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F A universe in a jar

Example
A jar is filled with a nutritive solution and some bacteria. As time progresses,
the bacteria reproduce (by dividing) and die. Let us denote
b (= birth) . . . the rate at which the microbes reproduce,
p (= perish) . . . the rate at which they die.
The population is growing at the rate r = b− p. This means that if there are x
bacteria in the jar, then the rate at which the number of bacteria is increasing
is (b − p)x . We obtain

dx
dt

= rx .

If we begin with x0 bacteria at time t = 0, then

x(t) = ertx0 , x(0) = x0 .

In the short run, this makes sense. The formula says that there are x0

bacteria at time t = 0 and then the number grows at an exponential rate.
However, as time goes on, the number of bacteria will be exceedingly large
(larger than the number of atoms in the universe). Thus this simple model is
not realistic in the long time period.
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F

As the number of bacteria reproduce, they tend to crowd each other, produce
toxic waste products, etc. It makes sense to postulate that a death rate
increases with the population. Instead of a constant death rate, let us
suppose that the death rate is px . So if there are x bacteria, they are
decreasing in number at a rate px2. We obtain the dynamical system

dx
dt

= bx − px2. (1)

Question: Is there a self-sustaining population in this model ?
So, we are looking for a number x̃ for which bx̃ − px̃2 = 0. At this special
level, the reproduction and death rates are exactly in balance, the population
is neither increasing nor decreasing. By setting the right-hand-side of
equation (1) equal to zero we get

dx
dt

= bx − px2 = 0 ⇔ x = 0 ∨ b − px = 0 ⇔ x = 0 ∨ x =
b
p
.

There are two self-sustaining population levels (equilibria): x = 0 and x =
b
p

.

These two values correspond to the two roots of the quadratic equation
bx − px2 = 0. This is the equation of a parabola.
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Let’s consider x̃ = 0. Clearly this is self-
sustaining: There are no bacteria, so none can
be born and none can die. Forever there will
be no bacteria in the jar. But with a slightest

contamination 0 < x <
b
p

we see that

dx
dt

= bx − px2 > 0 .

Thus the number of bacteria will start to incre-
ase as soon as the jar has been contaminated.

The equilibrium x̃ = 0 is unstable. Slight perturbations away from this
equilibrium will destroy the equilibrium.
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Now, let us consider x̃ =
b
p

. At this population level, birth and death rates are

exactly in balance:

bx̃ = b · b
p

=
b2

p
, px̃2 = p

(
b
p

)2

=
b2

p
.

Let us consider what happens in the case the population x is slightly above or

slightly below x̃ =
b
p

.

• If x > x̃ then
dx
dt

< 0 ⇒ the number of bacteria will drop back toward
b
p

.

• Conversely, if x < x̃ then
dx
dt

> 0 and the population will tend to increase

back toward
b
p

.

Small perturbations away from x̃ =
b
p

will self-correct back to
b
p

.

The equilibrium x̃ =
b
p

is stable.
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Analytic solution (Matlab, Mathematica, Maple)

x(t) =
x0bebt

(b − px0) + px0ebt .

If x0 > 0, then

lim
t→∞

x0bebt

(b − px0) + px0ebt =
b
p
,

hence for t → ∞ the system will ”finish”in the state x̃ =
b
p

.
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F Example: Mathematical pendulum

Example Let mathematical pendulum in the constant gravitation field has a
small weight with mass m hanging on the thread of length l of negligible
mass. The angle α should not be greater than 5◦.
The phase space M is the set of all possible positions of the pendulum, that
are represented by an angle and by an angular velocity =⇒ M is a two
dimensional cylinder and dynamics of the system is smooth movement in M.
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We decompose the gravitational force FG into the direction of the
prolongation of the thread and into the direction perpendicular to it. The Ft is
canceled by the strength of the fiber and does not affect the movement. The
reason why the pendulum is moving is the force F . We express sinα from
both right-angled triangles .

sinα =
F
FG

, sinα =
ym

l
=⇒ F =

FGym

l
=

mgym

l
.

