Difference Approximations to the derivative

The Difference Approximations for first derivative are in the form

The formula a)

$$
f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}+R(f),
$$

where $R(f)=\frac{1}{2} h f^{\prime \prime}(\xi)=\mathcal{O}(h)$ and $\xi \in\left(x_{0}, x_{0}+h\right)$.

The formula b)

$$
f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}+R(f)
$$

where $R(f)=\frac{1}{6} h^{2} f^{\prime \prime \prime}(\xi)=\mathcal{O}\left(h^{2}\right)$ and $\xi \in\left(x_{0}-h, x_{0}+h\right)$.
The Difference Approximation for second derivative is in the form

The formula for second derivative

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)}{h^{2}}+R(f)
$$

where $R(f)=\frac{1}{12} h^{2} f^{(4)}(\xi)=\mathcal{O}\left(h^{2}\right)$ and $\xi \in\left(x_{0}-h, x_{0}+h\right)$.

Exercises:

Write a computer program to test the approximation to the first derivative and to the second derivative in the point $x_{0}=1$, for $h=10^{-1}, 10^{-2}, 10^{-4}$

1. $f(x)=\mathrm{e}^{-x}$
2. $f(x)=\ln (x)$
3. $\cos \pi x$
4. $\sqrt{1+x}$
5. $\ln \left(\mathrm{e}^{\sqrt{x^{2}+1}} \sin (\pi x)+\tan (\pi x)\right)$
