Numerical integration

We want to find the value of the definite integral

$$
I(f)=\int_{a}^{b} f(x) d x
$$

To construct the approximation of the definite integral, we first define the mesh points x_{i} according to

$$
a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=b .
$$

Typically the approximation will be of the form

$$
I(f) \approx I_{n}(f)=\sum_{i=0}^{n} c_{i} f\left(x_{i}\right) .
$$

1 Trapezoid Rule

We use a uniform grid, in which the mesh points are equally spaced so that $x_{i+1}-x_{i}=h$, for all $i=0, \ldots, n-1$. We apply basic trapezoid rule

$$
\int_{x_{i}}^{x_{i+1}} f(x) d x \approx \frac{h}{2}\left(f\left(x_{i+1}\right)+f\left(x_{i}\right)\right)
$$

to get the trapezoid rule

$$
T_{n}(f)=\frac{h}{2}\left(f\left(x_{0}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)\right) .
$$

Trapezoid Rule Error Estimate

Let $f \in C^{2}([a, b])$ and let $T_{n}(f)$ be the trapezoid rule approximation to $I(f)$, using a uniform grid $\left(n+1\right.$ points with $\left.h=\frac{b-a}{n}\right)$. Then there exists $\xi \in[a, b]$, depending on h, such that

$$
I(f)-T_{n}(f)=-\frac{b-a}{12} h^{2} f^{\prime \prime}(\xi)
$$

2 Simpson's Rule

Let $n=2 m$. We apply basic Simpson's rule

$$
\int_{x_{i}}^{x_{i+2}} f(x) d x \approx \frac{h}{3}\left(f\left(x_{i-1}\right)+4 f\left(x_{i}\right)+f\left(x_{i+1}\right)\right)
$$

to get the Simpson's rule

$$
S_{n}(f)=\frac{h}{3}\left(f\left(x_{0}\right)+4 \sum_{i=1}^{m} f\left(x_{2 i-1}\right)+2 \sum_{i=1}^{m-1} f\left(x_{2 i}\right)+f\left(x_{2 m}\right)\right) .
$$

Simpson's Rule Error Estimate

Let $f \in C^{4}([a, b])$ and let $S_{n}(f)$ be the Simpson's rule approximation to $I(f)$, using a uniform grid $\left(n+1\right.$ points with $\left.h=\frac{b-a}{n}\right)$. Then there exists $\xi \in[a, b]$, depending on h, such that

$$
I(f)-S_{n}(f)=-\frac{b-a}{180} h^{4} f^{(4)}(\xi)
$$

Exercises:

Write a computer program for the trapezoid rule and the Simpson's rule. Apply trapezoid and Simpson's rules with $h=0.25,0.1,0.05$ to approximation the integral

1. $I=\int_{0}^{1} x\left(1-x^{2}\right) d x=\frac{1}{4}$
2. $I=\int_{0}^{1} \ln (1+x) d x=2 \ln 2-1$
3. $I=\int_{0}^{1} \frac{1}{1+x^{3}} d x=\frac{1}{3} \ln 2+\frac{1}{9} \sqrt{3} \pi$
4. $I=\int_{1}^{2} \mathrm{e}^{-x^{2}} d x=0.1352572580$

How small does the error theory say h must be to get the error less than $10^{-3} ? 10^{-6}$?

