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5. Numerical solutions of nonlinear
equations



Mandatory material. It will be a part of writing tests and will be tested at
the oral examination (no designation).

F Examples of exercises - voluntary.

F For students who want to know more. This material will not be lectured
and it will not be a part of both writing and oral exams.
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Numerical solutions of nonlinear equations

Numerical solution of nonlinear equations belongs together with solution of
linear algebraic systems to the important problems of numerical analysis.
Examples can be found in a variety of engineering applications, for example,

Computation of a complex chemical equilibrium,

Counter-current separation devices such as distillation and absorption
columns

Stationary simulation of a system of devices

Replacement of parabolic or elliptic equations using finite differences,

Finding stationary states of dynamical models described by ordinary
differential equations
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Equation with one unknown

Equation with one unknown

For the solution of the equation

f (x) = 0 (1)

several iteration methods have been developed. The main idea of these
methods is as follows:
Let us assume that we know a sufficiently small interval containing a single
root x = x∗ of the equation (1). We choose an initial approximation x0 (close
to the root x∗) in this interval and we construct a sequence of points
x1, x2, . . . , xn, . . . according to the recurrent rule

xk = φ(x0, x1, . . . , xk−1) . (2)

The recurrent rule (2) is constructed in such a way that (under certain
assumptions) the sequence {xn} converges to x∗.

Various choices of the function φk (depending on the function f ) give different
iterative methods.
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Equation with one unknown

F The choice of the function φk

The function φ(x) is often designed so that the solution x∗ is a fixed point of
the function φ, i.e., it is also a solution of the equation

x = φ(x) , (3)

where the sequence {xk} is constructed according to the rule

xk = φ(xk−1), k = 1, 2, . . . . (4)

Here, the φ does not depend on the increasing index k . Methods of this type
are called stationary methods.
Let the function φ be differentiable. If

|φ′(x∗)| ≤ K < 1 ,

and if φ′ is continuous then |φ′(x)| < 1 also in some neighborhood of the root
x∗ and the successive approximations (4) converge, provided x0 is close to
x∗. The smaller is the constant K , the faster is the convergence.

If we want a solution x∗ with the accuracy ε, then we stop the iterations when

K
1− K

|xk − xk−1| < ε .
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Equation with one unknown

F

The order of iterations is a measure of the rate of convergence of (4). We say
that the iteration (4) is of order m, if

φ′(x∗) = φ′′(x∗) = · · · = φ(m−1)(x∗) = 0, φ(m)(x∗) 6= 0. (5)

If the function φ(x) has m continuous derivatives in a neighborhood of x∗,
then the rest after the m − 1 term of Taylor’s expansion gives

xk − x∗ =
1

m!
(xk−1 − x∗)mφ(m)(ξk ) .

Let us denote Mm = max |φ(m)(x)| in the neighborhood of x∗. Then

|xk − x∗| ≤ M
m!
|xk−1 − x∗|m . If (6)

|x0 − x∗| < 1 and
Mm

m!
|x0 − x∗| =ω < 1 ,

then for m > 1 after some simplification we obtain

|xk − x∗| ≤ ω
mk−1
m−1 , (7)

which represents a fast convergence of xk to x∗ .



Numerical solutions of nonlinear equations Numerical solution of systems of nonlinear equations Recommended literature

Bisection method

Bisection method

Let us first examine the methods that allow us to fined a small interval in
which the solution is located.
If the function f (x) in (1) is continuous then it is sufficient to find two points x ′

and x ′′ such that f (x ′)f (x ′′) < 0, i.e., such points that the function f has
different signs at these two points. Then, due to the continuity of f , there is at
least one root between x ′ and x ′′. If there is exactly one root and not more in
the given interval, we call this interval the separation interval.
The simplest method to decrease the interval 〈x ′, x ′′〉 containing the root is
the bisection method.
Let us denote by x the center of the interval 〈x ′, x ′′〉, i.e., x = (x ′ + x ′′)/2.
Then either f (x ′) · f (x) < 0 or f (x) · f (x ′′) < 0. In the former case we
decrease the interval to 〈x ′, x〉, in the latter case the new interval will be
〈x , x ′′〉. After n bisection steps the size of the interval is

|x ′ − x ′′| = 2−nr , (8)

where r is the size of the original interval. After 10 bisection steps the interval
shrinks 1024 times.
This method converges slowly but it is reliable and it is good when we have
not enough information about the precise location of the root.
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Bisection method