The force law F = mam =⇒ mam =
mgym

l
=⇒ am =

gym

l
.

For instant acceleration value of oscillatory motion, the following equation
holds

a = am sinωt = ω2ym sinωt ,

i.e., after some manipulation and substitution for angular frequency we obtain

ω =

√
g
l
, =⇒ T = 2π

√
l
g
.

The period of oscillation of the mathematical pendulum does not depend on
the weight m or on the size of the deviation ym. Due to the constant value of
gravity the acceleration period depends only on the length of the pendulum.
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Dynamical system

Dynamical system . . . the system that evolves in time denoted as t .
Phase space of the system . . . the set of all possible states, i.e., values of
variables. We will consider only systems with finite dimensional phase space,
i.e., the state of the system will be described by values of the finite number of
variables.
Notation: x . . . state of the system, M . . . phase space
The state of the system is fully described by variables x ∈ M and also by
some values of parameters. Behavior of the dynamical system is usually
modeled as behavior of the system of differential equations.

Differential equations describe the relations between the function and its
derivatives (1 variable – ODE, more variables – PDE).
System of ODE

F
(

t , y,
dy
dt
, . . .

dky
dtk

)
= 0 ,

y : R −→ N ⊆ Rd , notation:
dy
dt

:= ẏ ,

the graph of a particular solution . . . a trajectory

C = {y(t), t ∈ R} . . . a curve in N ⊆ Rd
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Any explicit differential equation can be rewritten as a system of ordinary
differential equations of the 1st order in the following way: We introduce new
variables

dk y
dtk = G

(
t , y, ẏ, . . . ,

dk−1y
dtk−1

)
x1 := y

x2 := ẏ =
dy
dt
, . . . xi :=

di−1y
dt i−1 . . . xk =

dk−1y
dtk−1

and we obtain the system

dxi

dt
= xi+1 , i = 1, 2, . . . , k − 1 , xi = (x (i)

1 , x (i)
2 , . . . , x (i)

d )︸ ︷︷ ︸
d variables

dxk

dt
= G(t , x1, x2, . . . , xk ) , k equations

This is a system of n = k · d first order differential equations in the phase
space M, dim M = k · d = n .
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In what follows, we will consider x : R −→ M , f (t , x) represents velocity
in time t and point x .

=⇒ f : R×M −→ Rn .

A particular case: autonomous differential equation – the right-hand side f is
explicitly not a function of t

=⇒ ẋ = f (x) , f : M −→ Rn

f . . . velocity in each point of the phase space M

r���
x

f (x) r

� r


�r - r��:r��3M

In general, with a few exceptions, there is no reason to deal with
non-autonomous systems because every non-autonomous system can be
rewritten as an autonomous, if we introduce a new variable, eg. xn+1 = t .
Then for this variable ẋn+1 = 1 .
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F Example

y ′′ = −y , y(0) = 0, y ′(0) = 1 . (2)

Let us set y1(x) := y(x) , y2(x) := y ′(x) . Then

y ′1 = y ′(x) = y2 ,
y ′2 = y ′′ = −y = −y1 .

(3)

We obtain a linear system of two differential equations with initial conditions

y ′1 = y2 , y1(0) = 0 ,
y ′2 = −y1 , y2(0) = 1 . (4)

Exercise: Solve the system (3), (4), and compute the particular solution of
the equation (2) with initial conditions (4). Check that both solutions are
correct (the same?).
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Remark:
Initial (Cauchy) problem – first order differential equaation

ẋ = f (x) , x(t0) = x0 .

We are looking for the solution x(t), that fulfills the initial condition in the
given time t0.

Initial (Cauchy) problem of the second order

ẍ = f (x) , x(t0) = x0 , x ′(t0) = x1 .

