Mathematics for chemical engineers

Drahoslava Janovská

6. Numerical solution of ordinary differential equations
 Boundary value problem

Outline

(1) Boundary value problems

2 Shooting Method

- Newton's-Raphson's method

3 Finite differences

- Linear finite differences

4 Solution of the boundary value problem by finite differences
(5) Recommended literature

Boundary value problems

Example Let us solve the equation

$$
y^{\prime \prime}+y=0, \quad y(0)=1, y^{\prime}(0)=A \quad \ldots \text { initial value problem }
$$

Characteristic equation: $\lambda^{2}+1=0 \quad \Longrightarrow$

$$
y_{H}(x)=C_{1} \cos x+C_{2} \sin x, \quad y_{H}^{\prime}(x)=-C_{1} \sin x+C_{2} \cos x
$$

initial condition $\quad \Longrightarrow 1=C_{1}, A=C_{2} \quad \Longrightarrow$

$$
y_{P}(x)=\cos x+A \sin x, \quad x \in \mathbb{R}
$$

Let us investigate the value of the solution at the point $\frac{\pi}{2}$ for different $A, \quad y_{P}\left(\frac{\pi}{2}\right)=A$

$$
\begin{array}{ll}
A=0 & \Rightarrow y_{P}(x)=\cos x \\
A=1 & \Rightarrow y_{P}(x)=\cos x+\sin x \\
A=-1 & \Rightarrow y_{P}(x)=\cos x-\sin x \\
A=0,2 & \Rightarrow y_{P}(x)=\cos x+0,2 \sin x
\end{array}
$$

Different $A \Longrightarrow$ different values of the solution
 at the point $\frac{\pi}{2}$

Our boundary value problem is

$$
y^{\prime \prime}+y=0, \quad y(0)=1, y\left(\frac{\pi}{2}\right)=A .
$$

If we know the "correct" A we could solve our boundary value problem as an initial value problem.

Remark The differential equations for a boundary value problem have to be at least of the order 2 (2 conditions in different points).

Basic techniques for solution of boundary value problems are:
(1) Shooting method: An iterative technique that exploits classical methods for solving initial value problems, i.e., Runge-Kutta methods.
(2) Direct methods: Difference methods, based on a replacement of derivatives by differences. The resulting system of linear algebraic equations is solved by standard techniques.

Shooting Method

We first consider the single linear second-order equation

$$
\begin{equation*}
L y \equiv-y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x), \quad a<x<b \tag{1}
\end{equation*}
$$

with the general linear two-point boundary conditions

$$
\begin{align*}
& a_{0} y(a)-a_{1} y^{\prime}(a)=\alpha \\
& b_{0} y(b)+b_{1} y^{\prime}(b)=\beta \tag{2}
\end{align*}
$$

where $a_{0}, a_{l}, \alpha, b_{0}, b_{l}$ and β are constants, such that

$$
\begin{gather*}
\left|a_{0}\right|+\left|b_{0}\right| \neq 0, \\
a_{0} a_{1} \geq 0, \quad\left|a_{0}\right|+\left|a_{1}\right| \neq 0 \tag{3}\\
b_{0} b_{1} \geq 0, \quad\left|b_{0}\right|=\left|b_{1}\right| \neq 0
\end{gather*}
$$

We assume that the functions $p(x), q(x)$, and $r(x)$ are continuous on $\langle a, b\rangle$ and that $q(x)>0$. With these assumptions, the solution of (1) is unique.

To solve (1), we first define two functions, $y^{(1)}(x)$ and $y^{(2)}(x)$, on $\langle a, b\rangle$ as solutions of the respective initial-value problems

$$
\begin{gather*}
L y^{(1)}=r(x), \quad y^{(1)}(a)=-\alpha C_{1}, \quad\left(y^{(1)}\right)^{\prime}(a)=-\alpha C_{0} \tag{4}\\
L y^{(2)}=0, \quad y^{(2)}(a)=a_{1}, \quad\left(y^{(2)}\right)^{\prime}(a)=a_{0} \tag{5}
\end{gather*}
$$