Bisection method
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Newton method

Newton method

One of the most frequently used methods for solving nonlinear equations is
the Newton method. The Newton method is sometimes called the method of
tangents due to its geometrical meaning.
At first, we have to find the separation interval, i.e., the interval in which
precisely one root of the equation (1) is located.
Let us assume that the function f is continuous and twice continuously
differentiable on interval 〈a, b〉. Moreover, let

(a) f (a) · f (b) < 0 ,

(b) f ′(x) 6= 0 ∀x ∈ 〈a, b〉 ,
(c) f ′′(x) 6= 0 ∀x ∈ 〈a, b〉 ,
(d) as the initial approximation x0 of the root α, we choose that one of the

end points a, b for which it is valid

f (x0) · f ′′(x0) > 0 .

Let us note that the interval 〈a, b〉 is a separation interval if and only if the
conditions (a) and (b) are satisfied. Conditions (c) and (d) guarantee
convergence of the Newton method to the root α.
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Newton method

Let us choose the zero approximation
x0 of the root α. Geometrically, the
Newton method can be described as
follows: At the point [x0, f (x0)] we con-
struct the tangent to the graph of the
function f (x). The first iteration is the
intersection of this tangent with the x
axis. Hence, for the first iteration we
have

x1 = x0 −
f (x0)

f ′(x0)
.

Now, we construct the tangent at the
point [x1, f (x1)] and the intersection of
this tangent with the x is the second
approximation of the root α and so on.
In general, for (n + 1)− iteration we
have the formula

xn+1 = xn −
f (xn)

f ′(xn−1)
, n = 1, 2, . . . .

If we prescribe the accuracy of
the calculation in advance, for
example ε = 10−4, then we will
end the calculation if

|xn+1 − xn| < const · 10−4 .



Numerical solutions of nonlinear equations Numerical solution of systems of nonlinear equations Recommended literature

Newton method

F Quadratic convergence of Newton’s method

We are looking for a root α of the equation f (x) = 0, i.e. for such α that
f (α) = 0. Let x0 be a starting approximation. Then (k + 1)−st step gives

xk+1 = xk −
f (xk )

f ′(xk )
, k = 1, 2, . . . .

The error of computation in k−th step is ek = α− xk ⇒ α = xk + ek .
If we apply Taylor’s expansion to the function f at the point xk we obtain

f (x) = f (xk ) + f ′(xk )(x − xk ) +
f ′′(xk )

2!
(x − xk )2 +O(x − xk )3 ,

Let us put x := α and x − xk = α− xk = ek . Then

0 =f (α) = f (xk + ek ) = f (xk ) + f ′(xk ) · ek +
1
2

f ′′(xk ) · e2
k +O(e3

k )

−f (xk ) = f ′(xk ) · ek +
1
2

f ′′(xk ) · e2
k +O(e3

k )
∣∣ : f ′(xk ) 6= 0

−
f (xk )

f ′(xk )︸ ︷︷ ︸ = ek +
1
2

f ′′(xk )

f ′(xk )
e2

k +O(e3
k )

xk+1 = xk − f (xk )
f ′(xk )
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Newton method

F

We obtain

ek+1 = α− xk+1 = α−
(

xk −
f (xk )

f ′(xk )

)
= α− xk︸ ︷︷ ︸+

f (xk )

f ′(xk )
⇒

ek

ek+1 = ek +
f (xk )

f ′(xk )
= ek − ek −

1
2

f ′′(xk )

f ′(xk )
· e2

k +O(e3
k )

Thus,

e1
k+1 = −1

2
f ′′(xk )

f ′(xk )
· e2

k +O(e3
k ) , ⇒

the method converges quadraticaly, i.e., the number of correct decimal places
doubles with each iteration.

Remark Let us recall that O(e3
k ) characterizes the remainder of Taylor’s

expansion of f at xk :

∃const . α > 0,A > 0 : |reminder| ≤ A · e3
k ∀|ek | < α .
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Newton method

F Examples for practicing

1 Verify that the interval 〈1,
√

3〉 is the separation interval for solution of the
equation

x + arctan x − 2 = 0 ,

and that at this interval, the Newton method can be used to solve this
equation. Select the zero approximation x0 and calculate at least one
other approximation of the root.

