Lagrange Interpolating Polynomial

The Lagrange interpolating polynomial is the polynomial of degree n that passes through the $n+1$ points $\left(x_{0}, y_{0}=f\left(x_{0}\right)\right), \ldots,\left(x_{n}, y_{n}=f\left(x_{n}\right)\right)$ and is given by

$$
L_{n}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) \frac{\omega_{n}(x)}{\left(x-x_{i}\right) \omega_{n}^{\prime}\left(x_{i}\right)}, \quad \text { where } \omega_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)
$$

or

$$
L_{n}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) l_{i}(x), \quad \text { where } l_{i}(x)=\prod_{j=0, j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

The family of functions $l_{i}(x)$ are polynomials and have the property that

$$
l_{i}\left(x_{j}\right)=\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j .\end{cases}
$$

Interpolation error

Let $f \in C^{n+1}([a, b])$ and $x_{i} \in[a, b]$ for $0 \leq i \leq n$. Then, for each $x \in[a, b]$, there is a $\xi_{x} \in[a, b]$ such that

$$
f(x)-L_{n}(x)=\frac{\omega_{n}(x)}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) .
$$

Exercises:

1. $f(x)=\sqrt{(x)}, x \in[0,1]$, 4-degree, 8-degree, 12-degree
2. $f(x)=\ln (x), x \in[1,2], 4$-degree, 8-degree, 12-degree
3. $f(x)=\log _{2}(x), x \in[1,2], 4$-degree, 8 -degree, 12-degree
4. $f(x)=\sin (\pi x), x \in[-1,1]$, 4-degree, 8 -degree, 12-degree