where C_{0} and C_{1} are any constants such that

$$
\begin{equation*}
a_{1} C_{0}-a_{0} C_{1}=1 \tag{6}
\end{equation*}
$$

The function $y(x)$ defined by

$$
\begin{equation*}
y(x) \equiv y(x, s)=y^{(1)}(x)+s y^{(2)}(x), \quad a \leq x \leq b \tag{7}
\end{equation*}
$$

satisfies $a_{0} y(a)-a_{1} y^{\prime}(a)=\alpha\left(a_{1} C_{0}-a_{0} C_{1}\right)=\alpha$, and will be the solution of (1) if s is chosen such that

$$
\begin{equation*}
\phi(s)=b_{0} y(b, s)+b_{1} y^{\prime}(b, s)-\beta=0 \tag{8}
\end{equation*}
$$

This equation is linear in s and has the single root

$$
\begin{equation*}
s=\frac{\beta-\left(b_{0} y^{(1)}(b)+b_{1} y^{(1)^{\prime}}(b)\right)}{b_{0} y^{(2)}(b)+b_{1} y^{(2)^{\prime}}(b)} \tag{9}
\end{equation*}
$$

Steps of the shooting method

The presented shooting method involves:
(1) Converting the BVP into an IVP by specifying extra initial conditions, i.e. equations (1), (2)
(2) Guessing the initial conditions and solving the IVP over the entire interval, i.e. guess C_{0}, evaluate C_{1} from (6) and solve (5)
© Solving for s and constructing y, i.e., evaluate (9) for s; use s in (7).

Shooting method for a second-order nonlinear equation

Let us consider a differential equation of the second order

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right), \quad y(a)=A, y(b)=B, \quad a<b, \quad t \in\langle a, b\rangle . \tag{10}
\end{equation*}
$$

Let us suppose that the problem has just one solution. We guess $y^{\prime}(a)$ and denote by $y(t, s)$ the solution of the initial value problem

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right), \quad y(a)=A, y^{\prime}(a)=s . \tag{11}
\end{equation*}
$$

Now, we will rewrite this initial value problem as a system of two differential equations of the first order.

Remark The direct solution of the boundary value problem (10) may lead to a system of two, in general, nonlinear equations for A and B and their solution might be a problem.

Let us denote

$$
\begin{equation*}
u(t, s)=y(t, s), \quad v(t, s)=\frac{\partial}{\partial t} y(t, s) \tag{12}
\end{equation*}
$$

From the equation (11), we obtain an initial value problem

$$
\begin{align*}
\frac{\partial}{\partial t} u(t, s) & =v(t, s), \quad u(a, s)=A \\
\frac{\partial}{\partial t} v(t, s) & =t(t ; u(t, s) ; v(t, s)), \quad v(a, s)=s \tag{13}
\end{align*}
$$

The solution $u(t, s)$ of the initial value problem (13) will be the same as the solution $y(t)$ of the boundary value problem (10), if we will find such a value of s that

$$
\varphi(s) \equiv \underbrace{u(b, s)-B=0} \Longrightarrow y(b)=B
$$

the solution of this equation has to be computed numerically: Newton's method, bisection method, etc.

Newton's-Raphson's method

We will solve the equation

$$
\begin{equation*}
? s \in \mathbb{R}: \quad \varphi(s) \equiv u(b ; s)-B=0 \tag{14}
\end{equation*}
$$

Let s_{0} is any initial condition in a neighborhood of the root and let

$$
s_{n+1}:=s_{n}-\frac{\varphi\left(s_{n}\right)}{\varphi^{\prime}\left(s_{n}\right)}, \quad n=0,1,1, \ldots
$$

Then $\left\{s_{n}\right\} \longrightarrow s$ quadratically, if
(1) $\varphi^{\prime}(s) \neq 0 \forall s \in I$ where I is a separation interval
(2) $\varphi^{\prime \prime}(s) \in \mathbb{R}$ on $/$
(3) the initial approximation s_{0} is closed enough to the root

How we can compute the derivative $\varphi^{\prime}\left(s_{n}\right)$ when we even don't know the function φ ?