We are seeking for the soloution x(t), that fulfills the initial conditions in
the given time t0.

Boundary problem of the second order

ẍ = f (x) , x(t0) = x0 , x(t1) = x1 .

We are looking for the solution x(t), that satisfies the given boundary
conditions .

General solution x(t ; c) is such a solution that depends only on general
parameters c , i.e. no initial or boundary conditions are given.
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Logistic equation

F Logistic equation

One dimensional autonomous initial problem (can be solved e.g. by
separation of the variables):

ẋ = f (x) , x(0) = x0 .

Example One of the simplest nonlinear ordinary differential equations –
logistic equation

ẋ = r x(1− x)︸ ︷︷ ︸ , x(0) = x0 .

the simplest model of the growing of population

x =
N
K
, N(t) . . . number of individuals in a population over time t ,

K . . . carrying capacity, r = b − p . . . the difference between the
coefficients of birth and death of the population, r << K .

Solution by separation

ẋ = r x(1− x) = 0 ⇐⇒ x = 0 ∨ x = 1 =⇒

two constant solutions: x(t) = 0 ∀ t ∈ R and x(t) = 1 ∀ t ∈ R .
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Logistic equation

F

Our equation has the form

ẋ = f (t , x) = g(t) · h(x) , here g(t) = r , h(x) = x(x − 1) .

The constant solutions divide plane x − y into three subregions O1,O2,O3.

-
x = 0 t

O3

6

0

x

O2

O1

x = 1

dx
dt

= r x(x − 1) ,

dx
x(x − 1)

= rdt

∫
1
x

dx +

∫
1

1− x
dx = r

∫
dt

ln
|x |
|1− x | = r t + c, c ∈ Rin O1: x > 1 =⇒ |x |

|1− x | =
x

x − 1

in O2: 0 < x < 1 =⇒ |x |
|1− x | =

x
1− x

in O3: x < 0 =⇒ |x |
|1− x | = −

x
1− x

=
x

x − 1
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Logistic equation

F

ln
∣∣∣∣ x
1− x

∣∣∣∣ = r t + c , x(0) = x0 =⇒ ln
∣∣∣∣ x0

1− x0

∣∣∣∣ = c

ln
∣∣∣∣ x
1− x

∣∣∣∣− ln
∣∣∣∣ x0

1− x0

∣∣∣∣ = r t

x(t) =
x0

x0 + (1− x0)e−r t . . . a general solution of the logistic equation

+ constant solutions x(t) = 0 ∀t ∈ R (pro x0 = 0)
x(t) = 1 ∀t ∈ R (pro x0 = 1)

}
steady states

Vector field, r = 0.9 Phase portrait, r = 0.9
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Logistic equation

F Another example

It is not always possible to express the general solution explicitly.

ẋ = f (x) , f (x) = − x
1 + x2 , x(0) = x0 .

f (x) = 0 ⇐⇒ x = 0︸ ︷︷ ︸ =⇒ a stationary solution x(t) = 0, t ∈ R

equilibrium x = 0

Let x 6= 0. Then we solve the equation by separation

dx
dt

= − x
1 + x2 =⇒

∫
1 + x2

x
dx = −

∫
dt

ln |x |+ x2

2
= −t + C , x(0) = x0 , i.e., ln |x0|+

x2
0

2
= C

The general solution:

ln |x |+ x2

2
= −t + ln |x0|+

x2
0

2
(5)

From the equation (5) it is not possible to express explicitly x(t).
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Logistic equation

Back to dynamics

graph(f ) = {(x , y), x ∈ M, y = f (x)}
3 equilibria

ẋ = f (x) , f (x) . . . velocity in x ∈ M ,

M . . . phase space .
In one dimension, there are only three
possibilities:

f (x) > 0 . . . positive velocity

f (x) < 0 . . . negative velocity

f (x) = 0 . . . equilibrium

What we can see from the graph of f?

