Difference Approximations to the derivative

The Difference Approximations for first derivative are in the form

The formula a)

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} + R(f),$$

where $R(f) = \frac{1}{2}hf''(\xi) = O(h)$ and $\xi \in (x_0, x_0 + h)$.

The formula b)

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} + R(f) + R(f)$$

where $R(f) = \frac{1}{6}h^2 f'''(\xi) = \mathcal{O}(h^2)$ and $\xi \in (x_0 - h, x_0 + h)$.

The Difference Approximation for second derivative is in the form

The formula for second derivative

$$f''(x_0) = \frac{f(x_0 - h) - 2f(x_0) + f(x_0 + h)}{h^2} + R(f),$$

where $R(f) = \frac{1}{12}h^2 f^{(4)}(\xi) = \mathcal{O}(h^2)$ and $\xi \in (x_0 - h, x_0 + h).$

Exercises:

Write a computer program to test the approximation to the first derivative and to the second derivative in the point $x_0 = 1$, for $h = 10^{-1}, 10^{-2}, 10^{-4}$

- 1. $f(x) = e^{-x}$
- 2. $f(x) = \ln(x)$
- 3. $\cos \pi x$
- 4. $\sqrt{1+x}$
- 5. $\ln(e^{\sqrt{x^2+1}}\sin(\pi x) + \tan(\pi x))$