Let us go back to our equation (11), i.e., we consider the equation

$$
y^{\prime \prime}(t, s)=f\left(t, y(t, s), y^{\prime}(t, s)\right), \quad y(a, s)=A, \quad y^{\prime}(a, s)=s
$$

$y^{\prime}(a, s)=s \ldots$ our guess of the initial condition - we will change slopes in such a way that we will "shoot" exactly into B.

Now, we will study the changes of the solution y in dependence of changes of the initial slope s :

$$
\frac{\partial y^{\prime \prime}(t, s)}{\partial s}=\frac{\partial}{\partial s} f\left(t, y(t, s), y^{\prime}(t, s)\right)=\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}+\frac{\partial f}{\partial y^{\prime}} \cdot \frac{\partial y^{\prime}}{\partial s}
$$

From initial conditions we have $\frac{\partial y}{\partial s}(a, s)=0, \frac{\partial y^{\prime}}{\partial s}(a, s)=1$ and $v(t)=\frac{\partial y}{\partial s}(t, s)$ we obtain from the equation (12).

The initial value problem for the function v :
$v^{\prime \prime}(t)=\frac{\partial f}{\partial y}\left(t, y(t), y^{\prime}(t)\right) \cdot v(t)+\frac{\partial f}{\partial y^{\prime}}\left(t, y(t), y^{\prime}(t)\right) \cdot v^{\prime}(t), v(a)=0, v^{\prime}(a)=1$.
and from the equation (12) we have $u(b, s)=y(b, s)$. We obtain

$$
\varphi(s)=y(b, s)-B \Longrightarrow \varphi^{\prime}(s)=\frac{\partial y}{\partial s}(b, s)=v(b)
$$

So the needed derivative in Newton's method $\varphi^{\prime}\left(s_{n}\right)$ we obtain by solution of the equation (15) up to the point $t=b$.

Remark The equation (15) is very sensitive to perturbations of the initial guess s_{0}. The consequence of the wrong guess s_{0} is that Newton's method doesn't converge to s.

Remedy Multiple shooting method: We divide the interval $\langle a, b\rangle$ to subintervals $a=t_{0}<t_{1}<\cdots<t_{k}=b$ and, roughly speaking, we repeat the shooting method on each of these subintervals.

\star Solution of the adiabatic tubular reactor with an axial dispersion

Axial heat and mass transfer in a tubular reactor can be described, on the basis of the diffusion model, by the system of two nonlinear differential equations of the 2nd order.
After some adjustment and a suitable substitution we get one dimensionless equation of the second order:

$$
\begin{equation*}
\frac{1}{P e} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}-p y^{m} \Theta^{-m} \exp \left(K-\frac{R}{\Theta}\right)=0 \tag{16}
\end{equation*}
$$

where $\Theta=1-H(1-y)$, with boundary equations

$$
\begin{align*}
y(0) & =1+\frac{y^{\prime}(0)}{P e} \tag{17}\\
y^{\prime}(1) & =0 \tag{18}
\end{align*}
$$

Here, $P e, p, m, K, R$, and H are parameters of the mathematical model, x is the axial coordinate, y dimensionless concentration and Θ stands for temperature.

We convert our boundary value problem into the initial one at point $x=1$. Let us choose

$$
\begin{equation*}
y(1)=\eta_{1} . \tag{19}
\end{equation*}
$$

Then we can integrate equation (16) (rewritten as a system of two differential equations of the first order) from $x=1$ with initial conditions (18) and (19) to $x=0$, and we calculate $y(0)$ and $y^{\prime}(0)$. Let us denote

$$
\begin{equation*}
\varphi\left(\eta_{1}\right)=y(0)-\frac{y^{\prime}(0)}{P e}-1 \tag{20}
\end{equation*}
$$

Integration of the initial value problem was performed by Runge-Kutta method.