If f (x0) > 0, the ”movement”is to the right and x(t) grows monotonically until
f (x(t)) > 0. If x∗ is the first zero of f ”after”x0 and f (x) > 0 in 〈x0, x∗), then
x(t) −→ x∗ for t −→∞. If there is no zero of f after x0, then x(t)→∞ for
t →∞. Similarly, if f (x0) < 0, the ”movement”goes to the left and x(t) is
decreasing monotonically . . .
Summary: The dynamics of one dimensional autonomous ordinary
differential equation is simple: the trajectory tends monotonically to the
equilibrium or to the infinity.
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Logistic equation

F

Exercise
In the logistic equation put r = 1, i.e.,

ẋ = x(1− x), x(0) = x0 .

Draw an appropriate parabola and illustrate in this figure that

x(t) is increasing on (0, 1) and

x(t) is decreasing on (−∞, 0) and on (1,+∞).
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Motivation: Population Dynamics

F Two-dimensional population dynamics

Let us consider the model behavior of the two populations. One population –
predators – feed on other population – prey, that has a different food. The
model is a variation of the Lotka–Volterra system (a special case of Bazykin’s
ecological model).

Bazykin’s model

ẋ = x − xy
1 + αx

− εx2 , (6)

ẏ = −γy +
xy

1 + αx
− δy2 , (7)

where x . . . population size of prey, y . . . predator population size, α ≥ 0 . . .
constant of saturation of predators, γ ≥ 0 . . . constant of mortality of
predators, nonnegative constants ε, δ . . . constants of rivalry between prey
and predators.

We add initial conditions

x(0) = x0 , y(0) = y0 .
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Motivation: Population Dynamics

F Predator and prey

So far we considered a simple model of a biological system involving only
one species. Now we consider a more complex model involving two species.
Let the first species (the prey) be, say, rabbits whose population at time t is
r(t). The second species (the predator), say wolves, feeds on the prey. The
population of wolves is w(t) at time t .

Left on their own the rabbits will reproduce with rate
dr
dt

= ar for some
positive constant a. The wolves, on the other hand, will starve without rabbits

to eat and their population will decline:
dw
dt

= −bw for some b > 0.
However, when brought into the same environment, the wolves will eat the
rabbits with the expected effects on each population: more wolves, fewer
rabbits. Suppose there are w wolves and r rabbits. What is the likelihood that
a wolf will catch a rabbit? The more wolves or the more rabbits there are, the
more likely that a wolf will meet a rabbit. For this reason, we assume there is
loss of the rabbit population proportional to rw and a gain of the wolf
population, also proportional to rw .
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Motivation: Population Dynamics

F

We write these changes in the population as follows:

dr
dt

= ar − grw

dw
dt

= −bw + hrw ,

where a, b, g, h are positive constants.
We can write this pair of differential equations in the form ẋ = f (x), i.e.,[

ṙ
ẇ

]
=

[
ar − grw

−bw + hrw

]
.

We can approximate the solution of this system of differential equations
numerically.
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Motivation: Population Dynamics

F

 

Phase portrait for predator-prey mo-
del. Horizontal axis is the number of
prey (rabbits), and the vertical axis
is the number of predators (wolves).

The population behavior is
periodic. When there are few
wolves, the rabbit population
soars. Then, as food (i.e., ra-
bbits) becomes more plenti-
ful, the wolf population rises.
But as the wolf population
climbs, the wolves overhunt
the rabbits, and the rabbit
population falls. This causes
food to become scarce for
the wolves, and their num-
bers fall in turn. Finally, the
number of wolves is low
enough for the rabbit popu-
lation to begin to recover,
and the cycle begins again.
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Two-dimensional dynamics

Two-dimensional dynamics

z =

(
x
y

)
∈ R2 : ż = f (z) =

(
ẋ
ẏ

)
=

(
P(x , y)
Q(x , y)

)
. (8)

At first, we are looking for a set S of equilibrium states,

S = {(x , y) ∈ R2 : P(x , y) = Q(x , y) = 0} .

