numerically unstable, if the step is not extremely small .
In the equation there are terms that cause quick change of the solution.
These equations are for example of the type

y ′ = ky + f (t), where k ∈ C, |k | large

or systems
y′ = Ky + f(t) ,

where K has one of the eigenvalues λ ∈ C such that |λ| is large in
comparison with f(t) or <λi < 0, 1 ≤ i ≤ n, but

max
1≤i≤n

|<λi | >> min
1≤i≤n

|<λi | .

As a measure of the stiffness of the given system the folowing number R may
serve:

R =
max |<λi |
min |<λi |

, λi is the eigenvalue of the Jacobi matrix of the given system.

So far no generally accepted definition of the ”stiffness”exists.
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Stiff equations generally can be predicted from the physical problem from
which the equation is derived and, with care, the error can be kept under
control.

The system of initial-value problems

u′1 = 9u1 + 24u2 + 5 cos t − 1
3

sin t , u1(0) =
4
3
,

u′2 = −24u1 − 51u2 − 9 cos t +
1
3

sin t , u2(0) =
2
3
,

has the unique solution

u1(t) = 2e−3t − e−39t +
1
3

cos t , u2(t) = −e−3t + 2e−39t − 1
3

cos t .

The transient term e−39t in the solution causes this system to be stiff. Apply
Runge-Kutta fourth-order method for systems with the stepsize h = 0.005
and with h = 0.1 and compare results with the values of the exact solution.
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Predictor-corrector method

The combination of an explicit method to predict and an implicit to improve
the prediction is called a predictor-corrector method.
Let AB be the explicit k−steps Adams–Bashforth method of the 2nd order,
and AM be the implicit k−steps Adams–Moulton method of the 2nd order.

The idea:
Predictor – in our case explicit AB method . We consider its result as an
intermediate result

ỹn+2 = yn+1 +
h
2

(3f (tn+1, yn+1)− f (tn, yn)) .

Now, we ”correct” this approximation by making use of the implicit AM method
where we insert the intermediate result ỹn+2 to the right hand side. We obtain

yn+2 = yn+1 +
h
2

(f (tn+1, yn+1) + f (tn+2, ỹn+2)) .
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