Finite differences

Let us solve the following boundary value problem:

$$
y^{\prime \prime}(t)=f\left(t, y(t), y^{\prime}(t)\right), \quad y(a)=\alpha, \quad y(b)=\beta
$$

We divide the interval $\langle a, b\rangle$ to $m+1$ subinervals $\left\langle t_{k}, t_{k+1}\right\rangle, k=0,1, \ldots, m$, where

$$
t_{k}=a+k h, k=0,1, \ldots, m+1 ; \quad h=\frac{b-a}{m+1}
$$

Basic idea: Numerical derivative
We discretize the given equation for the given dividing of the interval $\langle a, b\rangle$. How we will approximate the derivative? Taylor's expansion:

$$
\begin{aligned}
& \qquad f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(\eta), \quad \eta \text { mezi } x \text { a } x+h \Longrightarrow \\
& \qquad f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\underbrace{\frac{h^{2}}{2 h} f^{\prime \prime}(\eta)}_{\text {discretization error is of order } h^{1}} . \\
& \text { i.e.. we approximate the first derivative with the error } \mathcal{O}(h)
\end{aligned}
$$

$$
\Longrightarrow \quad f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}, \quad h \text { small }
$$

In order to obtain better approximation we compute two Taylor's expansions:

$$
\begin{align*}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\eta_{1}\right), \tag{21}\\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\eta_{2}\right) . \tag{22}
\end{align*}
$$

We subtract equations (21) and (22) \Longrightarrow

$$
\begin{gather*}
f(x+h)-f(x-h)=2 h f^{\prime}(x)+\frac{h^{3}}{6}\left(f^{\prime \prime \prime}\left(\eta_{1}\right)+f^{\prime \prime \prime}\left(\eta_{2}\right)\right) \Longrightarrow \\
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+\mathcal{O}\left(h^{2}\right), \tag{23}
\end{gather*}
$$

Now we add the equations (21) and (22) and obtain

$$
\begin{gather*}
f(x+h)+f(x-h)=2 f(x)+h^{2} f^{\prime \prime}(x)+\frac{h^{3}}{6}\left(f^{\prime \prime \prime}\left(\eta_{1}\right)-f^{\prime \prime \prime}\left(\eta_{2}\right)\right) \\
f^{\prime \prime}(x)=\frac{f(x-h)-2 f(x)+f(x+h)}{h^{2}}+\mathcal{O}(h) \tag{24}
\end{gather*}
$$

Linear finite differences

Let f be a linear function of y and y^{\prime}, i.e.,

$$
\begin{gathered}
f\left(t, y(t), y^{\prime}(t)\right)=u(t)+v(t) y(t)+w(t) y^{\prime}(t), \\
y_{0}=\alpha, \quad y^{\prime}(t)=\frac{y(t+h)-y(t-h)}{2 h}+\frac{h^{3}}{6} y^{\prime \prime \prime}(\eta) . \\
y^{\prime \prime}(t)=\frac{y(t+h)-2 y(t)+y(t-h)}{h^{2}}+\frac{h^{2}}{12} y^{(4)}(\tau), \quad y_{m+1}=\beta .
\end{gathered}
$$

We denote

$$
y_{k}:=y\left(t_{k}\right), u_{k}:=u\left(t_{k}\right), v_{k}:=v\left(t_{k}\right), w_{k}:=w\left(t_{k}\right),
$$

and put everything into the equation

$$
y^{\prime \prime}(t)=f\left(t, y(t), y^{\prime}(t)\right), \quad y(a)=\alpha, y(b)=\beta
$$

We obtain the system of m linear algebraic equations for m unknowns:
$y_{0}=\alpha$
$\frac{y_{k+1}-2 y_{k}+y_{k-1}}{h^{2}}=u_{k}+v_{k} y_{k}+w_{k} \frac{y_{k+1}-y_{k-1}}{2 h}, \quad k=1, \ldots, m$
$y_{m+1}=\beta$.
We rewrite this system as:
$y_{0}=\alpha$,
$\left(-1+\frac{1}{2} h w_{k}\right) y_{k+1}+\left(2+h^{2} v_{k}\right) y_{k}+\left(-1-\frac{1}{2} h w_{k}\right) y_{k-1}=-h^{2} u_{k}, k=1 \ldots, m$,
$y_{m+1}=\beta$.
This system has a tridiagonal diagonally dominant matrix. It can be advantageously solved in Matlab (tridiag.m).