More information about system behavior is obtained by using the so-called
nullclins. A nullclin is a curve, on which one of the velocity components of
f (z) is zero., i.e.,

Nx = {(x , y) : P(x , y) = 0} =⇒
(

ẋ
ẏ

)
=

(
0

Q(x , y)

)
,

Ny = {(x , y) : Q(x , y) = 0} =⇒
(

ẋ
ẏ

)
=

(
P(x , y)

0

)
.

equilibrium = intersection of nullclins

S = Nx ∩ Ny .
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Two-dimensional dynamics

F Lotka–Volterra dynamical system

Example Lotka-Volterra dynamical system of two competing species is
described by a system

ẋ = x(a− bx − cy) , (9)

ẏ = y(d − ex − fy) , (10)

where x , y are populations ⇒ x ≥ 0, y ≥ 0, contants a, b, c, d , e, f are in
biological applications positive, i.e., phase space

M = {(x , y) ∈ R2 : x ≥ 0, y ≥ 0} .

Let us compute the nullclin Nx :
x(a− bx − cy) = 0⇔ x = 0 ∨ a− bx − cy = 0⇒

Nx = {(x , y) ∈ M, x = 0︸ ︷︷ ︸} ∪ {(x , y) ∈ M, y =
a− bx

c
} .

axis y
Similarly for the nullclin Ny we have

Ny = {(x , y) ∈ M, y = 0︸ ︷︷ ︸} ∪ {(x , y) ∈ M, y =
d − ex

f
} .

axis x
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Two-dimensional dynamics

F

The set of equilibrium states S = Nx ∩ Ny usually consists from the points
exceptionally it may include a straight line.

Remark The steady state corresponds to intersection of one curve in Nx

with a curve in Ny . For example the intersection of x = 0 with y =
a− bx

c
is

not a steady state, because both these curves lie at Nx .

For positive parameters, the system (9), (10) has always three following
equilibrium points

(0, 0),
(

0,
d
f

)
,
(a

b
, 0
)
,

and one equilibrium

(x∗, y∗) =
(

af − cd
bf − ce

,
bd − ae
bf − ce

)
⇐=

{
a− bx − cy = 0
d − ex − fy = 0

(x∗, y∗) lies inside of M, if the terms af − cd , bd − ae and bf − ce are
nonzero and have the same sign.
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Two-dimensional dynamics

F

Let s := sgn(af − cd) = sgn(bd − ae) = 1, then because x∗ and y∗ are
nonnegative, also bf − ce > 0 and the point (x∗, y∗) lies inside of M. In this
case, the nullclines divide the phase space M into four parts.

 

In figure, there is depicted the vector field for s = 1.
If x >

a
b

, then

ẋ = x(a− bx − cy) < x(a− a− cy) < 0,
i.e., ẋ < 0 and x monotonically decrease and all
initial conditions on the right-hand side of the line
{(x , y) : x =

a
b
} are moving to the left.

Similarly, if y >
d
f

, then ẏ < 0 and y is monotoni-
cally decreasing.

Consequence: The rectangle R = {(x , y), 0 ≤ x ≤ a
b
, 0 ≤ y ≤ d

f
} is an

invariant set, i.e., all trajectories that start in R stay in R. All initial conditions
that lie in M \ R, must also necessarily end up in R.

Limit behavior for t −→∞ for any initial condition: the trajectory ends in one
of the steady state points.



One–dimensional dynamics Two-dimensional dynamics Dynamical systems Recommended literature

Phase portrait

F Phase portrait

Let us go back to two dimensional dynamical system (8)

ż = f (z) =
(

ẋ
ẏ

)
=

(
P(x , y)
Q(x , y)

)
.

If we ignore the time dependency, it is sometimes possible to find a solution
as a parametrization of the curves in the phase space.

