Lagrange Interpolating Polynomial

The Lagrange interpolating polynomial is the polynomial of degree n that passes through the n + 1 points $(x_0, y_0 = f(x_0)), \ldots, (x_n, y_n = f(x_n))$ and is given by

$$L_n(x) = \sum_{i=0}^n f(x_i) \frac{\omega_n(x)}{(x - x_i) \,\omega'_n(x_i)}, \text{ where } \omega_n(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

or

$$L_n(x) = \sum_{i=0}^n f(x_i) \, l_i(x) \,, \text{ where } l_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j}$$

The family of functions $l_i(x)$ are polynomials and have the property that

$$l_i(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

Interpolation error

Let $f \in C^{n+1}([a,b])$ and $x_i \in [a,b]$ for $0 \le i \le n$. Then, for each $x \in [a,b]$, there is a $\xi_x \in [a,b]$ such that

$$f(x) - L_n(x) = \frac{\omega_n(x)}{(n+1)!} f^{(n+1)}(\xi_x) \,.$$

Exercises:

- 1. $f(x) = \sqrt{(x)}, x \in [0, 1], 4$ -degree, 8-degree, 12-degree
- 2. $f(x) = \ln(x), x \in [1, 2], 4$ -degree, 8-degree, 12-degree
- 3. $f(x) = \log_2(x), x \in [1, 2], 4$ -degree, 8-degree, 12-degree
- 4. $f(x) = \sin(\pi x), x \in [-1, 1], 4$ -degree, 8-degree, 12-degree