In the matrix form $\mathbf{A} \overrightarrow{\mathbf{y}}=\overrightarrow{\mathrm{b}}$ where

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ccccc}
2+h^{2} v_{1} & -1+\frac{1}{2} h w_{1} & 0 & \cdots & 0 \\
-1-\frac{1}{2} h w_{2} & 2+h^{2} v_{2} & -1+\frac{1}{2} h w_{2} & \cdots & 0 \\
\ddots & \ddots & \ddots & & \\
& & -1-\frac{1}{2} h w_{m-1} & 2+h^{2} v_{m+1} & -1+\frac{1}{2} h w_{m-1} \\
0 & -1-\frac{1}{2} h w_{m} & 2 h^{2} v_{m}
\end{array}\right) \\
\overrightarrow{\mathbf{y}}=\left(y_{1}, y_{2}, \ldots, y_{m-1}, y_{m}\right)^{\mathrm{T}} \\
\overrightarrow{\mathbf{b}}=\left(\begin{array}{c}
-h^{2} u_{1}+\left(1+\frac{1}{2} h w_{1}\right) \alpha \\
-h^{2} u_{2} \\
\vdots \\
-h^{2} u_{m}-\beta\left(-1+\frac{1}{2} h w_{m}\right)
\end{array}\right) \quad\left(1+\frac{1}{2} h w_{1}\right) \alpha \\
\text { from b.c. } \\
-\beta\left(-1+\frac{1}{2} h w_{m}\right) \text { from b.c. }
\end{gathered}
$$

We solve the system and obtain $y_{k}, k=1, \ldots, m$, the discrete approximation of the solution \vec{y} at points $t_{1}, t_{2}, \ldots, t_{m}$.

Error estimation

For the maximal error of linear finite difference method we have:

$$
\max _{k=1, \ldots, m}\left|y\left(t_{k}\right)-y_{k}\right| \leq C h^{2} \quad \text { for } \quad h \longrightarrow 0,
$$

where $y\left(t_{k}\right)$ is the exact solution in the point t_{k} and y_{k} is the corresponding approximation obtained by the finite difference method.

Remark If f is not linear, we can apply the method of nonlinear differences (we will not study here).

Difference formulas derived from Taylor's polynomial:

Graphic illustration of the approximation of the derivative by difference formulas.
(1) Forward difference of the first order:

$$
u_{j}^{\prime}=\frac{u_{j+1}-u_{j}}{h}+\mathcal{O}\left(h^{1}\right)
$$

(2) Backward difference of the first order:

$$
u_{j}^{\prime}=\frac{u_{j}-u_{j-1}}{h}+\mathcal{O}\left(h^{1}\right)
$$

(3) Central difference of the second order:

$$
u_{j}^{\prime}=\frac{u_{j+1}-u_{j-1}}{2 h}+\mathcal{O}\left(h^{2}\right)
$$

Solution of the boundary value problem by finite differences

Two points boundary problem for one differential equation of the second order:

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y(t), y^{\prime}(t)\right) \tag{25}
\end{equation*}
$$

with linear boundary conditions

$$
\begin{align*}
& \alpha_{0} y(a)+\beta_{0} y^{\prime}(a)=\gamma_{0}, \tag{26}\\
& \alpha_{1} y(b)+\beta_{1} y^{\prime}(b)=\gamma_{1} .
\end{align*}
$$

Let us choose an equidistant division of the interval $\langle a, b\rangle$:

$$
t_{0}=a<t_{1}<\ldots<t_{N}=b, \quad h=\frac{b-a}{N}, t_{k}=a+k h, k=0, \ldots, N .
$$

We approximate the solution in nodes by values of a discrete function $y\left(x_{i}\right) \sim y_{i}$. We replace the derivative in the equation by central difference formula with error $\mathcal{O}\left(h^{2}\right)$:

$$
\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}=f\left(t_{i}, y_{i}, \frac{y_{i+1}-y_{i-1}}{2 h}\right), \quad i=1, \ldots, N-1 .
$$

We replace also the boundary conditions for example by forward differences (error $\mathcal{O}(h)$):

$$
\begin{aligned}
& \alpha_{0} y_{0}+\beta_{0} \frac{y_{1}-y_{0}}{h}=\gamma_{0} \\
& \alpha_{1} y_{N}+\beta_{1} \frac{y_{N}-y_{N-1}}{h}=\gamma_{1}
\end{aligned}
$$

We obtain the system of $N+1$ nonlinear equations for $N+1$ unknowns $y_{0}, y_{1}, \ldots, y_{N}$. The resulting system of nonlinear equations is usually solved by Newton's method.