Idea: Let the trajectory is locally a graph of the function y = Y (x). we
obtain the following differential equation

dY
dx

=
ẏ
ẋ

=
Q(x ,Y )

P(x ,Y )
= F (x , y) .

This is one differential equation of the first order for the function Y (x)
(Y(x) . . . phase curve). This equation is usually non-autonomous, because a
new vector field F (x ,Y ) depends on a new independent variable x .
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Phase portrait

F Example

Example The system

ẋ = ex+y (x + y)

ẏ = ex+y (x − y)

can’t be for x(t), y(t) solved explicitly, but the equation for the phase curve is
relatively simple:

dy
dx

=
x − y
x + y

.

This equation can’t be solved by separation, but if we define a new variable

as z =
y
x

=
1
x

y we obtain

dz
dx

= − 1
x2 y+

1
x

dy
dx

=
1
x

(
x − y
x + y

− y
x

)
=

1
x

(
1− z
1 + z

− z
)

= −1
x
· (z + 1)2 − 2

1 + z
.

This equation is already a separable differential equation of the first order.
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Phase portrait

F

We separate the variables and compute antiderivatives:∫
1 + z

(z + 1)2 − 2
dz = −

∫
1
x

dx ,

1
2

ln |(z + 1)2 − 2| = − ln |x |+ ln C, C > 0, x > 0, z =
y
x
≥ 0 .

Let us denote

O1 = {(x , z), x > 0, z > −1+
√

2} and O2 = {(x , z), x > 0, 0 ≤ z ≤ −1+
√

2} .

Then in O1: z2 + 2z − 1 =
C2

x2 , in O2: −z2 − 2z − 1 + 2 =
C2

x2 .

After the back substitution for z we have two branches of the solution
y1,2 = −x ±

√
2x2 + C2, i.e., the assumption that the graph y = Y (x) is

a graph of a function is wrong.

From the computations we see that the trajectories are hyperboles
(y + x)2 − 2x2 = C̃2 .

Let us note that we got no information about the time dependence of
trajectories.
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Dynamical systems

A dynamical system. . . an evolutionary rule that defines the trajectory as a
function of one parameter t ∈ R (time) on the phase (state) state M (typically
M = Rn). State of the system in time t depends also on the state in which the
system was in time t = 0. Let us denote ϕ(t , σ), t ∈ R, σ ∈ M, the state of
the system in time t , if in time t = 0 the system was in he state σ.

We obtain the mapping

ϕ : R×M −→ M (ϕ(t , σ) ∈ M) ,

while requesting
1 ϕ(0, σ) = σ, i.e., in time t = 0 the system was in he state σ.
2 the aditivity of time holds:

ϕ(t , ϕ(s, σ)) = ϕ(t + s, σ) ∀t , s ∈ R, ∀σ ∈ M .
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Definition The pair {S, ϕ}, where ϕ satisfies 1. and 2. items is called a
continuous dynamical system on the state space S. The mapping ϕ is called
dynamics of the system
Convention In what follows we will assume that the state space (phase
space) S ⊆ Rn is an open set in Rn and x = (x1, x2, . . . , xn) ∈ Rn is the state
of the system.

For fixed x ∈ Rn we set ϕx(t) = ϕ(t , x) ∀t ∈ R, and for fixed t ∈ R we set
ϕt(x) = ϕ(t , x) ∀x ∈ Rn.