2 Verify that the interval 〈π2 , π〉 is the separation interval for solution of the
equation

x = 6 sin x ,

and that at this interval, the Newton method can be used to solve this
equation. Select the zero approximation x0 and calculate at least one
other approximation of the root. How many other solutions does this
equation have?

3 Use an appropriate figure to find out how many roots has the equation

x ln x − 3 = 0

and for the smallest root specify a separation interval of a length of at
most 1 and the initial approximation x0 for the Newton method. Calculate
at least one additional approximation by the Newton method.
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Numerical solution of systems of nonlinear equations

A very common problem arising when dealing with practical problems in
chemical engineering is the task to find n unknowns x1, x2, . . . , xn, which
satisfy the following system of nonlinear equations:

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0.

(9)

For solving of systems of nonlinear equations, there were developed several
iterative methods of the type

xk+1 = Φ(xk ), k = 0, 1, . . . , (10)

where xk is the k−th aproximation of the vector of unknowns
x = (x1, x2, . . . , xn)T . Newton’s method is the most frequent one.
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Newton’s method for systems of nonlinear equations

Newton’s method for systems of nonlinear equations

Let us denote f = (f1, . . . , fn)T. We define Jacobi matrix of functions fi (partial
derivatives are evaluated at the point x) as:

J(x) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

. . .

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 . (11)

For Newton’s method, we choose in the equation (10) Φ as

Φ(x) = x− λJ−1(x)f(x) .

Thus,
xk+1 = xk − λk J−1(xk )f(xk ). (12)

We multiply the equation (12) by the matrix J(xk ) and we obtain the final form
of the Newton method, as it is practically used:

J(xk )4xk = −f(xk ) (13)

xk+1 = xk + λk4xk . (14)
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Newton’s method for systems of nonlinear equations

Remarks
- The relation (13) is a system of n linear algebraic equations for n

unknowns (increments) 4xk . This system we solve by linear algebra
methods.

- We usually choose λk = 1 but we test whether the residua have been
reduced, i.e., weather

n∑
i=1

f 2
i (xk+1) <

n∑
i=1

f 2
i (xk ).

If this condition is not satisfied, we diminish λk .

- The Newton method for the system of equations is also the method of
the second order. The method converges to the root x∗ for which J(x∗) is
regular under the condition that the initial approximation x0 is chosen
close enough to this root x∗ .
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Geometric concept in R2

Geometric concept in R2

Let us consider a system of two equations for two unknowns x , y :

f1(x , y) = 0 ,

f2(x , y) = 0 .

Let (xk , yk ) be an approximation of the root (α, β) .

At the point (xk , yk , f1(xk , yk )) we construct the tangent plane to the graph of
the function f1(x , y) and similarly, at the point (xk , yk , f2(xk , yk )) we construct
the tangent plane to the graph of the function f2(x , y) .

These two tangent planes intersect the plane z = 0 in two lines of the
intersection.

The intersection of these lines is the next approximation (xk+1, yk+1) of the
root (α, β) .
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Example

F Example

Let us solve the following system of nonlinear equations:

f1(x) = 16x4
1 + 16x4

2 + x4
3 − 16 = 0

f2(x) = x2
1 + x2

2 + x2
3 − 3 = 0 (15)

f3(x) = x3
1 − x2 = 0.

Let us choose the initial approximation x0 = (1, 1, 1) .
Then

f(x0) =

 17
0
0

 , J(x0) =

 64 64 4
2 2 2
3 −1 0

 ,

x1 = x0 − J−1(x0)f(x0) =

(
223
240

,
63
80
,

79
60

)
.

For clarity, all iterations are listed in the following table. The fourth
approximation has already the precision to six decimal places.
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Example

Iterations in the Example(15)

Newton’s method for system (15)

k x (k)
1 x (k)

2 x (k)
3 f1(xk ) f2(xk ) f3(xk )

0 1 1 1 17 0 0

1 0, 929167 0, 787500 1, 283333 4, 791917 0, 130451 0, 014697

2 0, 887075 0, 693176 1, 320865 0, 645310 0, 012077 0, 004864

3 0, 878244 0, 677195 1, 330610 0, 001845 0, 000428 0, 000207

4 0, 877966 0, 676757 1, 330855 0, 000015 0, 000000 0, 000000

5 0, 877966 0, 676757 1, 330855 0, 000000 0, 000000 0, 000000
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