We approximated the equation with the error $\mathcal{O}\left(h^{2}\right)$, but the error is corrupted by difference formulas for boundary condition with error $\mathcal{O}(h)$. Then the resulting error is only of order $\mathcal{O}(h)$. Let us try to replace boundary conditions by a difference formula of order $\mathcal{O}\left(h^{2}\right)$, too.

$$
\begin{aligned}
& \alpha_{0} y_{0}+\beta_{0} \frac{-3 y_{0}+4 y_{1}-y_{2}}{2 h}=\gamma_{0} \\
& \alpha_{1} y_{N}+\beta_{1} \frac{3 y_{N}-4 y_{N-1}+y_{N-2}}{2 h}=\gamma_{1}
\end{aligned}
$$

Then the resulting error will be of order $O\left(h^{2}\right)$.

Remark It is also possible to apply so called method of fictitious node. For example we can approximate the boundary condition at the point $t=$ aby

$$
\alpha_{0} y_{0}+\beta_{0} \frac{y_{1}-y_{-1}}{2 h}=\gamma_{0}
$$

and we consider the approximation of the differential equation also for $i=0$.
Remark If we write the equations for the solution in the matrix form, in the case with the error $\mathcal{O}(h)$ in approximation of boundary conditions we obtain also the system with tridiagonal matrix. In all other cases we have to transform the resulting matrix into the tridiagonal form.

Example Let $N=3, a=0, b=1$. We approximate the equation (25) with the error $\mathcal{O}\left(h^{2}\right)$, boundary conditions (26) with the error $\mathcal{O}(h)$, i.e., $h=\frac{1}{3}, i=1,2$.

$$
\begin{array}{ll}
i=1 & \frac{y_{0}-2 y_{1}+y_{2}}{h^{2}}=f\left(t_{1}, y_{1}, \frac{y_{2}-y_{0}}{2 h}\right) \\
i=2 & \frac{y_{1}-2 y_{2}+y_{3}}{h^{2}}=f\left(t_{2}, y_{2}, \frac{y_{3}-y_{1}}{2 h}\right)
\end{array}
$$

bcconditions $\alpha_{0} y_{0}+\beta_{0} \frac{y_{1}-y_{0}}{h}=\gamma_{0}$
In the matrix form

$$
\alpha_{1} y_{3}+\beta_{1} \frac{y_{3}-y_{2}}{h}=\gamma_{1} .
$$

$\frac{1}{h^{2}}\left(\begin{array}{cccc}h^{2}\left(\alpha_{0}-\frac{\beta_{0}}{h}\right) & h \beta_{0} & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -h \beta_{1} & h^{2}\left(\alpha_{1}+\frac{\beta_{1}}{h}\right)\end{array}\right)\left(\begin{array}{c}y_{0} \\ y_{1} \\ y_{2} \\ y_{3}\end{array}\right)=\left(\begin{array}{c}\gamma_{0} \\ f\left(t_{1}, y_{1}, \frac{y_{2}-y_{1}}{2 h}\right) \\ f\left(t_{2}, y_{2}, \frac{y_{3}-y_{1}}{2 h}\right) \\ \gamma_{1}\end{array}\right)$
The first and last equations result from boundary conditions.
The matrix is tridiagonal.

Recommended literature

- Burden R. L., Faires J. D.: Numerical Analysis (ninth edition). Brooks/Cole Cengage Learning, 2011, ISBN-13: 978-0-538-73351-9
- Davis M. E.: Numerical Methods \& Modeling for Chemical Engineers. John Wiley \& Sons, 1984.
- Kubíček M., Dubcová M., Janovská D.: Numerical methods and algorithms, http://old.vscht.cz/mat/Ang/NM-Ang/NM-Ang.pdf
- Moin P., Fundamentals of Engineering Numerical Analysis. Cambridge University Press, 2010.
- Rasmuson A., Andersson B., Olsson L., Andersson R.: Mathematical Modeling in Chemical Engineering. Cambridge University Press, 2014.