We have two mappings

ϕx : R −→ Rn︸ ︷︷ ︸ ϕt : Rn −→ Rn︸ ︷︷ ︸
parametrization of the curve fulfils the property 1. and 2. =⇒
passing through the point x, (i) ϕ0(x) = ϕ(0, x) = x ∀x ∈ Rn

ϕx(0) = ϕ(0, x) = x ∀x ∈ Rn neboli ϕ0 = id
∣∣
Rn

(ii) ϕt ◦ ϕs = ϕt+s =⇒
the mapping ϕt is simple (injective),
because there exists an inverse mapping(
ϕt)−1

= ϕ−t

i.e., we have ϕ−t ◦ ϕt = ϕ0 = id
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Time evolution of the system

A point x is moving along the curve {ϕx(t), t ∈ R},
the motion is determined by the vector field −→v (x)
on the state space Rn, i.e., the vector field

−→v (x) = (v1(x), v2(x), . . . , vn(x))

is moving the state point (initial state)
x = (x1, . . . , xn) along the curve {ϕx(t), t ∈ R}.

The curve γ represents the time develop-
ment of he system, tangent vectors to the
curve γ are equal to the corresponding vec-
tors of the vector field −→v .

For a given vector field −→v on the state space Rn we are looking for such
curves (and their parametrizations) that have the tangent vectors equal to the
vectors of the given vector field.
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We have
ϕx(t) = x(t) = (x1(t), x2(t), . . . , xn(t))︸ ︷︷ ︸, t ∈ R .

n−tuple of functions that define parametrically the curve γ
The tangent vector to the curve γ at x(t) is the vector

−→x ′(t) = (x ′1(t), x
′
2(t), . . . , x

′
n(t)) .

We obtain the system of ordinary differential equations (SODE) in vector
form:

−→x ′(t) = −→v (x(t)) , usually we write only −→x ′ = −→v (x) . (11)

If we rewrite the equation (11) in components, we obtain the system of n
ordinary differential equations of the first order

x ′1(t) = v1(x1(t), x2(t), . . . , xn(t))

x ′2(t) = v2(x1(t), x2(t), . . . , xn(t))
...

x ′n(t) = vn(x1(t), x2(t), . . . , xn(t))
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Definition of trajectory and solution of SODE

Definition of trajectory and solution of SODE

Definition An ordered n−tuple of functions

x(t) = (x1(t), x2(t), . . . , xn(t)), t ∈ I ⊂ R ,

is called a solution of the system (11) of ordinary differential equations of the
first order. The curve parametrized by the solution x(t), is called the trajectory
of the solution (trajecory of the system). Usually it is denoted by γ or γx, if it is
important that the trajectory goes through the point x ∈ Rn.

If x(t) is a solution of the system, t0 ∈ I, x0 ∈ Rn, then x(t0) = x0 is called the
initial condition for the solution x(t). The corresponding trajectory is denoted
as γx0 .

The set of all trajectories of the system is so called phase portrait of the
system.
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Definition of trajectory and solution of SODE

F

Example
x ′ = −y
y ′ = x =⇒ −→v (x , y) = (−y , x)

Solution
x(t) = r cos(t)
y(t) = r sin(t) r ≥ 0, t ∈ R

(x(t), y(t)) . . . parametrization of the circle with the center S = [0, 0] and with
the radius r . Trajectories are concentric circles.

Vector field Phase portrait
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Definition of trajectory and solution of SODE

F

Example Let us have the system

x ′ = − y√
1 + x2 + y2

y ′ =
x√

1 + x2 + y2

=⇒ −→w (x , y) =
1√

1 + x2 + y2
(−y , x) .

Hence,
−→w (x , y) =

1√
1 + x2 + y2

· −→v ,

i.e., directions of the vector field −→w are the same as the directions of vectors
in the field −→v , and thus vectors −→w are tangent to concentric circles.

So, although we are not able to solve the system, we know its phase portrait.
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Phase flow of the system

Phase flow of the system

Let us have the system (11): −→x ′(t) = −→v (x(t)) .

The mapping ϕ : R× Rn −→ Rn, for which

(i) ϕ(0, x) = x ∀x ∈ Rn ,

(ii) ϕ(t , ϕ(s, x)) = ϕ(t + s, x) ∀t , s ∈ R ,

(iii)
dϕx(t)

dt
=
−→v (ϕx(t)) ∀t ∈ R, ∀x ∈ Rn ,

is called phase flow of the system (11), or phase flow of he vector field −→v .

Renarks
1 ϕ(t , x) = ϕx(t) for fixed x is a solution of the system (11) with trajectory
γx. ϕx(t) fulfils initial condition ϕx(0) = x, i.e., x is the starting point of
the trajectory γx.

2 The phase flow ϕ : R× Rn −→ Rn represents the set of all solutions of
the system (11). By selecting different initial states x ∈ Rn in ϕ(t , x), we
obtain different solutions of the system (11).
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Types of trajectories

One-point trajectory

Let us solve again the system (11), i.e., −→x ′(t) = −→v (x(t)) . Let ϕ(t , x) be the
phase flow of this system.

1. If x0 is an equilibrium of the system (11) then a constant mapping
ϕx0 : R −→ Rn defined as ϕx0 = x0 ∀t ∈ R is a stationary solution of
the system (11) with a one-point trajectory γx0 = {x0}.

Example Find equilibria of the system
x ′ = x − 2xy
y ′ = −y + xy =⇒ x − 2xy = 0 ⇐⇒ x = 0 ∨ y =

1
2

−y + xy = 0 ⇐⇒ x = 1 ∨ y = 0

The system has two equilibria S1 = [0, 0], S2 = [1, 0.5]. The picture
shows the vector field and the phase portrait plotted in Maple. What is
wrong?
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Types of trajectories

Closed trajectory

2. closed trajectory: If there exist x0 ∈ Rn and T > 0 such that

ϕ(0, x0) = ϕ(T , x0) = x0 a ϕ(t , x0) 6= x0 ∀t ∈ (0,T ) ,

then the trajectory γx0 is closed or periodic with the period T .

Example Let us consider the following nonlinear system of two
differential equations:

x ′ = −y + 0, 5x(x2 + y2)

y ′ = x + 0, 5y(x2 + y2)

The picture shows the vector field and the phase portrait for initial
conditions: x(0) = 0.1, y(0) = 2.3 (closed trajectory),
x(0) = 0.6, y(0) = 0.3 and x(0) = −0.6, y(0) = 0.3.
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Types of trajectories

Trajectory is entering into resp. is leaving the equilibrium

3. Trajectory is entering into resp. is leaving the equilibrium state

Let x1 be an equilibrium of the system (11), γa be the trajectory of the
solution ϕa(t), for which it holds:

If
(i) lim

t→∞
ϕa(t) = x1 ,

(ii) lim
t→∞

−→ϕ ′a(t) = −→τ 1 ,

we say that the trajectory γa

corresponding to the solution
ϕa(t) is entering into the equi-
librium x1 in the direction of the
vector −→τ 1.

Similarly, if
(i) lim

t→−∞
ϕb(t) = x2 ,

(ii) lim
t→−∞

−→ϕ ′b(t) =
−→τ 2 ,

we say that the trajectory γb

corresponding to the solution
ϕb(t) is leaving the equilibrium
x2 in the direction of the vector
−→τ 2.
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Types of trajectories

If the trajectory γa fulfils only (i) lim
t→∞

ϕa(t) = x1 and the limit of ϕ′a doesn’t

exist, we say that the trajectory ”finishes”in x1. In this case, the trajectory
approaches the equilibrium in a ”spiral”, i.e., it is not approaching the
equilibrium in a particular direction.
If the trajectory γb fulfils only (i) and the limit of ϕ′b doesn’t exist, we say that
the trajectory ”starts”in x2.

4. heteroclinics, homoclinics
Let x1, x2 are two different equilibria of the system −→x ′(t) = −→v (x(t)). The
trajectory γ that starts in the equilibrium x1 and finishes in the equilibrium x2

is called the heteroclinic trajectory.
Trajectory γ that starts in the equilibrium x1 and finishes also in the
equilibrium x1 is called homoclinic trajectory.
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